
Gibbs Sampling for LDA
David Mareček

October 22, 2024

NPFL097 Unsupervised Machine Learning in NLP

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics unless otherwise stated

Many of the slides in this presentation were taken from the presentations
of Carl Edward Rasmussen (University of Cambridge)

1/ 21

Latent Dirichlet Allocation

2/ 21

Latent Dirichlet Allocation: generative model

1. For each document 𝑑 draw a distribution ⃗𝜃𝑑 over topics from a 𝐷𝑖𝑟(⃗𝛼).
2. For each topic 𝑘 draw a distribution ⃗𝛽𝑘 over words from a 𝐷𝑖𝑟(⃗𝛾).
3. Draw a topic 𝑧𝑛𝑑 for the 𝑛-th word in document 𝑑 from a 𝐶𝑎𝑡(⃗𝜃𝑑).
4. Draw word 𝑤𝑛𝑑 from a 𝐶𝑎𝑡(⃗𝛽𝑧𝑛𝑑

).
In LDA, every word in a document can be drawn from a different topic and every document
has its own distribution over topics ⃗𝜃𝑑.

3/ 21

The intractability of LDA

The probability of everything is:

𝑝(⃗𝛽, ⃗𝜃, 𝑧, 𝑤| ⃗𝛾, ⃗𝛼) =
𝐾

∏
𝑘=1

𝑝(⃗𝛽𝑘| ⃗𝛾)
𝐷

∏
𝑑=1

[𝑝(⃗𝜃𝑑| ⃗𝛼)
𝑁𝑑

∏
𝑛=1

(𝑝(𝑧𝑛𝑑| ⃗𝜃𝑑)𝑝(𝑤𝑛𝑑| ⃗𝛽, 𝑧𝑛𝑑)]

Learning involves computing the posterior over the parameters, ⃗𝛽 and ⃗𝜃 given the words 𝑤,
but this would require the marginalization of the latent variables 𝑧𝑛𝑑.
How many configurations are there?
The evidence (normalising constant of the posterior):

𝑝(𝑤) = ∬ ∑
𝑧

𝐷
∏
𝑑=1

𝐾
∏
𝑘=1

𝑁𝑑

∏
𝑛=1

𝑝(𝑧𝑛𝑑| ⃗𝜃𝑑)𝑝(⃗𝜃𝑑| ⃗𝛼)𝑝(𝑤𝑛𝑑| ⃗𝛽, 𝑧𝑛𝑑)𝑝(⃗𝛽𝑘| ⃗𝛾)𝑑 ⃗𝛽𝑘𝑑 ⃗𝜃𝑑

We need to average over all possible set of values of all 𝑧𝑛𝑑. If every document had 𝑁
words, this means 𝑁𝐾 configurations per document.

4/ 21

Expectation-Maximization vs. Gibbs sampling

The posterior is intractable because there are too many possible latent 𝑧𝑛𝑑.

Expectation-Maximization: We would need to keep and update probabilities of all possible
configurations in the memory.
Intractable.

Gibbs Sampling:
We need to keep only current values of latent variables and parameters, and use a specific
algorithm to update them and converge to good solutions.

5/ 21

Introduction to Gibbs Sampling

How do we do integrals with respect to an intractable posterior?
Approximate expectations of a function 𝛷(𝑥) with respect to probability 𝑝(𝑥):

𝔼𝑝(𝑥)𝛷(𝑥) = ∫ 𝛷(𝑥)𝑝(𝑥)𝑑𝑥, 𝑥 ∈ ℝ𝐷, 𝐷 ≫ 1

when these are not analytically tractable.

Assume that we can evaluate 𝛷(𝑥) and 𝑝(𝑥).
6/ 21

Introduction to Gibbs Sampling
Numerical integration on a grid
Approximate the integral by a sum of products

∫ 𝛷(𝑥)𝑝(𝑥)𝑑𝑥 ≃
𝑇

∑
𝜏=1

𝛷(𝑥(𝜏))𝑝(𝑥(𝜏))𝛥𝑥,

where 𝑥(𝜏) lie on an equidistant grid (or fancier versions of this).

