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Preface

In recent years, deep neural networks dominated the area of Natural Language Pro-
cessing (NLP). For a while, it might almost seem that all tasks became purely machine
learning problems, and the language itself became secondary. The primary problems
are technical: getting more and more data and making the learning algorithms more
efficient. Deep learning methods allow us to do machine translation, automatic text
summarization, sentiment analysis, question answering, and many other tasks in a
quality that was hardly imaginable ten years ago. This unprecedented progress in
our ability to solve NLP tasks has its downsides too. End-to-end-trained models are
black boxes that are very hard to interpret, and the model can manifest unintended
behavior that can range from seemingly stupid and unexplainable errors to hidden
gender or racial bias.

One of the main concerns of linguistics is to conceptualize language in such a way
that allows us to name and discuss complex language phenomena that would other-
wise be difficult to grasp or to teach a non-native speaker. Traditionally, NLP took
over these conceptualizations and used them to represent language for solving prac-
tical tasks. Over time, it appeared that not all concepts from linguistics are neces-
sarily useful for NLP. With deep neural networks, almost all linguistic assumptions
were discarded. Sentences are treated merely as sequences of words that get split into
smaller subword units based on simple statistical heuristics. Dozens of hidden layers
of neural networks learn presumably a more and more abstract and more informative
representation of the input until they ultimately provide the output without telling
us what the representations in between mean.

This situation in NLP puts us into a unique situation. We have machine learning
models that can do tasks as skillfully as never before and develop their own language
representation. This calls for an inspection to what extent the linguistic conceptualiza-
tions are consistent with what the models learn. Do neural networks use morphology
and syntax the way people do when they talk about language? Or do they develop
their own better way? What is hidden in the layers?
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Introduction

In this book, we try to peek into the black box of trained neural models, and to see how
the emergent representations correspond to traditional linguistic abstractions. We
mostly deal with large pre-trained language models and machine translation models.

In Chapter 1, we introduce the reader into the world of deep learning and its ap-
plications in Natural Language Processing (NLP). Readers who are experts in deep
learning can skip this chapter. We hope others will find the introductory chapter
useful even beyond the scope of this book.

In Chapter 2, we show how the deep learning concepts are used in several notable
models, including Word2Vec, Transformer and BERT. The subsequent chapters deal
with analyzing the models introduced in this chapter.

In Chapter 3, we look at the problem of interpreting trained neural network mod-
els in general. We also outline the two approaches that we focus on in this book:
supervised probing, and unsupervised clustering and visualisation.

In Chapter 4, we discuss the interpretation of Word2Vec and other word embed-
dings. We show various methods for embedding space visualisation, component
analysis and embedding space transformations for interpretation.

In Chapter 5, we analyze attention and self-attention mechanisms, in which we can
observe weighted links between representations of individual tokens. We particularly
focus on syntax, summarizing the amount of syntax in the attentions across the layers
of several NLP models.

In Chapter 6, we look at contextual word embeddings and the linguistically inter-
pretable features they capture. We try to link the linguistic features to various levels
of linguistic abstraction, going from morphology over syntax to semantics.
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1

Deep Learning

Before talking about the interpretation of neural networks in Natural Language Pro-
cessing (NLP), we should explain what deep learning is and how it is used in NLP. In
this chapter, we summarize the basic concepts of deep learning, briefly sketch the his-
tory, and discuss details of neural architectures that we talk about in the later chapters
of the book.

1.1 Fundamentals of Deep Learning

Deep learning is a branch of Machine Learning (ML), and like many scientific concepts,
it does not have an exact definition everyone would agree upon. By deep learning,
we usually mean ML with neural networks that have many layers (Goodfellow et al.,
2016). By ‘many,’ people usually mean more than experts before 2006 used to believe
was numerically feasible (Hinton and Salakhutdinov, 2006; Bengio et al., 2007). In
practice, the networks have dozens of layers.

