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Many of the slides in this presentation were taken from the presentations
of Carl Edward Rasmussen (University of Cambridge)
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With the Expectation-Maximization algorithm we have essentially estimated g and ﬁ by
maximum likelihood.
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An alternative, Bayesian treatment infers these parameters starting from priors, e.g.:
°j~ Dir(a) is a symmetric Dirichlet over category probabilities,
. Ek ~ Dir(5) are symmetric Dirichlets over vocabulary probabilities.
What is different?

® We no longer want to compute a point estimate of 6 and B

® We are now interested in computing posterior distributions.
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A generative view of the mixture of categoricals model:
Draw a distribution 6 over K topics from a Dir(a).
For each topic k, draw a distribution 3, over words from a Dir(%).
For each document d, draw a topic z; from a Cat(f)
For each document d, draw NN, words w,,; from a Cat(ﬁzd)
Limitations:
® All words in each document are drawn from one specific topic distribution.
® This works if each document is exclusively about one topic, but if some documents span

more than one topic, then “blurred” topics must be learnt. 4 10



Latent Dirichlet Allocation

Topics
gene 0.04
dna 0.02
genetic 0.01
life 0.02

evolve 0.01
organism 0.01

f

brain 0.04
neuron 0.02
nerve 0.01
data 0.02

number 0.02
computer 0.01

Documents

Topic proportions and
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Latent Dirichlet Allocation: what we observe

Topics Documents Topic p op ortions and
assignments
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In reality, we only observe the documents.

The other structure are hidden variables.
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Latent Dirichlet Allocation: what we observe
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Our goal is to infer the hidden variables.

This means computing their distribution conditioned on the documents

p(topics, proportions, assignments|documents)
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Per document Observed

o)

topic proportions word
Proportions Per word topic . Topic
parameter assignment Topics  parameter
i=1N k=1.K
d=1:D

Nodes are random variables; edges indicate dependence.

Shaded nodes indicate observed variables.
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A generative view of LDA:
For each document d draw a distribution éd over topics from a Dir(a).

For each topic k draw a distribution 3, over words from a Dir (7).
Draw a topic z,,, for the n-th word in document d from a Cat(f,)).

—

Draw word w,,; from a Cat(B, ).

Differences with the mixture of categoricals model:
® |n LDA, every word in a document can be drawn from a different topic,
® and every document has its own distribution over topics gd.
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Initialize z,,; randomly for all words in all documents

Choose random word and sample a new category based on all other words in all other
documents.

The distribution over categories is the predigtive dlstribution of the posterior Dirichlet
distribution (integration across all possible 6 and ().

Perform these small changes in many iterations over the data. The algorithm will
converge to good solutions.
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