Problem: the number of grid points required is 𝑘𝐷. It grows exponentially with the
dimension 𝐷. Practicable only to 𝐷 = 4 or so.

7/ 21

Introduction to Gibbs Sampling
Monte Carlo: The fundamental basis for Monte Carlo approximations is

𝔼𝑝(𝑥) ≃ ̂𝛷 = 1
𝑇

𝑇
∑
𝜏=1

𝛷(𝑥(𝜏)),

where 𝑥(𝜏) are samples from the distribution 𝑝(𝑥).

Under mild conditions, ̂𝛷 → 𝔼(𝛷(𝑥)) as 𝑇 → ∞. For moderate 𝑇 , ̂𝛷 may still be a good
approximation. The variance of the estimation depends only on the number of samples (𝑇)
and is independent of the dimension 𝐷 of 𝑥.

8/ 21

Introduction to Gibbs Sampling

This is great, but how do we generate random samples from 𝑝(𝑥)?
This is hard for a higher number of dimensions.

Gibbs Sampling
For each component 𝑖 from the vector of variables 𝑥 in turn we sample a new value from the
conditional distribution of 𝑥𝑖 given all other variables:

𝑥′
𝑖 ∼ 𝑝(𝑥𝑖|𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝐷).

It can be shown, that this will eventually generate dependent samples from the joint
distribution 𝑝(𝑥).
Gibbs sampling reduces the task of sampling from a joint distribution, to sampling from a
sequence of univariate conditional distributions.

9/ 21

Introduction to Gibbs Sampling

Example: 20 iterations of Gibbs sampling on a bivariate Gaussian distribution

See also https://www.youtube.com/watch?v=AEwY6QXWoUg

Notice that strong correlations can slow down Gibbs sampling.

10/ 21

https://www.youtube.com/watch?v=AEwY6QXWoUg

Introduction to Gibbs Sampling

Gibbs sampling is a parameter free algorithm, applicable if we know how to sample from the
conditional distributions.
Main disadvantage: depending on the target distribution, there may be very strong
correlations between consecutive samples.
To get less dependence, Gibbs sampling is often run for a long time, and the samples are
thinned by keeping only every 10th or 100th sample.
Burn-in: often, the initial sequence of samples is discarded, until the chain has converged to
the desired distribution. What does convergence mean in this context?
It is often challenging to judge the effective correlation length of a Gibbs sampler.
Sometimes several Gibbs samplers are run from different starting points, to compare results.

11/ 21

Collapsed Gibbs sampling for Latent Dirichlet Allocation (LDA)
For LDA, we will sample only the latent variables 𝑧𝑛𝑑.
The other variables (parameters ⃗𝜃 and ⃗𝛽) will be marginalized (integrated out).
We need to compute probability of a single latent variable 𝑧𝑛𝑑 (assignment of one particular
word to a topic) given all other latent variables 𝑧−𝑛𝑑 = {𝑧𝑛′𝑑′ ∶ 𝑛′ ≠ 𝑛, 𝑑′ ≠ 𝑑} (assignments
of all other words) and hyperparameters ⃗𝛼 and ⃗𝛾.
We will use Bayes theorem:

𝑝(𝑧𝑛𝑑 = 𝑘|{𝑤}, {𝑧−𝑛𝑑}, ⃗𝛾, ⃗𝛼) = 𝑝(𝑧𝑛𝑑 = 𝑘|{𝑧−𝑛𝑑}, ⃗𝛾, ⃗𝛼) 𝑝({𝑤}|𝑧𝑛𝑑 = 𝑘, {𝑧−𝑛𝑑}, ⃗𝛾, ⃗𝛼)
𝑝({𝑤}|{𝑧−𝑛𝑑}, ⃗𝛾, ⃗𝛼)

The denominator is constant with respect to 𝑧𝑛𝑑; generation of topics does not depend on ⃗𝛾;
generation of words for given topic does not depend on ⃗𝛼)

𝑝(𝑧𝑛𝑑 = 𝑘|{𝑤}, {𝑧−𝑛𝑑}, ⃗𝛾, ⃗𝛼) ∝ 𝑝(𝑧𝑛𝑑 = 𝑘|{𝑧−𝑛𝑑}, ⃗𝛼) 𝑝({𝑤}|𝑧𝑛𝑑 = 𝑘, {𝑧−𝑛𝑑}, ⃗𝛾)

