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A mixture of categoricals model

𝑧𝑑 ∼ 𝐶𝑎𝑡( ⃗𝜃)
𝑤𝑛𝑑|𝑧𝑑 ∼ 𝐶𝑎𝑡( ⃗𝛽𝑧𝑑

)

We want to allow for a mixture of 𝐾 categoricals parametrized by ⃗𝛽1, … , ⃗𝛽𝐾.
Each of those categorical distributions corresponds to a document category.

• 𝑧𝑑 ∈ 1, … , 𝐾 assigns document 𝑑 to one of the 𝐾 categories.
• 𝜃𝑘 = 𝑝(𝑧𝑑 = 𝑘) is the probability any document 𝑑 is assigned to category 𝑘.
• so ⃗𝜃 = [𝜃1, … , 𝜃𝐾] is the parameter of a categorical distribution over 𝐾 categories.

We have introduced a new set of hidden variables 𝑧𝑑.
• How do we fit those variables?
• Are these variables interesting? Or are we only interested in ⃗𝜃 and ⃗𝛽?
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A mixture of categoricals model: the likelihood

𝑝(𝑤| ⃗𝜃, ⃗𝛽) =
𝐷

∏
𝑑=1

𝑝(𝑤𝑑| ⃗𝜃, ⃗𝛽)

=
𝐷

∏
𝑑=1

𝐾
∑
𝑘=1

𝑝(𝑤𝑑, 𝑧𝑑 = 𝑘| ⃗𝜃, ⃗𝛽)

=
𝐷

∏
𝑑=1

𝐾
∑
𝑘=1

𝑝(𝑧𝑑 = 𝑘| ⃗𝜃)𝑝(𝑤𝑑|𝑧𝑑 = 𝑘, ⃗𝛽𝑘)

=
𝐷

∏
𝑑=1

𝐾
∑
𝑘=1

𝑝(𝑧𝑑 = 𝑘| ⃗𝜃)
𝑁𝑑

∏
𝑛=1

𝑝(𝑤𝑛𝑑|𝑧𝑑 = 𝑘, ⃗𝛽𝑘)

𝑤: all the words in all the documents,
𝑤𝑑: all the words in a document 𝑑,
𝑤𝑛𝑑: the 𝑛-th word in document 𝑑.

𝑧𝑑 ∼ 𝐶𝑎𝑡( ⃗𝜃)

𝑤𝑛𝑑|𝑧𝑑 ∼ 𝐶𝑎𝑡( ⃗𝛽𝑧𝑑
)
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Expectation Maximization and Mixture of Categoricals

We want to maximize the likelihood of the data:

𝑝(𝑤| ⃗𝜃, ⃗𝛽) =
𝐷

∏
𝑑=1

𝐾
∑
𝑘=1

𝑝(𝑧𝑑 = 𝑘| ⃗𝜃)
𝑁𝑑

∏
𝑛=1

𝑝(𝑤𝑛𝑑|𝑧𝑑 = 𝑘, ⃗𝛽𝑘)

However, the latent variables (document categories) are unknown.

Expectation-Maximization algorithm:
1. Initialize ⃗𝜃 and ⃗𝛽 randomly.
2. E-step: For each 𝑑 and 𝑘, compute responsibilities 𝑟𝑘𝑑 as probabilities 𝑞(𝑧𝑑 = 𝑘| ⃗𝜃, ⃗𝛽)
3. M-step: Maximize the likelihood of the model with weighted by the responsibilities 𝑟𝑘𝑑

from step 2 and update the parameters ⃗𝛽 and ⃗𝜃.
4. Repeat steps 2 and 3 until convergence.
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Expectation Maximization and Mixture of Categoricals
E-step: For each document, compute the posterior distribution over categories:

𝑟𝑘𝑑 = 𝑞(𝑧𝑑 = 𝑘) ∝ 𝑝(𝑧𝑑 = 𝑘| ⃗𝜃)
𝑁𝑑

∏
𝑛=1

𝑝(𝑤𝑛𝑑|𝑧𝑑 = 𝑘, ⃗𝛽𝑘) = 𝜃𝑘
𝑀
∏
𝑚=1

𝛽𝑐𝑚𝑑
𝑘𝑚

M-step: Maximize the log-likelihood weighted by the responsibilities 𝑟𝑘𝑑:

𝐷
∑
𝑑=1

𝐾
∑
𝑘=1

𝑟𝑘𝑑 log 𝑝(𝑤𝑑, 𝑧𝑑) = ∑
𝑘,𝑑

𝑟𝑘𝑑 log[𝑝(𝑧𝑑 = 𝑘| ⃗𝜃)
𝑁𝑑

∏
𝑛=1

𝑝(𝑤𝑛𝑑|𝑧𝑑 = 𝑘, ⃗𝛽𝑘)]

