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Coin tossing

You are presented with a coin.

What is the probability of heads?
How is the probability defined?
We need data!
We toss once and it’s head (H).
How much are you willing to bet 𝑝(H) > 0.5?
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Bernoulli distribution
The Bernoulli probability distribution over binary random variables:

• Binary random variable 𝑋: outcome 𝑥 of a single coin toss.
• 𝑥 can take two values: 𝑋 = 0 for tails and 𝑋 = 1 for heads.
• Let the probability of heads be 𝜋 = 𝑝(𝑋 = 1).
• 𝜋 is the parameter of the Bernoulli distribution.
• The probability of tail is 𝑝(𝑋 = 0) = 1 − 𝜋. We can compactly write

𝑝(𝑋 = 𝑥|𝜋) = 𝑝(𝑥|𝜋) = 𝜋𝑥(1 − 𝜋)1−𝑥

What do we think 𝜋 is after observing a single head outcome “H”?
• Maximum likelihood! We maximise the probability of data with respect to the

parameter 𝜋:
𝑝(𝐻|𝜋) = 𝑝(𝑥 = 1|𝜋) = 𝜋, 𝑎𝑟𝑔𝑚𝑎𝑥𝜋∈[0,1]𝜋 = 1

• Ok, so the answer is 𝜋 = 1. This coin only generates heads.
Is this reasonable? How much are you willing to bet 𝑝(𝐻) > 0.5?
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Binomial distribution

We observe a sequence of tosses rather than a single toss: HHTH
• The probability of this particular sequence is: 𝑝(HHTH) = 𝜋3(1 − 𝜋).
• But so is the probability of THHH, of HTHH and of HHHT.
• We often don’t care about the order of the outcomes, only about the counts.

In our example, the probability of 3 heads out of 4 tosses is: 4𝜋3(1 − 𝜋).
The binomial distribution gives the probability of observing 𝑘 heads out of 𝑛 tosses

𝑝(𝑘|𝜋, 𝑛) = (𝑛
𝑘)𝜋𝑘(1 − 𝜋)𝑛−𝑘

• This assumes 𝑛 independent tosses from a Bernoulli distribution 𝑝(𝑥|𝜋).
• (𝑛

𝑘) = 𝑛!
𝑘!(𝑛−𝑘)! is the binomial coefficient, also known as “n choose k”
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Maximum likelihood estimation

If we observe 𝑘 heads out of 𝑛 tosses, what do we think 𝜋 is?
We can maximise the likelihood of the observed data given the parameter 𝜋.

𝑝(𝑘|𝜋, 𝑛) ∝ 𝜋𝑘(1 − 𝜋)𝑛−𝑘

It is convenient to take the logarithm and derivatives with respect to 𝜋:

log 𝑝(𝑘|𝜋, 𝑛) = 𝑘 log𝜋 + (𝑛 − 𝑘) log(1 − 𝜋) + Constant

∂ log 𝑝(𝑘|𝜋, 𝑛)
∂𝜋 = 𝑘

𝜋 − 𝑛 − 𝑘
1 − 𝜋 = 0 ⟺ 𝜋 = 𝑘

𝑛
Is this reasonable?

• For HHTH we get 𝜋 = 3/4.
How much would you bet now that 𝑝(H) > 0.5?
We would need a probability over a probability...
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Prior beliefs about coins

So we have observed 3 heads out of 4 tosses but are unwilling to bet much money that
𝑝(H) > 0.5? (That for example out of 10,000,000 tosses at least 5,000,001 will be heads.)
Why?

• You might believe that coins tend to be fair. 𝜋 ≃ 1/2
• A finite set of observations updates your opinion about 𝜋.
• But how to express your opinion about 𝜋 before you see any data?

Pseudo-counts: You think the coin is fair and... you are...
• Not very sure. You act as if you had seen 2 heads and 2 tails before.
• Pretty sure. It is as if you had observed 20 heads and 20 tails before.
• Totally sure. As if you had seen 1000 heads and 1000 tails before.

Depending on the strength of your prior assumptions, it takes a different number of actual
observations to change your mind.
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Beta distribution: distributions on probabilities

Continuous probability distribution defined on the interval [0, 1]

𝐵𝑒𝑡𝑎(𝜋|𝛼, 𝛽) = 𝛤(𝛼 + 𝛽)
𝛤(𝛼)𝛤(𝛽)𝜋𝛼−1(1 − 𝜋)𝛽−1 = 1

𝐵(𝛼, 𝛽)𝜋𝛼−1(1 − 𝜋)𝛽−1

• 𝛼 > 0 and 𝛽 > 0 are the shape parameters.
• these parameters correspond to ’one plus the pseudo-counts’.
• 𝛤(𝛼) is an extension of the factorial function.

