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Hierarchical clustering

• K-means and GMM are objective-based approaches that require us to pre-specify the
number of clusters 𝐾.

• The answer they give is somewhat random. It depends on the random initialization it
started with.

• Hierarchical clustering is an alternative approach that does not require a pre-specified
choice of 𝐾, and which provides a deterministic answer (no randomness).

• We’ll focus on bottom-up or agglomerative hierarchical clustering
• top-down or divisive clustering is also good to know about, but we won’t directly cover

it here
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Hierarchical clustering – Example

Each point starts as its own cluster
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Hierarchical clustering – Example

We merge the two clusters (points) that are closest to each other.
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Hierarchical clustering – Example

Then we merge the next two closest clusters.
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Hierarchical clustering – Example

Then the next two closest clusters...
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Hierarchical clustering – Example

Until at last all of the points are all in a single cluster.
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Aglomerative Hierarchical clustering
• Start with each point in its own cluster.
• Identify the two closest clusters and merge them.
• Repeat until all points are in a single cluster.

To visualize the results, we can look at the resulting dendrogram.

𝑦-axis on dendrogram is (proportional to) the distance between the clusters that got merged
at that step.
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Hierarchical clustering - Linkages

• Let 𝑑𝑖𝑗 = 𝑑(𝑥𝑖, 𝑥𝑗) denote the dissimilarity (distance) between points 𝑥𝑖 and 𝑥𝑗.
• At our first step, each cluster is a single point, so we start by merging the two points

that have the lowest dissimilarity.
• But after that, we need to think about distances not between points, but between sets

of points (clusters).
• The dissimilarity between two clusters is called the linkage.
• i.e., given two sets of points, 𝐺 and 𝐻, a linkage is a dissimilarity measure 𝑑(𝐺, 𝐻)

telling us how different the points in these sets are.

Clustering evaluation 9/ 34



Common linkage types

• Single – Minimal inter-cluster dissimilarity. Compute all pairwise dissimilarities between
the observations in cluster G and the observations in cluster H, and record the smallest
of these dissimilarities.

• Complete – Maximal inter-cluster dissimilarity. Compute all pairwise dissimilarities
between the observations in cluster G and the observations in cluster H, and record the
largest of these dissimilarities.

• Average – Mean inter-cluster dissimilarity. Compute all pairwise dissimilarities between
the observations in cluster G and the observations in cluster H, and record the average
of these dissimilarities.

• Centroid – Dissimilarity between the centroid for cluster G (a mean vector of length p)
and the centroid for cluster H. Centroid linkage can result in undesirable inversions.

• Ward – Minimizes the variance, similar to k-means objective.
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Single linkage
In single linkage (i.e., nearest-neighbor linkage), the dissimilarity between 𝐺, 𝐻 is the
smallest dissimilarity between two points in different groups:

𝑑𝑠𝑖𝑛𝑔𝑙𝑒(𝐺, 𝐻) = min{𝑑(𝑥𝑖, 𝑥𝑗), 𝑖 ∈ 𝐺, 𝑗 ∈ 𝐻}

Example (dissimilarities 𝑑𝑖𝑗 are distances,
groups are marked by colors): single linkage
score 𝑑𝑠𝑖𝑛𝑔𝑙𝑒(𝐺, 𝐻) is the distance of the
closest pair.
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Single linkage – Example
Here 𝑛 = 60, 𝑥𝑖 ∈ ℝ2, 𝑑𝑖𝑗 =∥ 𝑥𝑖 − 𝑥𝑗 ∥2. Cutting the tree at ℎ = 0.9 gives the clustering
assignments marked by colors.

Cut interpretation: for each point 𝑥𝑖, there is another point 𝑥𝑗 in its cluster such that
𝑑(𝑥𝑖, 𝑥𝑗) ≤ 0.9.
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Complete linkage
In complete linkage (i.e., furthest-neighbor linkage), dissimilarity between 𝐺, 𝐻 is the
largest dissimilarity between two points in different groups:

𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝐺, 𝐻) = max{𝑑(𝑥𝑖, 𝑥𝑗), 𝑖 ∈ 𝐺, 𝑗 ∈ 𝐺}

Example (dissimilarities 𝑑𝑖𝑗 are distances,
groups are marked by colors): complete
linkage score 𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝐺, 𝐻) is the distance
of the furthest pair.
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Complete linkage – Example
Same data as before. Cutting the tree at ℎ = 5 gives the clustering assignments marked by
colors.