The first method that allowed using multiple layers was unsupervised layer-wise
pre-training (Bengio et al., 2007) that demonstrated the potential of deeper neural
networks. These methods were followed by innovations allowing training the models
end-to-end by error back-propagation only (Srivastava et al., 2014; Nair and Hinton,
2010; Ioffe and Szegedy, 2015; Ba et al., 2016; He et al., 2016) without any pre-training,
which started the boom of deep learning methods after 2014.

1.1.1 What is Machine Learning?

Neural networks and other ML models are trained to fit training data, while still gen-
eralizing for unseen data, i.e., instances that were not in the training set. For example,
we train a machine translation system on pairs of sentences that are translations of
each other, but of course, the goal is to have a model that can reliably translate any
sentence, not only examples from the training data.

During training, we try to minimize the error the model makes on the training data.
However, minimizing the training error does not guarantee that the model works well
for data that are not in the training set. In other words, even with a low training
error, the model can overfit, i.e., perform well on the training data without generalizing
for data instances not encountered during training. To ensure that the model can
make correct predictions on data instances that were not used for training, we use
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1 DEEP LEARNING
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Figure 1.1: Illustration of a single artificial neuron with inputs x = (x1, . . . , xn) and
weights w = (w1, . . . , wn).

another dataset, usually called the validation set that is only used for estimating the
performance of the model on unseen data.

Deep learning models are particularly prone to overfitting. With millions of train-
able parameters, they can easily memorize entire training sets. We already insinuated
that the crucial part of the deep learning story is techniques that allow training bigger
models with many layers. Bigger models have a bigger capacity to learn more com-
plicated tasks. Large models are, on the other hand, more prone to overfitting. The
History of deep learning is a somewhat story of innovations that allow training larger
models and innovations that prevent large models from overfitting.

1.1.2 Perceptron Algorithm

Deep learning originates in studying artificial neural networks (Goodfellow et al.,
2016, p. 12). Artificial neural networks are inspired by a simplistic model of a bio-
logical neuron (McCulloch and Pitts, 1943; Rosenblatt, 1958; Widrow, 1960). In the
model, the neuron collects information on its dendrites. Based on that, it sends a sig-
nal on the axon, its single output. Formally, we say that the artificial neuron has an
input, a vector x = (x1, . . . , xn) ∈ Rn of real numbers. For each input component
xi, there is a weight wi ∈ R corresponding to the importance of the input compo-
nent. The weighted sum of the input is called the activation. We get the neuron output
by applying the activation function on the activation. In the simplest case, the acti-
vation function is the signum function. More activation functions are discussed in
Section 1.2. The model is illustrated in Figure 1.1.
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1.1 FUNDAMENTALS OF DEEP LEARNING

The first successful experiments with such a model date back to the 1950s when
the geometrically motivated perceptron algorithm (Rosenblatt, 1958) for learning the
model weights was first introduced. The model is used for the classification of the
inputs into two distinct classes. The inputs are interpreted as points in a multi-dimen-
sional vector space. The learning algorithm searches for a hyperplane separating one
class of the inputs from the other. The trained weights are interpreted as a normal
vector of the hyperplane. The algorithm iterates over the training examples: If an
example is misclassified, it rotates the hyperplane towards the misclassified example
by subtracting the input from the weight vector. This simple algorithm is guaranteed
to converge to a separating hyperplane if it exists (Novikoff, 1962). The linear-algebraic
intuition developed for the perceptron algorithm is also important for the current
neural networks where inputs of network layers are also interpreted as points in multi-
dimensional space.

During the following 60 years of ML and Artificial Intelligence (AI) development,
neural networks fell out of the main research interest, especially during the so-called
AI winters in the 1970s and 1990s (Crevier, 1993, p. 203).

In the rest of the chapter, we do not closely follow the history of neural networks
but only discuss the innovations that seem to be the most important from the current
perspective. Techniques that are particularly useful for NLP are then discussed in
Section 1.3. For a comprehensive overview of the history of neural network research,
we refer the reader to a survey by Schmidhuber (2014).

