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Modelling text documents
GOP abortion foes are criminalizing the doctor-patient relationship

"The doctor-patient relationship." For more than 20 years, conservative propagandists and their

Republican allies have used that four-word bludgeon to beat back universal health care reform. In

1994, GOP strategist Bill Kristol warned that "the Clinton Plan is damaging to the quality of

American medicine and to the relationship between the patient and the doctor." Kristol’s successful

crusade to derail Bill Clinton’s reform effort was greatly aided by future "death panels" fabulist

Betsy McCaughey, who wrongly warned that Americans would even lose the right to see the doctor of

their choice. Twelve years later, President George W. Bush proclaimed, "Ours is a party that

understands the best health care system is when the doctor-patient relationship is central to

decision-making."

How would we model this document?
• Unigram model (bag of words): 𝑝 = ∏𝑁

𝑖=1 𝑝(𝑤𝑖)
• Bigram model: 𝑝 = ∏𝑛

𝑖=1 𝑝(𝑤𝑖|𝑤𝑖−1)
• ...
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Example: word counts in text

Consider describing a text document by the frequency of occurrence of every distinct word
(bag of words model).

For illustration consider two collections of documents:
• KOS (political blog — http://dailykos.com):

• 𝐷 = 3, 430 documents (blog posts)
• 𝑛 = 353, 160 words
• 𝑚 = 6, 906 distinct words

• NIPS (machine learning conference — http://nips.cc):
• 𝐷 = 1, 500 documents (conference papers)
• 𝑛 = 746, 316 words
• 𝑚 = 12, 375 distinct words
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Example: word counts in text
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Zipf’s law: different collections, similar behavior

Zipf’s law states that the frequency of any word is inversely proportional to its rank in the
frequency table.

∃𝑘 ∶ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ≈ 𝑘
𝑟𝑎𝑛𝑘 ⟹ 𝑙𝑜𝑔(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) ≈ 𝑙𝑜𝑔(𝑘) − 𝑙𝑜𝑔(𝑟𝑎𝑛𝑘)
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Automatic Categorisation of Documents

Can we make use of the statistical distribution of words, to build an automatic document
categorisation system?

• The learning system would have to be unsupervised
• We don’t a priori know what categories of documents exist
• It must automatically discover the structure of the document collection.
• What should it even mean, that a document belongs to a category, or has certain

properties?

How can we design such a system?
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A really simple document model
Consider a collection of 𝐷 documents from a vocabulary of 𝑀 words.

• 𝑁𝑑: number of words in document 𝑑.
• 𝑤𝑛𝑑: 𝑛-th word in document 𝑑 (𝑤𝑛𝑑 ∈ 1 … 𝑀).
• 𝑤𝑛𝑑 ∼ 𝐶𝑎𝑡(𝛽): each word is drawn from a discrete categorical distribution with

parameters 𝛽
• 𝛽 = [𝛽1, … , 𝛽𝑀 ] parameters of a categorical/multinomial distribution over the 𝑀

vocabulary words.
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A really simple document model

We can fit 𝛽 by maximizing the likelihood:

𝛽 = argmax
𝛽

𝐷
∏
𝑑=1

𝑁𝑑

∏
𝑛=1

Cat(𝑤𝑛𝑑|𝛽) = argmax
𝛽

𝐷
∏
𝑑=1

𝑁𝑑

∏
𝑛=1

𝛽𝑤𝑛𝑑

𝛽 = argmax
𝛽

Mult(𝑐1, … , 𝑐𝑀 |𝛽, 𝑁) = argmax
𝛽

𝑀
∏
𝑚=1

𝛽𝑐𝑚𝑚

𝛽𝑚 = 𝑐𝑚
𝑁 = 𝑐𝑚

∑𝑀
𝑙=1 𝑐𝑙

• 𝑁 = ∑𝐷
𝑑=1 𝑁𝑑: total number of words in the collection.

• 𝑐𝑚 = ∑𝐷
𝑑=1 ∑𝑁𝑑

𝑛=1 𝐼(𝑤𝑛𝑑 = 𝑚): how many times the word 𝑚 occurs in the collection
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Lagrange Multipliers
We want to find the maximum or minimum of a function 𝑓(𝑥) subjected to some equality
constraint 𝑔(𝑥) = 0.
We form the Lagrangian function 𝐿(𝑥, 𝜆) = 𝑓(𝑥) − 𝜆𝑔(𝑥).
The solution corresponding to the original constrained optimization is always a saddle point
of the Lagrangian function (i.e. the partial derivatives are zero).
In our case, the equality constraint is:

𝑔( ⃗⃗⃗ ⃗𝛽) =
𝑀

∑
𝑚=1

𝛽𝑚 − 1 = 0

We want to maximize the (log) likelihood (probability of data)

𝑓( ⃗⃗⃗ ⃗𝛽) = log
𝑀
∏
𝑚=1

𝛽𝑐𝑚𝑚 =
𝑀

∑
𝑚=1

𝑐𝑚 log𝛽𝑚
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Maximum Likelihood for Multinomial Distribution

We form the following Lagrangian function:

𝐿( ⃗⃗⃗ ⃗𝛽, 𝜆) = 𝑓( ⃗⃗⃗ ⃗𝛽) − 𝜆𝑔( ⃗⃗⃗ ⃗𝛽) =
𝑀

∑
𝑚=1

𝑐𝑚 log𝛽𝑚 + 𝜆(1 −
𝑀

∑
𝑚=1

𝛽𝑚)

We take derivatives of the Lagrangian function.
By setting them to zero, we obtain

∂𝐿
∂𝛽𝑚

= 𝑐𝑚
𝛽𝑚

− 𝜆 = 0 ⇒ 𝛽𝑚 = 𝑐𝑚
𝜆

∂𝐿
∂𝜆 = 1 −

𝑀
∑
𝑚=1

𝛽𝑚 = 0 ⇒
𝑀

∑
𝑚=1

𝑐𝑚
𝜆 = 𝑛

𝜆 = 1 ⇒ 𝑛 = 𝜆 ⇒ 𝛽𝑚 = 𝑐𝑚
𝑛
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Limitations of the really simple document model

• Document 𝑑 is the result of sampling 𝑁𝑑 words from the categorical distribution with
parameters 𝛽.

• 𝛽 estimated by maximum likelihood reflects the aggregation of all documents.
• All documents are therefore modelled by the global word frequency distribution.
• This generative model does not specialise.
• We would like a model where different documents might be about different topics.
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A mixture of categoricals model

𝑧𝑑 ∼ 𝐶𝑎𝑡(𝜃)
𝑤𝑛𝑑|𝑧𝑑 ∼ 𝐶𝑎𝑡(𝛽𝑧𝑑

)

We want to allow for a mixture of 𝐾 categoricals parametrised by 𝛽1, … , 𝛽𝐾.
Each of those categorical distributions corresponds to a document category.

• 𝑧𝑑 ∈ 1, … , 𝐾 assigns document 𝑑 to one of the 𝐾 categories.
• 𝜃𝑘 = 𝑝(𝑧𝑑 = 𝑘) is the probability any document 𝑑 is assigned to category 𝑘.
• so 𝜃 = [𝜃1, … , 𝜃𝐾] is the parameter of a categorical distribution over 𝐾 categories.

We have introduced a new set of hidden variables 𝑧𝑑.
• How do we fit those variables?
• Are these variables interesting? Or are we only interested in 𝜃 and 𝛽?
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