Cut interpretation: for each point 𝑥𝑖, every other point 𝑥𝑗 in its cluster satisfies
𝑑(𝑥𝑖, 𝑥𝑗) ≤ 5.
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Average linkage
In average linkage, the dissimilarity between 𝐺, 𝐻 is the average dissimilarity over all
points in opposite groups:

𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐺, 𝐻) = 1
|𝐺| ⋅ |𝐻| ∑

𝑖∈𝐺
∑
𝑗∈𝐻

𝑑(𝑥𝑖, 𝑥𝑗)

Example (dissimilarities 𝑑𝑖𝑗 are distances,
groups are marked by colors): average linkage
score 𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐺,𝐻) is the average distance
across all pairs (Plot here only shows
distances between the green points and one
orange point).
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Average linkage – Example

Same data as before. Cutting the tree at ℎ = 2.5 gives the clustering assignments marked by
colors.

Cut interpretation: there really is not a good one! :(
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Shortcomings of Single and Complete linkage

Single and complete linkage have some practical problems:
• Single linkage suffers from chaining.

• In order to merge two groups, only need one pair of points to be close, irrespective of all
others. Therefore clusters can be too spread out, and not compact enough.

• Complete linkage avoids chaining, but suffers from crowding.
• Because its score is based on the worst-case dissimilarity between pairs, a point can be

closer to points in other clusters than to points in its own cluster. Clusters are compact,
but not far enough apart.

Average linkage tries to strike a balance. It uses average pairwise dissimilarity, so clusters
tend to be relatively compact and relatively far apart
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Example of chaining and crowding
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Shortcomings of the Average linkage

Average linkage has its own problems:
• Unlike single and complete linkage, average linkage doesn’t give us a nice interpretation

when we cut the dendrogram.
• Results of average linkage clustering can change if we simply apply a monotone

increasing transformation to our dissimilarity measure, our results can change
• e.g. 𝑑 ← 𝑑2 or 𝑑 ← 𝑒𝑑

1+𝑒𝑑 .
• This can be a big problem if we’re not sure precisely what dissimilarity measure we want to

use.
• Single and Complete linkage do not have this problem.
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Average linkage – monotone dissimilarity transformation

The left panel uses 𝑑(𝑥𝑖, 𝑥𝑗) = ||𝑥𝑖 − 𝑥𝑗||2 (Euclidean distance), while the right panel uses
||𝑥𝑖 − 𝑥𝑗||22. The left and right panels would be same as one another if we used single or
complete linkage. For average linkage, we see that the results can be different.
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Centroid linkage

Dissimilarity between the centroid for cluster G and the centroid for cluster H.

𝑑𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑑 ( 1
|𝐺| ∑

𝑖∈𝐺
𝑥𝑖,

1
|𝐻| ∑

𝑖∈𝐻
𝑥𝑖)

Centroid linkage can result in undesirable inversions.
• Consider three points forming almost an equilateral triangle.
• What will be the distances between clusters?
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Ward linkage

Ward linkage is a variance minimizing approach. The distance between two clusters 𝐺 and
𝐻 is how much the sum of squares will increase when we merge them. It is similar to the
k-means objective function but tackled with an agglomerative hierarchical approach.

𝑑𝑊𝑎𝑟𝑑(𝐺, 𝐻) = ∑
𝑖∈𝐺∪𝐻

||𝑥𝑖 − 𝑚𝐺∪𝐻||2 − ∑
𝑖∈𝐺

||𝑥𝑖 − 𝑚𝐺||2 − ∑
𝑖∈𝐻

||𝑥𝑖 − 𝑚𝐻||2,

where 𝑚𝑋 is the mean (center) of cluster 𝑋. It also corresponds to the squared distance
between the centers of the clusters

𝑑𝑊𝑎𝑟𝑑(𝐺, 𝐻) = 𝑛𝐺𝑛𝐻
𝑛𝐺 + 𝑛𝐻

||𝑚𝐺 − 𝑚𝐻||2,

where 𝑛𝐺 and 𝑛𝐻 are number of points in clusters G and H, respectively.
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Hierarchical clustering
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Clustering Methods Comparison
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Where should we place cell towers?

Suppose we wanted to place cell towers in a way that ensures that no building is more than
3000ft away from a cell tower. What linkage should we use to cluster buildings, and where
should we cut the dendrogram, to solve this problem?
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Dissimilarity measures

• The choice of linkage can greatly affect the structure and quality of the resulting
clusters

• The choice of dissimilarity (equivalently, similarity) measure is arguably even more
important.

