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Many of the slides in this presentation were taken from the presentations
of Carl Edward Rasmussen (University of Cambridge)
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Mixture of Categoricals Model

𝑧𝑑 ∼ 𝐶𝑎𝑡( ⃗𝜃)
𝑤𝑛𝑑|𝑧𝑑 ∼ 𝐶𝑎𝑡( ⃗𝛽𝑧𝑑

)

With the Expectation-Maximization algorithm we have essentially estimated ⃗𝜃 and ⃗𝛽 by
maximum likelihood.
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Bayesian Mixture of Categoricals Model

𝑧𝑑 ∼ 𝐶𝑎𝑡( ⃗𝜃)
⃗𝜃 ∼ 𝐷𝑖𝑟( ⃗𝛼)

𝑤𝑛𝑑|𝑧𝑑, ⃗𝛽 ∼ 𝐶𝑎𝑡( ⃗𝛽𝑧𝑑
)

⃗𝛽𝑘 ∼ 𝐷𝑖𝑟( ⃗𝛾)

An alternative, Bayesian treatment infers these parameters starting from priors, e.g.:
• ⃗𝜃 ∼ 𝐷𝑖𝑟( ⃗𝛼) is a symmetric Dirichlet over category probabilities,
• ⃗𝛽𝑘 ∼ 𝐷𝑖𝑟( ⃗𝛾) are symmetric Dirichlets over vocabulary probabilities.

What is different?
• We no longer want to compute a point estimate of ⃗𝜃 and ⃗𝛽.
• We are now interested in computing posterior distributions.
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Limitations of the mixture of categoricals model

𝑧𝑑 ∼ 𝐶𝑎𝑡( ⃗𝜃)
⃗𝜃 ∼ 𝐷𝑖𝑟( ⃗𝛼)

𝑤𝑛𝑑|𝑧𝑑, ⃗𝛽 ∼ 𝐶𝑎𝑡( ⃗𝛽𝑧𝑑
)

⃗𝛽𝑘 ∼ 𝐷𝑖𝑟( ⃗𝛾)

A generative view of the mixture of categoricals model:
1. Draw a distribution ⃗𝜃 over 𝐾 topics from a 𝐷𝑖𝑟( ⃗𝛼).
2. For each topic 𝑘, draw a distribution ⃗𝛽𝑘 over words from a 𝐷𝑖𝑟( ⃗𝛾).
3. For each document 𝑑, draw a topic 𝑧𝑑 from a 𝐶𝑎𝑡( ⃗𝜃)
4. For each document 𝑑, draw 𝑁𝑑 words 𝑤𝑛𝑑 from a 𝐶𝑎𝑡( ⃗𝛽𝑧𝑑

)
Limitations:

• All words in each document are drawn from one specific topic distribution.
• This works if each document is exclusively about one topic, but if some documents span

more than one topic, then “blurred” topics must be learnt. 4/ 10



Latent Dirichlet Allocation
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Latent Dirichlet Allocation: what we observe

In reality, we only observe the documents.
The other structure are hidden variables.
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Latent Dirichlet Allocation: what we observe

Our goal is to infer the hidden variables.
This means computing their distribution conditioned on the documents
𝑝(𝑡𝑜𝑝𝑖𝑐𝑠, 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠|𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)
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Latent Dirichlet Allocation: graphical model

Nodes are random variables; edges indicate dependence.
Shaded nodes indicate observed variables.
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Mixture of Categoricals vs. LDA

A generative view of LDA:
1. For each document 𝑑 draw a distribution ⃗𝜃𝑑 over topics from a 𝐷𝑖𝑟( ⃗𝛼).
2. For each topic 𝑘 draw a distribution ⃗𝛽𝑘 over words from a 𝐷𝑖𝑟( ⃗𝛾).
3. Draw a topic 𝑧𝑛𝑑 for the 𝑛-th word in document 𝑑 from a 𝐶𝑎𝑡( ⃗𝜃𝑑).
4. Draw word 𝑤𝑛𝑑 from a 𝐶𝑎𝑡( ⃗𝛽𝑧𝑛𝑑

).
Differences with the mixture of categoricals model:

• In LDA, every word in a document can be drawn from a different topic,
• and every document has its own distribution over topics ⃗𝜃𝑑.
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Gibbs sampling algorithm

• Initialize 𝑧𝑛𝑑 randomly for all words in all documents
• Choose random word and sample a new category based on all other words in all other

documents.
• The distribution over categories is the predictive distribution of the posterior Dirichlet

distribution (integration across all possible ⃗𝜃 and ⃗𝛽).
• Perform these small changes in many iterations over the data. The algorithm will

converge to good solutions.
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