NPFL097 Unsupervised Machine Learning in NLP

Gibbs Sampling for LDA

David Mareéek

& October 22, 2024

Eropen Sl nd vesment urd Institute of Formal and Applied Linguistics
o o

LANGTECH S

, U - Charles University
. .
\;L Faculty of Mathematics and Physics

unless otherwise stated

Many of the slides in this presentation were taken from the presentations
of Carl Edward Rasmussen (University of Cambridge)

1/ 21

Latent Dirichlet Allocation

Documents

Topic proportions and
assignments

Topics
gene 0.04
dna 0.02
genetic 0.01
life 0.02

evolve 0.01
organism 0.01

v/—

brain 0.04
neuron 0.02
nerve 0.01
data 0.02

number 0.02
computer 0.01

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK— “are not all thar
How many senes does an BIGIREMIncgd to comparison to the
SURINEE Last we he genome meeling anome. notes Siv Anderson o8B 1

here, owo genome rescarchers with radically
up with e

different approaches presented o
than just

" especially in

es in the hu

cimen-
tary views of the b, nes needed forlife

One research team

known

55 to compa coneluded
SIS i be sustamed with
50 genes, and thit the carliest life forms
mere 128 genes. The
ather researcher mappe.
in a simple parasite
hat for this or
0 sare plenty todo the
job—hur that anything shore

ildn'e be eno

* Genome Mapping and Sequenc- —
ing, Cold Spring Harbor, New York, Stripping down. Compuler analysis yields an esti
May Bto 12 mate of the minimum modern and ancient geromes.

SCIENCE » VOL

© 24 MAY 1996

_/

2/ 21

Per document Observed

topic proportions word
Proportions Per word topic . Topic
parameter assignment Topics parameter
i=1N k=1K
d=1.D

For each document d draw a distribution 6, over topics from a Dir(d).
For each topic k draw a distribution (3, over words from a Dir(7).

—

Draw a topic z,,; for the n-th word in document d from a Cat(6,).

Draw word w,,; from a Cat(ﬁznd).
In LDA, every word in a document can be drawn from a different topic and every document

has its own distribution over topics éd.
3/ 21

The probability of everything is:

K D Na
k=1 d=1 n=1

Learning involves computing the posterior over the parameters, B and ggiven the words w,
but this would require the marginalization of the latent variables z,, .

How many configurations are there?

The evidence (normalising constant of the posterior):

D K Ng
= // > T T Cnad6a)p Balp(anal. zna)p (5515t

=1k=1n=

We need to average over all possible set of values of all z,,;. If every document had N
words, this means N% configurations per document.

4/ 21

The posterior is intractable because there are too many possible latent z,,;.

Expectation-Maximization: We would need to keep and update probabilities of all possible
configurations in the memory.
Intractable.

Gibbs Sampling:

We need to keep only current values of latent variables and parameters, and use a specific
algorithm to update them and converge to good solutions.

5/ 21

How do we do integrals with respect to an intractable posterior?

Approximate expectations of a function &(z) with respect to probability p(z):

b(x) = /@(m)p(az)dz, re€RP, D>»1

T T T T T T

Assume that we can evaluate @(x) and p(x).

6/ 21

Numerical integration on a grid
Approximate the integral by a sum of products

[o@ptads = 3" a6 pa) Az,

T=1

where z(7) lie on an equidistant grid (or fancier versions of this).

Problem: the number of grid points required is k7. It grows exponentially with the
dimension D. Practicable only to D = 4 or so.

7/ 21

Monte Carlo: The fundamental basis for Monte Carlo approximations is

Under mild conditions, b — E(@(x)) as T — oo. For moderate T, & may still be a good
approximation. The variance of the estimation depends only on the number of samples (7)

and is independent of the dimension D of =x.
8/ 21

This is great, but how do we generate random samples from p(z)?
This is hard for a higher number of dimensions.

Gibbs Sampling
For each component ¢ from the vector of variables x in turn we sample a new value from the
conditional distribution of x; given all other variables:

zp ~ (@[T, Ty o s Ty Tisgs s Tp).

It can be shown, that this will eventually generate dependent samples from the joint
distribution p(zx).

Gibbs sampling reduces the task of sampling from a joint distribution, to sampling from a
sequence of univariate conditional distributions.

9/ 21

Example: 20 iterations of Gibbs sampling on a bivariate Gaussian distribution

See also ntt s://www.youtube.com/watch?v=AEwY6QXWoU,
P y g

Notice that strong correlations can slow down Gibbs sampling.

10/ 21

https://www.youtube.com/watch?v=AEwY6QXWoUg

Gibbs sampling is a parameter free algorithm, applicable if we know how to sample from the
conditional distributions.

Main disadvantage: depending on the target distribution, there may be very strong
correlations between consecutive samples.

To get less dependence, Gibbs sampling is often run for a long time, and the samples are
thinned by keeping only every 10th or 100th sample.

Burn-in: often, the initial sequence of samples is discarded, until the chain has converged to
the desired distribution. What does convergence mean in this context?

It is often challenging to judge the effective correlation length of a Gibbs sampler.
Sometimes several Gibbs samplers are run from different starting points, to compare results.

11/ 21

For LDA, we will sample only the latent variables z,, ;.
The other variables (parameters 6 and /) will be marginalized (integrated out).

We need to compute probability of a single latent variable z,,; (assignment of one particular
word to a topic) given all other latent variables z_,; = {z,,4 : " # n,d’ # d} (assignments
of all other words) and hyperparameters & and 7.