(https://en.wikipedia.org/wiki/Gamma_function)

• 𝛤(𝑛) = (𝑛 − 1)! for integer 𝑛 and 𝛤(𝑛 + 1) = 𝑛𝛤(𝑛)
• 𝐵(𝛼, 𝛽) = ∫1

0 𝜋𝛼−1(1 − 𝜋)𝛽−1𝑑𝜋 is the normalization function so that it sums up to one.
• The mean is given by 𝐸(𝜋) = 𝛼

𝛼+𝛽
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Beta distribution: examples
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Beta distribution: online demo

https://mathlets.org/mathlets/beta-distribution
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Beta distribution: exercise

Could you imagine the shape of coin that would fit the following parameters for the prior
Beta distributions?

• 𝛼 = 100, 𝛽 = 100
• 𝛼 = 2, 𝛽 = 3
• 𝛼 = 2, 𝛽 = 10
• 𝛼 = 0.1, 𝛽 = 0.1
• 𝛼 = 1, 𝛽 = 1
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Posterior ∝ Prior × Likelihood

Imagine we observe 𝑘 heads out of 𝑛 tosses.
The probability of the observed data given 𝜋 is the likelihood:

𝑝(𝐷|𝜋) = 𝑝(𝑘|𝑛, 𝜋) ∝ 𝜋𝑘(1 − 𝜋)𝑛−𝑘

We use our prior 𝑝(𝜋|𝛼, 𝛽) = 𝐵𝑒𝑡𝑎(𝜋|𝛼, 𝛽) to get the posterior probability (Bayes’ theorem):

𝑝(𝜋|𝐷) = 𝑝(𝜋|𝛼, 𝛽)𝑝(𝐷|𝜋)
𝑝(𝐷) ∝ 𝜋𝛼−1(1 − 𝜋)𝛽−1𝜋𝑘(1 − 𝜋)𝑛−𝑘 = 𝜋𝛼+𝑘−1(1 − 𝜋)𝛽+𝑛−𝑘−1

𝑝(𝜋|𝐷) = 𝐵𝑒𝑡𝑎(𝜋|𝛼 + 𝑘, 𝛽 + 𝑛 − 𝑘)
The Beta distribution is a conjugate prior to the Bernoulli/binomial distribution:

• The resulting posterior is also a Beta distribution, but with different parameters.
• The posterior parameters are: 𝛼𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝛼𝑝𝑟𝑖𝑜𝑟 + 𝑘, 𝛽𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝛽𝑝𝑟𝑖𝑜𝑟 + (𝑛 − 𝑘)
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Before and after observing one head
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Posterior Beta distribution: online demo

http://www.randomservices.org/random/apps/BetaCoin.html
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Question

What is the probability of 𝜋 = 0.5?
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Making predictions

Given some data 𝐷, what is the probability of the next toss being head, 𝑥𝑛𝑒𝑥𝑡 = 1?
Under the Maximum Likelihood approach we predict using the value of 𝜋𝑀𝐿 that
maximizes the likelihood of 𝜋 given the observed data 𝐷:

𝑝(𝑥𝑛𝑒𝑥𝑡 = 1|𝜋𝑀𝐿) = 𝜋𝑀𝐿

With the Bayesian approach, we integrate over all possible parameter settings:

𝑝(𝑥𝑛𝑒𝑥𝑡 = 1) = ∫
1

0
𝑝(𝑥𝑛𝑒𝑥𝑡 = 1|𝜋)𝑝(𝜋|𝐷)𝑑𝜋 = ∫

1

0
𝜋𝐵𝑒𝑡𝑎(𝜋|𝛼+𝑘, 𝛽+𝑛−𝑘)𝑑𝜋 = 𝛼 + 𝑘

𝛼 + 𝛽 + 𝑛

The prediction for heads happens to correspond to the mean of the posterior distribution.
E.g., if we observe only one head:

• Learner A with 𝐵𝑒𝑡𝑎(1, 1) predicts 𝑝(𝑥𝑛𝑒𝑥𝑡 = 1|𝐷) = 2/3
• Learner B with 𝐵𝑒𝑡𝑎(3, 3) predicts 𝑝(𝑥𝑛𝑒𝑥𝑡 = 1|𝐷) = 4/7
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Expected value of the Beta distribution
Predictive probability of heads is equal to the expected value of the posterior distribution.
Here, we derive the expected value for 𝑋 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽):