= ∑
𝑘,𝑑

𝑟𝑘𝑑(log 𝜃𝑘 + log
𝑀
∏
𝑚=1

𝛽𝑐𝑚𝑑
𝑘𝑚 )

= ∑
𝑘,𝑑

𝑟𝑘𝑑(log 𝜃𝑘 +
𝑀

∑
𝑚=1

𝑐𝑚𝑑 log𝛽𝑘𝑚)
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Expectation Maximization and Mixture of Categoricals
M-step (continued): We need Lagrange multipliers to constrain the maximization of the
function ensure proper distributions.

𝐿1 =
𝐾

∑
𝑘=1

𝐷
∑
𝑑=1

𝑟𝑘𝑑(log 𝜃𝑘 +
𝑀

∑
𝑚=1

𝑐𝑚𝑑 log𝛽𝑘𝑚) + 𝜆(1 −
𝐾

∑
𝑘′=1

𝜃𝑘′)

∂𝐿1
∂𝜃𝑘

=
𝐷

∑
𝑑=1

𝑟𝑘𝑑
1
𝜃𝑘

− 𝜆 = 0 ⇒ 𝜃𝑘 = ∑𝐷
𝑑=1 𝑟𝑘𝑑

𝜆 = ∑𝐷
𝑑=1 𝑟𝑘𝑑

∑𝐾
𝑘′=1 ∑𝐷

𝑑=1 𝑟𝑘′𝑑
= ∑𝐷

𝑑=1 𝑟𝑘𝑑
𝐷

𝐿2 =
𝐾

∑
𝑘=1

𝐷
∑
𝑑=1

𝑟𝑘𝑑(log 𝜃𝑘 +
𝑀

∑
𝑚=1

𝑐𝑚𝑑 log𝛽𝑘𝑚) +
𝐾

∑
𝑘′=1

𝜆𝑘′(1 −
𝑀

∑
𝑚′=1

𝛽𝑘′𝑚′)

∂𝐿2
∂𝛽𝑘𝑚

=
𝐷

∑
𝑑=1

𝑟𝑘𝑑
𝑐𝑚𝑑
𝛽𝑘𝑚

− 𝜆𝑘 = 0 ⇒ 𝛽𝑘𝑚 = ∑𝐷
𝑑=1 𝑟𝑘𝑑𝑐𝑚𝑑

𝜆𝑘
= ∑𝐷

𝑑=1 𝑟𝑘𝑑𝑐𝑚𝑑

∑𝑀
𝑚′=1 ∑𝐷

𝑑=1 𝑟𝑘𝑑𝑐𝑚′𝑑
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Expectation Maximization and Mixture of Categoricals

EM Algorithm:
1. Initialize ⃗𝜃 and ⃗𝛽 randomly.
2. E-step: For each 𝑑 and 𝑘, compute responsibilities 𝑟𝑘𝑑 using current parameters ⃗𝜃 and ⃗𝛽.

𝑟𝑘𝑑 = 𝜃𝑘 ∏𝑀
𝑚=1 𝛽𝑐𝑚𝑑

𝑘𝑚

∑𝐾
𝑘′=1 𝜃𝑘′ ∏𝑀

𝑚=1 𝛽𝑐𝑚𝑑
𝑘′𝑚

3. M-step: Maximize the likelihood of the model with weighted by the responsibilities 𝑟𝑘𝑑
from step 2 and update the parameters ⃗𝜃 and ⃗𝛽.

𝛽𝑘𝑚 = ∑𝐷
𝑑=1 𝑟𝑘𝑑𝑐𝑚𝑑

∑𝑀
𝑚′=1 ∑𝐷

𝑑=1 𝑟𝑘𝑑𝑐𝑚′𝑑
, 𝜃𝑘 = ∑𝐷

𝑑=1 𝑟𝑘𝑑
𝐷

4. Repeat steps 2 and 3 until convergence.
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Exercises

1. Let’s have 𝐾 = 2, 𝑀 = {𝑎, 𝑏, 𝑐} and observe the following set of documents

𝐷1 = {𝑎, 𝑏, 𝑏}, 𝐷2 = {𝑎, 𝑐, 𝑐}, 𝐷3 = {𝑎, 𝑏}, 𝐷4 = {𝑐}.

Could you estimate the resulting ⃗𝜃 and ⃗𝛽?

2. What would happen if we initialize the parameters ⃗𝜃 and ⃗𝛽 uniformly?
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