• To come up with a similarity measure, you may need to think carefully and use your
intuition about what it means for two observations to be similar. E.g.,

• What does it mean for two people to have similar purchasing behaviour?
• What does it mean for two people to have similar music listening habits?

• You can apply hierarchical clustering to any similarity measure 𝑠(𝑥𝑖, 𝑥𝑗) you come up
with. The difficult part is coming up with a good similarity measure in the first place.
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Example: Clustering time series

Here is an example of using hierarchical
clustering to cluster time series.

You can quantify the similarity between two
time series by calculating the correlation
between them. There are different kinds of
correlations out there.

[source: A Scalable Method for Time Series Clustering,
Wang et al]
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K-means vs Hierarchical clustering
K-means and GMM

• Low memory usage
• Essentially 𝑂(𝑛) compute time.
• Results are sensitive to random initialization.
• Number of clusters is pre-defined.
• Awkward with categorical variables.

Hierarchical clustering
• Deterministic algorithm
• Dendrogram shows us clusterings for various choices of 𝐾
• Requires only a distance matrix, quantifying how dissimilar observations are from one

another
• We can use a dissimilarity measure that gracefully handles categorical variables, missing

values, etc.
• Memory-heavy, more computationally intensive than K-means.
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Clustering Evaluation

If you have a testing data available with annotated gold labels:

Rosenberg and Hirschberg (2007) define the following objectives for any cluster assignment:
• Homogeneity – each cluster contains only members of a single class
• Completeness – all members of a given class are assigned to the same cluster
• V-measure – their harmonic mean

If you do not have any labelled data:

• Silhouette coefficient – “unsupervised” consistency within clusters of data
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Homogeneity

Homogeneity – To what extent each cluster contains only members of a single class?

ℎ = 1 − 𝐻(𝐶|𝐾)
𝐻(𝐶)

𝐻(𝐶|𝐾) is the conditional entropy of the classes given the cluster assignments:

𝐻(𝐶|𝐾) = −
|𝐶|
∑
𝑐=1

|𝐾|
∑
𝑘=1

𝑛𝑐,𝑘
𝑛 log 𝑛𝑐,𝑘

𝑛𝑘

𝐻(𝐶) is the entropy of the classes:

𝐻(𝐶) = −
|𝐶|
∑
𝑐=1

𝑛𝑐
𝑛 log 𝑛𝑐

𝑛
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Completeness

Completeness – To what extent all members of a given class are assigned to the same
cluster?

𝑐 = 1 − 𝐻(𝐾|𝐶)
𝐻(𝐾)

𝐻(𝐾|𝐶) is the conditional entropy of the cluster assignments given the classes:

𝐻(𝐾|𝐶) = −
|𝐶|
∑
𝑐=1

|𝐾|
∑
𝑘=1

𝑛𝑐,𝑘
𝑛 log 𝑛𝑐,𝑘

𝑛𝑐

𝐻(𝐾) is the entropy of the clusters:

𝐻(𝐾) = −
|𝐾|
∑
𝑘=1

𝑛𝑘
𝑛 log 𝑛𝑘

𝑛
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V-measure

V-measure – Harmonic mean of homogeneity and completeness:

𝑣 = 2 ⋅ ℎ ⋅ 𝑐
ℎ + 𝑐
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Homogeneity and Completeness
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Silhouette coefficient
How similar an object is to its own cluster (cohesion) compared to other clusters (separation)

Values between -1 and 1

The Silhouette Coefficient 𝑠 for a single sample is then given as:

𝑠𝑖 = 𝑏𝑖 − 𝑎𝑖
𝑚𝑎𝑥(𝑎𝑖, 𝑏𝑖)

, 𝑎𝑖 = 1
𝐶𝐼 − 1 ∑

𝑗∈𝐶𝐼,𝑖≠𝑗
𝑑(𝑖, 𝑗), 𝑏𝑖 = min

𝐽≠𝐼
1

𝐶𝐽
∑
𝑗∈𝐶𝐽

𝑑(𝑖, 𝑗)

• 𝑎 is the mean distance between a sample and all other points in the same cluster
• 𝑏 is the mean distance between a sample and all other points in the next nearest cluster

The mean over all points of a cluster is a measure of how tightly grouped all the points in
the cluster are. Thus the mean over all data of the entire dataset is a measure of how
appropriately the data have been clustered.

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_
silhouette_analysis.html
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