𝐸[𝑋] = ∫
1

0
𝜋 𝛤(𝛼 + 𝛽)

𝛤(𝛼)𝛤(𝛽)𝜋𝛼−1(1 − 𝜋)𝛽−1𝑑𝜋

= 𝛤(𝛼 + 𝛽)
𝛤(𝛼)𝛤(𝛽) ∫

1

0
𝜋𝛼(1 − 𝜋)𝛽−1𝑑𝜋

= 𝛤(𝛼 + 𝛽)
𝛤(𝛼)𝛤(𝛽) ∫

1

0
𝜋𝛼+1−1(1 − 𝜋)𝛽−1𝑑𝜋

= 𝛤(𝛼 + 𝛽)
𝛤(𝛼)𝛤(𝛽) ⋅ 𝐵(𝛼 + 1, 𝛽)

= 𝛤(𝛼 + 𝛽)
𝛤(𝛼)𝛤(𝛽) ⋅ 𝛤 (𝛼 + 1)𝛤(𝛽)

𝛤(𝛼 + 𝛽 + 1)

= 𝛤(𝛼 + 𝛽) ⋅ 𝛼𝛤(𝛼)𝛤(𝛽)
𝛤(𝛼)𝛤(𝛽) ⋅ (𝛼 + 𝛽)𝛤(𝛼 + 𝛽) = 𝛼

𝛼 + 𝛽
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Making predictions - other statistics

Given the posterior distribution, we can also answer other questions such as “what is the
probability that 𝜋 > 0.5 given the observed data?”

𝑝(𝜋 > 0.5|𝐷) = ∫
1

0.5
𝑝(𝜋′|𝐷)𝑑𝜋′ = ∫

1

0.5
𝐵𝑒𝑡𝑎(𝜋′|𝛼′, 𝛽′)𝑑𝜋′

• Learner A with prior 𝐵𝑒𝑡𝑎(1, 1) predicts 𝑝(𝜋 > 0.5|𝐷) = 0.75
• Learner B with prior 𝐵𝑒𝑡𝑎(3, 3) predicts 𝑝(𝜋 > 0.5|𝐷) = 0.66
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Learning about a coin, multiple models
Consider two alternative models of a coin, “fair” and “bent”. A priori, we may think that
“fair” is more probable, e.g.:

𝑝(𝑓𝑎𝑖𝑟) = 0.8, 𝑝(𝑏𝑒𝑛𝑡) = 0.2

For the bent coin, (a little unrealistically) all parameter values could be equally likely, where
the fair coin has a fixed probability:
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Learning about a coin, multiple models
We make 10 tosses, and get data D: T H T H T T T T T T
The evidence for the fair model is: 𝑝(𝐷|𝑓𝑎𝑖𝑟) = (1/2)10 ≃ 0.001 and for the bent model:

𝑝(𝐷|𝑏𝑒𝑛𝑡) = ∫
1

0
𝑝(𝐷|𝜋, 𝑏𝑒𝑛𝑡)𝑝(𝜋|𝑏𝑒𝑛𝑡)𝑑𝜋 = ∫

1

0
𝜋2(1 − 𝜋)8𝑑𝜋 = 𝐵(3, 9) ≃ 0.002

Using priors 𝑝(𝑓𝑎𝑖𝑟) = 0.8, 𝑝(𝑏𝑒𝑛𝑡) = 0.2, the posterior by Bayes rule:

𝑝(𝑓𝑎𝑖𝑟|𝐷) ∝ 𝑝(𝑓𝑎𝑖𝑟) ⋅ 𝑝(𝐷|𝑓𝑎𝑖𝑟) = 0.0008,
𝑝(𝑏𝑒𝑛𝑡|𝐷) ∝ 𝑝(𝑏𝑒𝑛𝑡) ⋅ 𝑝(𝐷|𝑏𝑒𝑛𝑡) = 0.0004,

i.e., two thirds probability that the coin is fair.

How do we make predictions? By weighting the predictions from each model by their
probability. Probability of Head at next toss is:

2
3 ⋅ 1

2 + 1
3 ⋅ 3

12 = 5
12
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Summary

Frequentist statistics
• Predictions on the underlying truths of the experiment use only data from the current

experiment.
• Maximum likelihood estimation – we maximize the probability of data.

Bayesian statistics
• Predictions take past knowledge of similar experiments into account. These are known

as prior. This prior is combined with current experiment data to get a posterior.
• Maximum a posteriori estimation – we maximize the probability of parameters given the

observed data and our prior knowledge.
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