1.1.3 Multi-Layer Networks

The geometrically motivated perceptron learning algorithm cannot be efficiently gen-
eralized to networks with a more complicated structure of interconnected neurons.
With more a complex network structure, we no longer interpret the learning as a ge-
ometric problem of finding a separating hyperplane. Instead, we view the network
as a parameterized continuous function. The goal of the learning is to optimize the
parameter values with respect to a continuous error function, usually called the loss
function. The loss function is usually some kind of continuous dissimilarity measure
between the network output from the desired output.

During training, we treat the network as a function of its parameters, given a train-
ing dataset that is considered constant at one training step. This allows computing
gradients of the network parameters with respect to the loss function and updating
the parameters accordingly. The training uses a simple property of derivative that it
determines the direction in which a continuous function increases or decreases. This
information can be used to shift the parameters in such a way that the loss function
decreases. Note that each gradient is computed independently, and we only compute
the derivatives at a particular point, so we can only shift the parameters by a small step
in the direction of the derivatives. Furthermore, with a large training set, we are able
to process only small batches of training data, which introduces stochasticity in the

7



1 DEEP LEARNING
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Figure 1.2: Multi-layer perceptron with two fully connected hidden layers.

training process, i.e., add random noise that increases the robustness of the training.
The training algorithm is called stochastic gradient descent.

At inference time, the parameters are fixed, and the network is treated as a function
of its inputs with constant parameters.

The original perceptron used the signum function as the activation function. In
order to make the function defined by the network differentiable, the signum func-
tion was often replaced by sigmoid function or hyperbolic tangent, yielding values
between -1 and 1.

For the sake of efficiency, the neurons in artificial neural networks are almost al-
ways organized in layers. This allows us to re-formulate the computation as a matrix
multiplication (Fahlman and Hinton, 1987). Layers implemented by matrix multi-
plication are called fully connected or dense layers. Let hi = (h0

i , . . . , h
n
i ) ∈ Rn be

the output of the i-th layer of the network and the input of the (i + 1)-th layer. Let
A : R → R be the activation function. The value of the k-th neuron in the (i + 1)-th
layer of dimension m is

hk
i+1 = A

(
n∑

l=0

hl
i ·w

(l,k)
i + b

(k)
i

)
(1.1)

which is, in fact, the definition of matrix multiplication. It thus holds:

hi+1 = A (hiWi + bi) (1.2)

where Wi ∈ Rn×m is a parameter matrix, and bi ∈ Rm is a bias vector.
Not only did this make the computation efficient, but it also led to a reconceptu-

alization of the network architectures. Current literature no longer talks about single
neurons, but almost always about network layers. This reconceptualization then al-
lows innovations like attention mechanism (Bahdanau et al., 2014), residual connec-
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1.1 FUNDAMENTALS OF DEEP LEARNING
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tions (He et al., 2016), or layer normalization (Ba et al., 2016) which conceptually, not
only for the sake of computational efficiency, treat the neuron outputs as elements of
vectors and matrices.

A network with feed-forward fully connected layers is illustrated in Figure 1.2.
This architecture is usually called a multi-layer perceptron, even though it is not trained
with the perceptron algorithm but using the error back-propagation algorithm.

1.1.4 Error Back-Propagation

We already mentioned how a neural network is trained when the parameter gradients
are known. For simple networks, it was possible to infer the equations for the gradi-
ents using pen and paper. For more complicated networks, an algorithmic solution
poses a great advantage.

The Error Back-Propagation Algorithm (Werbos, 1990) is a simple graph algorithm
that can infer equations for parameter gradients for an arbitrarily complicated net-
work. This invention opened a path for training large networks.

While using the back-propagation algorithm, we represent the computation as a
directed acyclic graph where each node corresponds to an input, trainable parame-
ter, or an operation. This graph is called the forward computation graph. To compute
the derivative of a parameter with respect to the function, we build a backward graph
with reversed edges and operations replaced by their derivatives. The derivative of
a parameter with respect to the loss is then computed by multiplying the values on a
path from the loss to a copy of the parameter in the backward graph. The algorithm
is illustrated in Figure 1.3.