12/ 21

Collapsed Gibbs sampling for Latent Dirichlet Allocation (LDA)
We have:

𝑝(𝑧𝑛𝑑 = 𝑘|{𝑤}, {𝑧−𝑛𝑑}, ⃗𝛾, ⃗𝛼) ∝ 𝑝(𝑧𝑛𝑑 = 𝑘|{𝑧−𝑛𝑑}, ⃗𝛼) 𝑝({𝑤}|𝑧𝑛𝑑 = 𝑘, {𝑧−𝑛𝑑}, ⃗𝛾)

Probability of data 𝑝(𝑤) can be rewritten as 𝑝(𝑤𝑛𝑑|𝑤−𝑛𝑑)𝑝(𝑤−𝑛𝑑) and 𝑝(𝑤−𝑛𝑑) is constant
with respect to 𝑧𝑛𝑑)
For each predictive distribution, we integrate over all possible parameters ⃗𝛽𝑘 and ⃗𝜃𝑑.
These integrals can be easily computed; see predictive distribution for Dirichlet posteriors.

𝑝(𝑧𝑛𝑑 = 𝑘|{𝑤}, {𝑧−𝑛𝑑}, ⃗𝛾, ⃗𝛼) ∝
∝ 𝑝(𝑧𝑛𝑑 = 𝑘|{𝑧−𝑛𝑑}, ⃗𝛼) 𝑝(𝑤𝑛𝑑|{𝑤−𝑛𝑑}, 𝑧𝑛𝑑 = 𝑘, {𝑧−𝑛𝑑}, ⃗𝛾)

∝ ∫ 𝑝(𝑧𝑛𝑑 = 𝑘| ⃗𝜃𝑑)𝑝(⃗𝜃𝑑|𝑧−𝑛𝑑, ⃗𝛼)𝑑 ⃗𝜃𝑑 ∫ 𝑝(𝑤𝑛𝑑| ⃗𝛽𝑘)𝑝(⃗𝛽𝑘|{𝑤−𝑛𝑑}, {𝑧−𝑛𝑑}, ⃗𝛾)𝑑 ⃗𝛽𝑘

13/ 21

Collapsed Gibbs sampling for Latent Dirichlet Allocation (LDA)
We use the formula for the expected value for the Dirichlet distribution:

∫
△

𝑝(𝑥𝑛𝑒𝑥𝑡 = 𝑗| ⃗⃗⃗𝜋)𝑝(⃗⃗⃗𝜋|𝐷)𝑑 ⃗⃗⃗𝜋 = 𝛼𝑗 + 𝑘𝑗
∑𝑚

𝑖=1(𝛼𝑖 + 𝑘𝑖)
Then:

𝑝(𝑧𝑛𝑑 = 𝑘|{𝑤}, {𝑧−𝑛𝑑}, ⃗𝛾, ⃗𝛼) ∝

∝ ∫ 𝑝(𝑧𝑛𝑑 = 𝑘| ⃗𝜃𝑑)𝑝(⃗𝜃𝑑|𝑧−𝑛𝑑, ⃗𝛼)𝑑 ⃗𝜃𝑑 ∫ 𝑝(𝑤𝑛𝑑| ⃗𝛽𝑘)𝑝(⃗𝛽𝑘|{𝑤−𝑛𝑑}, {𝑧−𝑛𝑑}, ⃗𝛾)𝑑 ⃗𝛽𝑘

= 𝛼 + 𝑐𝑑[𝑑][𝑘]
𝐾𝛼 + 𝑁𝑑 − 1

𝛾 + 𝑐𝑤[𝑤𝑛𝑑][𝑘]

𝑀𝛾 +
𝑀
∑

𝑚=1
𝑐𝑤[𝑚][𝑘]

Where
• 𝑐𝑑[𝑑][𝑘] = how many words in document 𝑑 are assigned to topic 𝑘.
• 𝑐𝑤[𝑚][𝑘] = how many times the word 𝑚 is assigned to topic 𝑘 (across all documents).

