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Mixture of Categoricals
Expectation Maximization
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Many of the slides in this presentation were taken from the presentations
of Carl Edward Rasmussen (University of Cambridge)
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We want to allow for a mixture of K categoricals parametrized by Bl, ,BK.

Each of those categorical distributions corresponds to a document category.

® 2, €1,..., K assigns document d to one of the K categories.

® 0. = p(z, = k) is the probability any document d is assigned to category k.

® s00=10,..,0k] is the parameter of a categorical distribution over K categories.
We have introduced a new set of hidden variables z,.

® How do we fit those variables?

® Are these variables interesting? Or are we only interested in 6 and B?
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A mixture of categoricals model: the likelihood

D
Wi B =T[ewdd.p
d=1 ! Fmmm——— A -
& i () | ! )
= H p(wda zd - k’07 B) ‘_:"_I‘“_:I_r‘
d=1 1 : : : |
: | e LN :_k_:_1;1_<
p(zq = klO)p(wy|zy = K, By) | d-1.D |

i
)

Ny

0) H p(w,alzg =k, By)

n=1

—
1= T 1>

I
—o
=
N
u
|
=
>

%
—_
T\T.
—_

w: all the words in all the documents,
wy: all the words in a document d,
w,,q: the n-th word in document d.



We want to maximize the likelihood of the data:
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However, the latent variables (document categories) are unknown.

Expectation-Maximization algorithm:
Initialize 6 and 5 randomly.
E-step: For each d and k, compute responsibilities r,; as probabilities ¢(z; = k|6, 5)

M-step: Maximize the likelihood of the model with weighted by the responsibilities 7,
from step 2 and update the parameters B and 6.

Repeat steps 2 and 3 until convergence.
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E-step: For each document, compute the posterior distribution over categories:
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M-step: Maximize the log-likelihood weighted by the responsibilities r;,;:
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M-step (continued): We need Lagrange multipliers to constrain the maximization of the
function ensure proper distributions.
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EM Algorithm:
Initialize 6 and 5 randomly.

E-step: For each d and k, compute responsibilities r,; using current parameters 6 and 5
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M-step: Maximize the likelihood of the model with weighted by the responsibilities 7,
from step 2 and update the parameters 6 and /.
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Repeat steps 2 and 3 until convergence.
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Let's have K =2, M = {a,b,c} and observe the following set of documents
D, ={a,b,b}, D, ={a,c,c}, Ds=1{a,b}, D,={c}.

Could you estimate the resulting 6 and B?

What would happen if we initialize the parameters g and B uniformly?
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