The back-propagation algorithm, together with techniques ensuring a smooth gra-
dient flow within the network and regularization techniques, allows training models
end-to-end from raw input. During the training process, neural networks develop an

9



1 DEEP LEARNING

input representation such that the task that we train the model for becomes easy to
solve (Bengio et al., 2003; LeCun et al., 2015). However, it took more than ten years
before this remarkable property of the learning algorithm attracted the attention of
the researchers.

1.1.5 Representation Learning

Deep learning dramatically changes how data is represented. In NLP, the text used to
be tokenized and enriched by automatic annotations that include part-of-speech tags,
syntactic relations between words or entity detection. This representation was usu-
ally used to get meaningful features for a ML model. In statistical Machine Transla-
tion (MT), words are represented by monolingual and bilingual co-occurrence tables,
which are used for probability estimations within the models. In deep learning mod-
els, the text is represented with tensors of continuous values that are not explicitly
hand-designed but implicitly inferred during model optimization.

This is often considered to be one of the most important properties of neural net-
works. Goodfellow et al. (2016, p. 5) even consider the representation learning ability
to be the feature that distinguishes deep learning from the previous ML techniques.
In both Computer Vision (CV) and NLP models, consecutive layers learn more con-
textualized and presumably more abstract representation of the input. As we will
discuss in the following sections, the representations learned by the networks are of-
ten general and can often be reused for solving different tasks than they were trained
for.

1.2 Deep Learning Techniques in Computer Vision

Although this book is primarily about neural networks in NLP, the story of deep
learning would not be complete if we did not mention innovations that come from
CV. The success of deep neural networks in CV tasks started the increased interest in
neural networks, and it is likely that without the progress made in CV, deep learning
would not be as successful in NLP either.

Images are usually represented as a table of three-channel (RGB: red, green, blue)
pixels, i.e., a three-dimensional tensor. Note that if we disregard the exact number of
channels, this is the same form as the input and output of most network layers. This
allows us to treat the input in the same way as all other layers in the network.

1.2.1 Convolutional Networks

The main tool used in CV are convolutional networks (LeCun et al., 1998). The main
components used in Convolutional Neural Networks (CNNs) are convolutional and
max-pooling layers.

Two-dimensional convolutions can be explained as applying a sliding window
projection over a 3D input tensor and measuring the similarity between the input

10



1.2 DEEP LEARNING TECHNIQUES IN COMPUTER VISION

RGB image 9× 9× 3

convolutional map 4× 4× 6

stri
de 2

filter size 6kern
el size

3

Figure 1.4: Illustration of a 2D convolution over a 9×9 RGB image with stride 2, kernel
size 3 and number of filters 6.

window and filters that are the learned parameters of the models. The two main hy-
perparameters of a convolutional layer are the number of filters and the window size.
Another attribute of the convolution is the stride which is the size of the step by which
the window moves. The resulting feature map is roughly stride-times smaller in the
first two dimensions (weight and height). A 2D convolution over an RGB image is
illustrated in Figure 1.4.

Max-pooling is a dimensionality reduction technique that is used to decrease infor-
mation redundancy during image processing. Similarly to convolutions, it proceeds
as a sliding window and reduces each window into a single vector by taking the maxi-
mum values from the window. Alternatively, average-pooling can be used that yields
the average of the window instead of the maximum.

Convolution is usually interpreted as a latent feature extraction over the input ten-
sor where the filters correspond to the latent features. Max-pooling can be interpreted
as a soft existential quantifier applied over the window, i.e., the result of max-pooling
says whether and how much the latent features are present in the given region of the
image.