The current position 𝑧𝑛𝑑 is always excluded from the counts. 14/ 21

LDA Algorithm
initialize 𝑧𝑛𝑑 randomly ∀𝑑 ∈ 1..𝐷, ∀𝑛 ∈ 1..𝑁𝑑;
compute initial counts 𝑐𝑑[𝑑][𝑘], 𝑐𝑤[𝑚][𝑘], 𝑐[𝑘] ∀𝑑 ∈ 1..𝐷, ∀𝑘 ∈ 1..𝐾, ∀𝑚 ∈ 1..𝑀 ;
for 𝑖 ← 1 to 𝐼 do

for 𝑑 ← 1 to 𝐷 do
for 𝑛 ← 1 to 𝑁𝑑 do

𝑐𝑑[𝑑][𝑧𝑛𝑑]– –; 𝑐𝑤[𝑤𝑛𝑑][𝑧𝑛𝑑]– –; 𝑐[𝑧𝑛𝑑]– –;
for 𝑘 ← 1 to 𝐾 do

𝑝[𝑘] = 𝛼+𝑐𝑑[𝑑][𝑘]
𝐾𝛼+𝑁𝑑−1

𝛾+𝑐𝑤[𝑤𝑛𝑑][𝑘]
𝑀𝛾+𝑐[𝑘] ;

end
sample 𝑘 from probability distribution 𝑝[𝑘];
𝑧𝑛𝑑 ← 𝑘;
𝑐𝑑[𝑑][𝑘]++; 𝑐𝑤[𝑤𝑛𝑑][𝑘]++; 𝑐[𝑘]++;

end
end

end
15/ 21

LDA algorithm: example
Suppose we have only three documents using only 5 different words {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and we set
the number of topics to 𝐾 = 2 and hyperparemeters 𝛼 = 0.2, 𝛾 = 0.1.
Let’s have the following documents and folowing topics assigned to their words:

𝐷1 = 𝑎, 𝑎, 𝑏, 𝑎, 𝑐, 𝐷2 = 𝑑, 𝑐, 𝑒,d, 𝑐, 𝐷3 = 𝑑, 𝑑, 𝑒, 𝑎, 𝑎.
𝑧1 = 2, 2, 1, 2, 1, 𝑧2 = 2, 2, 1, 1, 2, 𝑧3 = 1, 1, 2, 2, 2.

Let’s pick e.g. the fourth word in the second document (𝑤24) and compute the probability
distribution across topics given all other words in the collection.

𝑝(𝑧24 = 1) ∝ 𝛼 + 1
2𝛼 + 4 ⋅ 𝛾 + 2

5𝛾 + 5 = 0.10 ∝ 0.38%

𝑝(𝑧24 = 2) ∝ 𝛼 + 3
2𝛼 + 4 ⋅ 𝛾 + 1

5𝛾 + 9 = 0.16 ∝ 0.62%

So the new topic 𝑧24 sampled for the word 𝑤24 will be topic 2 with probability 62% and
topic 1 with probability 38%.

16/ 21

LDA Algorithm - topics assignment on a new data
initialize 𝑧𝑛𝑑 randomly ∀𝑑 ∈ 1..𝐷, ∀𝑛 ∈ 1..𝑁𝑑;
fix the counts 𝑐𝑤[𝑚][𝑘] and 𝑐[𝑘] obtained during training;
compute initial counts 𝑐𝑑[𝑑][𝑘] ∀𝑑 ∈ 1..𝐷, ∀𝑘 ∈ 1..𝐾;
for 𝑖 ← 1 to 𝐼 do

for 𝑑 ← 1 to 𝐷 do
for 𝑛 ← 1 to 𝑁𝑑 do

𝑐𝑑[𝑑][𝑧𝑛𝑑]– –;
for 𝑘 ← 1 to 𝐾 do

𝑝[𝑘] = 𝛼+𝑐𝑑[𝑑][𝑘]
𝐾𝛼+𝑁𝑑−1

𝛾+𝑐𝑤[𝑤𝑛𝑑][𝑘]
𝑀𝛾+𝑐[𝑘] ;

end
sample 𝑘 from probability distribution 𝑝[𝑘];
𝑧𝑛𝑑 ← 𝑘;
𝑐𝑑[𝑑][𝑘]++;

end
end

end 17/ 21

Entropy of text

Entropy = average level of “surprise” or “uncertainty” in the text.

