Unsupervised Machine Learning in NLP

The seminar focuses on deeper understanding of selected unsupervised machine learning methods for students who already have basic knowledge of machine learning and probability models. The first half of the semester is devoted to methods of unsupervised learning using Bayesian inference (Dirichlet-Categorical models, Mixture of Categoricals, Mixture of Gaussians, Expectation Maximization, Gibbs sampling) and implementation of these methods on selected tasks. Other lectures will be devoted to clustering methods, componet analysis and unsupervised inspecting deep neural networks.


SIS code: NPFL097
Semester: winter
E-credits: 3
Examination: 1/1 C
Guarantor: David Mareček

Timespace Coordinates

The course will be taught online over Zoom, given the current pandemic. All lectures will be recorded so you can catch up later.

  • The lectures in Czech are given on Mondays 10:40 - 12:10, the first lecture is on Oct 5.
  • The lectures in English are given on Fridays 10:40 - 12:10, the first lecture is on Oct 9.

All enrolled students will get a Zoom link via email. If you want to take part and have not officialy enrolled, email me.

Course prerequisities

Students are expected to be familiar with basic probabilistic concepts, roughly in the extent of:

  • NPFL067 - Statistical methods in NLP I

In the second half of the course, it will be an advantage for you if you know the basics of deep-learning methods. I recommend to attend

Course passing requirements

  • There are three programming assignments during the term. For each one, you can obtain 10 points. When submitted after the deadline, you can obtain at most half of the points.
  • You can obtain 10 points for an individual 30-minutes presentation about selected machine learning method or task or about a novel approach in the field.
  • You pass the course if you obtain at least 20 points.


1. Introduction Slides Warm-Up test

2. Beta-Bernoulli probabilistic model Beta-Bernoulli Beta distribution

3. Dirichlet-Categorical probabilistic model Dirichlet-Categorical Document collections Categorial Mixture Models

1. Introduction

 Oct 05  Oct 09 (in English)

  • Course overview Slides
  • revision of the basics of probability and machine learning theory Warm-Up test

2. Beta-Bernoulli probabilistic model

 Oct 19  Oct 16 (in English)

3. Dirichlet-Categorical probabilistic model

 Oct 26  Oct 23 (in English)

Latent Dirichlet Allocation

Chinese Segmentation


  • Christopher Bishop: Pattern Recognition and Machine Learning, Springer-Verlag New York, 2006 (read here)

  • Kevin P. Murphy: Machine Learning: A Probabilistic Perspective, The MIT Press, Cambridge, Massachusetts, 2012 (read here)