Visualizations of trained convolution filters show that the representation in the
network is often similar to features used in classical CV methods such as edge detec-
tion (Erhan et al., 2009). It also appears that with the growing number of layers, more
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Columns without citations correspond to submissions that did not provide a citation.

abstract representations are learned (Mahendran and Vedaldi, 2015; Olah et al., 2017).
Although, in theory, shallow networks with a single hidden layer have the same ca-
pabilities (Hornik, 1991), in practice, well-trained deeper networks usually perform
better (Goodfellow et al., 2016, p. 192–194).

CNNs operating in only one dimension are also used in NLP. Deep one-dimen-
sional CNNs got a lot of attention in 2017 because they offered a significant speedup
compared to methods that were popular at that time (e.g., in machine translation:
Gehring et al., 2017; or question answering: Wu et al., 2017). However, soon the NLP
community shifted to Self-Attentive Networks (SANs) that allow the same speedup
by parallelization and better performance.

1.2.2 AlexNet and Image Classification on the ImageNet Challenge

The mechanism of convolutional and max-pooling layers in CNNs is known since
1998 when LeCun et al. (1998) used them for hand-written digit recognition, but they
reached mainstream popularity after Krizhevsky et al. (2012) used them in the Im-
ageNet challenge (Deng et al., 2009). For a long time, the ImageNet challenge was
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the main venue where researchers in CV compared their methods, and many of the
crucial innovations in deep learning were introduced in the context of this challenge.

The challenge uses a large dataset of manually annotated images. Every image
is a real-world photograph focused on one object of 1,000 classes. The classes are
objects from every-day life, excluding persons. The labels of the objects are manually
linked with WordNet synsets (Miller, 1995). The training part of the dataset consists
of 150 million labeled images. The test set contains another 150 thousand images, an
order of magnitude bigger than all previously used datasets. Note that the word ‘net’
in the dataset name does not refer to neural networks but WordNet, which was an
inspiration for creating the ImageNet dataset.

During the last years, CNNs and other deep learning techniques helped to de-
crease the 5-best error more than ten times (see Figure 1.5 for more details). The
5-best error is the proportion of cases when the correct label is not present in the 5
best-scoring labels, the primary evaluation measure on this task.

AlexNet (Krizhevsky et al., 2012) was the first model that succeeded in the chal-
lenge, and it is often said that its success started the new interest in deep learning. The
model combines many recent innovations in neural networks at the same time and
used an efficient GPU implementation, which was not common at that time. The net-
work outperformed all previous approaches by a large margin. Moreover, the image
representation learned by the network (activations in its penultimate layer) showed
interesting semantic properties, allowing the network to be used to estimate image
similarity based on its content.

AlexNet consists of five convolutional layers interleaved by three max-pooling lay-
ers and followed by two fully connected layers. CNNs were well-known at that time;
however, AlexNet was deeper than previously used CNNs and took advantage of
several recent innovations.

One important innovation was the use of Rectified Linear Units (ReLUs) (Hahn-
loser et al., 2000; Nair and Hinton, 2010) instead of the smooth activation functions
mentioned in the previous section (1.1).

This activation function allows better propagation of the loss gradient to deeper
layers of the network by reducing the effect of the vanishing gradient problem. The
derivative of hyperbolic tangent has an upper bound of one and has values close to
zero on most of its domain. Therefore, training networks with more than one or two
hidden layers (AlexNet had seven layers; Krizhevsky et al., 2012) is hardly possible
with the traditional smooth activation functions. During the computation of the loss
gradient with the chain rule, the gradient gets repeatedly multiplied by values smaller
than one and eventually vanishes. ReLU reduces this effect, although it does not en-
tirely solve this problem. However, the gradient is still zero on half of the domain,
which means that the probability that the gradient is zero grows exponentially with
the network depth. See Figure 1.6 for visualization of the activation function course
and their derivatives.
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Figure 1.6: Activation functions and their derivatives.