• joint probability of the text 𝑇 : 𝑝(𝑇) =
𝑁
∏
𝑖=1

𝑝(𝑤𝑖) =
𝑀
∏

𝑚=1
𝑝(𝑚)𝑐𝑚

• log probability of 𝑇 : log 𝑝(𝑇) =
𝑁
∑
𝑖=1

log 𝑝(𝑤𝑖) =
𝑀
∑

𝑚=1
𝑐𝑚 log 𝑝(𝑚)

• entropy of 𝑇 : 𝐻(𝑇) = − 1
𝑁

𝑁
∑
𝑖=1

log 𝑝(𝑤𝑖) = −
𝑀
∑

𝑚=1
𝑐𝑚
𝑁 log 𝑝(𝑚) = − log𝑝(𝑇)

𝑁

• perplexity of 𝑇 : 𝑃𝑃(𝑇) = 2𝐻(𝑇)

A perplexity of 𝑔 corresponds to the uncertainity associated with a die with 𝑔 sides, which
generates each new word.

Note: All the logarithms used here are binary (with base 2)

18/ 21

Word entropy of a topic in LDA

Probability of word 𝑤 given a topic 𝑘 is

𝑝(𝑤|𝑘) = 𝛾 + 𝑐𝑤[𝑤][𝑘]
𝑀𝛾 + ∑𝑀

𝑚=1 𝑐𝑤[𝑚][𝑘]
,

where the counts 𝑐𝑤 are taken from the training data and 𝑀 is the size of the vocabulary.
The entropy of a topic is computed as follows:

𝐻(𝑘) = −
𝑀

∑
𝑤=1

𝑝(𝑤|𝑘) log2 𝑝(𝑤|𝑘)

Perplexity is 𝑃𝑃(𝑘) = 2𝐻(𝑘).

19/ 21

Perplexity of the LDA model on the test data

Probability of word 𝑤 in document 𝑑 is

𝑝(𝑤|𝑑) =
𝐾

∑
𝑘=1

𝑝(𝑤|𝑘)𝑝(𝑘|𝑑) =
𝐾

∑
𝑘=1

𝛾 + 𝑐𝑤[𝑤][𝑘]
𝑀𝛾 + ∑ 𝑐𝑤[𝑚][𝑘]

𝛼 + 𝑐𝑑[𝑑][𝑘]
𝐾𝛼 + 𝑁𝑑

,

where the counts 𝑐𝑤 are taken from the training data, and counts 𝑐𝑑 and 𝑁𝑑 are taken from
the test data.
The entropy is computed as the average of the log probabilities over all words in the test
data.

𝐻 = − 1
𝑁𝑡𝑒𝑠𝑡

𝐷𝑡𝑒𝑠𝑡

∑
𝑑=1

𝑁𝑑

∑
𝑛=1

log2 𝑝(𝑤𝑛𝑑),

where 𝑁𝑡𝑒𝑠𝑡 is the total number of words in the test data. Perplexity is 𝑃𝑃 = 2𝐻.
Note: To make it more properly, we should take into account more training iterations, not only the final counts 𝑐𝑤.
However, the results would be very similar, because of averaging over the whole data.

20/ 21

Perplexity of the simple model without using topics

Probability of word 𝑤 in the test data given the training data is

𝑝(𝑤) = 𝛾 + 𝑐𝑤[𝑤]
𝑀𝛾 + ∑ 𝑐𝑤[𝑚]

where the counts 𝑐𝑤 are taken from the training data.
The entropy is computed as the average of the log probabilities over all words in the test
data.

𝐻 = − 1
𝑁𝑡𝑒𝑠𝑡

𝐷𝑡𝑒𝑠𝑡

∑
𝑑=1

𝑁𝑑

∑
𝑛=1

log2 𝑝(𝑤𝑛𝑑),

where 𝑁𝑡𝑒𝑠𝑡 is the total number of words in the test data. Perplexity is 𝑃𝑃 = 2𝐻.

21/ 21