We will use Bayes theorem:

= w z ~ d — p(an = k|{zfnd}7?77a) p({w}‘znd - k, {zfnd}vjﬁ 07)
p(znd - k|{ }7{ fnd}vﬁ)'v) p({w}’{'zfnd}??% 62)

The denominator is constant with respect to z,,;; generation of topics does not depend on 7;
generation of words for given topic does not depend on @)

P(2pa = k{w}, {254}, @) X p(2q = k{24t @) p{w}hzpa = Kk {204} 7)

12/ 21

Collapsed Gibbs sampling for Latent Dirichlet Allocation (LDA)

We have:
P(2pa = k{w}, {254}, @) X P20 = k{24t @) p{whzpa =k {204} 7)

Probability of data p(w) can be rewritten as p(w,,4|w_,,4)p(w_,4) and p(w_,,) is constant

with respect to z,,,)

For each predictive distribution, we integrate over all possible parameters Bk and gd.
These integrals can be easily computed; see predictive distribution for Dirichlet posteriors.

p(znd = k|{w}7 {and}f_%o_z) X
X p(znd = k|{z—nd}762) p(wnde—nd}’ Bnd = k’ {Z—nd}7’7)

X /p(znd - k’§d>p(§d|znd7&>d§d/p<wnd‘/§k>p</§k’{wnd}:{znd}vﬁ)dgk

13/ 21

Collapsed Gibbs sampling for Latent Dirichlet Allocation (LDA)

We use the formula for the expected value for the Dirichlet distribution:

[Pl = DY =
Then:
P(zpa = k{w}, {2_na}, 7, @)
X /p(znd = k’§d>p(§d|znd’o_z)déd/p<wnd|/§k>p</§k|{wnd}a{znd}777>dgk
a+cgld][k] v+ ey [wnglF]

T Ka+N,—1 M
7 Myt Zlcw[M][k]

Where
® ¢,|d][k] = how many words in document d are assigned to topic k.

® ¢,Im|[k] = how many times the word m is assigned to topic k (across all documents).

The current position z,,; is always excluded from the counts.

14/ 21

initialize z,,; randomly ¥Vd € 1..D, Vn € 1..Ny;

compute initial counts c,[d|[k], ¢,,[m][k], c[k] Vd € 1..D, Vk € 1.K, Vm € 1..M;
for i < 1to [do

ford < 1to D do

forn < 1to N, do

Cd[d] [an]__; Cw[wnd][’znd]_—; C[an]__;

for £+ 1to K do

a+cyld][k +e,[w,gllE] .
| Pl =] e

U}[

end
sample k from probability distribution plk];
Znd < ki
cald][k]++: cplwpgl[k]++: c[k]++;
end
end

end

15/ 21

Suppose we have only three documents using only 5 different words {a,b,c,d, e} and we set
the number of topics to K = 2 and hyperparemeters o = 0.2, v = 0.1.

Let's have the following documents and folowing topics assigned to their words:

D, =a,a,b,a,c, Dy=d,ce,d,c, Ds;=d,d,e,a,a.
2 =2,21,21, 2,=2211,2 2 =11222

Let's pick e.g. the fourth word in the second document (w,,) and compute the probability
distribution across topics given all other words in the collection.

a+1l ~42
=1 : = 0.10 0.38
p(224 >0<2a+4 5y +5 & o
3 1
plamy=2) o 282 0T L 16 0 0.62%

“%a+4 5719

So the new topic z,, sampled for the word w,, will be topic 2 with probability 62% and
topic 1 with probability 38%.

16/ 21

initialize z,,; randomly ¥Vd € 1..D, Vn € 1..Ny;

fix the counts c,,[m][k] and c[k] obtained during training;

compute initial counts c,[d|[k] Vd € 1..D, Vk € 1..K;
for i< 1to I do

ford+ 1to D do
for n < 1to N, do

cald][zpa]—;
for k< 1to K do

a+c,[d][k +c,[waqllk] .
‘ plk] = Ka+dJ£IjU1 . M7[+c[i]][:

end
sample k from probability distribution plk];
Zpg < ki
cyld][k]++;
end
end
end

17/ 21

Entropy = average level of “surprise” or “uncertainty” in the text.

N
® joint probability of the text 7" p(T) =[] p(w;) = I[p(m)em
i=1

® entropy of T: H(T) = —% Z logp(w;) = — > S#logp(m) = ;Io%’(ﬂ

® perplexity of T PP(T) = 2H(T)

A perplexity of g corresponds to the uncertainity associated with a die with g sides, which
generates each new word.

Note: All the logarithms used here are binary (with base 2)

18/ 21

Probability of word w given a topic k is

7 + ¢ [w][K]
My + Y0 e, [m][k]

p(w|k) =

)

where the counts c,, are taken from the training data and M is the size of the vocabulary.
The entropy of a topic is computed as follows:

M
H(k) = =) p(w|k) log, p(w|k)

w=1

Perplexity is PP(k) = 21(%),

19/ 21

Probability of word w in document d is

=

_ v+ cywlk] a+cyld][k]
p(w\d)—k;p(w\k p(kld) = ZM7+ZC mlli] Kot N,

where the counts c,, are taken from the training data, and counts c; and N, are taken from
the test data.

The entropy is computed as the average of the log probabilities over all words in the test
data.

1 Dtest Nd
H = _N Z Z|092p(wnd>7
test =1 n=1

where N,_,, is the total number of words in the test data. Perplexity is PP = 21,

Note: To make it more properly, we should take into account more training iterations, not only the final counts c,,,.

However, the results would be very similar, because of averaging over the whole data.

20/ 21

Probability of word w in the test data given the training data is

v+ (]
My + 32 ¢, [m]
where the counts c,, are taken from the training data.

The entropy is computed as the average of the log probabilities over all words in the test
data.

p(w) =

test Nd

N Ntest Z Zlog2p nd

where N,_,, is the total number of words in the test data. Perplexity is PP = 2%,

21/ 21