The AlexNet network has 208 million parameters, making it prone to overfitting
because it has a capacity to memorize the training set with only little generalization.
AlexNet used dropout (Srivastava et al., 2014)1 to reduce overfitting. It is a technique
that introduces random noise in the network during training and thus forces the
model to be more robust to variance in the data. With dropout, neuron outputs are
randomly set to zero with a probability that is a hyperparameter of model training.
In practice, dropout is implemented as multiplication by a random binary matrix af-
ter applying the activation function. Dropout can also be interpreted as ensembling
exponentially many networks with a subset of currently active neurons that share all
their weights (Hara et al., 2016).

Both dropout and ReLU are now one of the key techniques used both in CV and
NLP.

1.2.3 Convolutional Networks after AlexNet

The development of neural networks for CV did not stop with AlexNet. Except for
vision-specific best-practices (Simonyan and Zisserman, 2014), two major innovations

1 The paper was published in a journal in 2014, however its preprint was available already in 2012 before
the ImageNet competition.
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come from image recognition, and that now play a crucial role in deep Recurrent
Neural Networks (RNNs) and Transformers in NLP.

As we discussed in the previous section, one of the major problems of the deep
neural network architectures is the vanishing gradient problem, which makes training
of deeper models difficult. The ReLU activation function partially solved the problem
because the gradients are always either ones or zeros. Dropout can help by forcing
updates in neurons that would otherwise never change. Other techniques also help
to improve the gradient flow in the network during training.

One of them is the normalization of the network activation. These are regulariza-
tion techniques that ensure that the neuron activations have almost zero mean and
almost unit variance. It makes propagation of the gradient easier by keeping the neu-
ron activations near the values where the derivatives of the activation functions vary
the most.

Batch normalization (Ioffe and Szegedy, 2015) and layer normalization (Ioffe and
Szegedy, 2015) are the most frequently used. Batch normalization attempts to ensure
that activation values for each neuron are normally distributed over the training ex-
amples. Layer normalization, on the other hand, normalizes the activations on each
layer.

The normalization tricks allowed the development of another technique that makes
training of networks with many layers easier, residual connections (He et al., 2016). In
residual networks, outputs of later layers are summed with outputs of previous layers
(see Figure 1.7).

Residual connections improve the gradient flow during the loss back-propagation
because the loss does not need to propagate via the non-linearities causing the van-
ishing gradient problem. It can flow directly via the summation operator, which is
linear with respect to the derivative. Note also that applying the residual connection
requires that the dimensionality of the layers must not change during the convolution.

Before introducing residual connections, the state-of-the-art image classification
networks had around 20 layers (Simonyan and Zisserman, 2014; Szegedy et al., 2015),
ResNet (He et al., 2016), the first network with residual connections, used up to 150
layers while decreasing the classification error to only 3.5%.

Image classification into 1,000 classes is not the only task that the CV community
attempts to solve. CV tasks include object localization (Girshick, 2015; Ren et al., 2015),
face recognition (Parkhi et al., 2015; Schroff et al., 2015), traffic sign recognition (Zhu
et al., 2016), scene text recognition (Jaderberg et al., 2014) and many others. Although
there are many task-specific techniques, in all current approaches, images are first pro-
cessed using a stack of convolutional layers with max-pooling and other techniques
also used in image classification.

Representations learned by networks trained on the ImageNet dataset generalize
beyond the scope of the task and seem to be aware of abstract concepts (Mahendran
and Vedaldi, 2015; Zeiler and Fergus, 2014; Olah et al., 2017). The ImageNet dataset is
also one of the biggest CV datasets available, often orders of magnitude bigger than
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Figure 1.7: Network with a residual connection skipping one layer.

datasets for more specific tasks (Huh et al., 2016). This makes the representations
learned by the image classification networks suitable to use in other CV tasks (such
as object detection Girshick, 2015; animal species classification Branson et al., 2014;
or satellite image Marmanis et al., 2016) as well as tasks combining vision with other
modalities (such as visual question answering, Antol et al., 2015; or image captioning
Vinyals et al., 2015). After 2018 (Peters et al., 2018a; Devlin et al., 2019), the reuse of pre-
trained representations from networks trained for different tasks became standard in
NLP as well.

1.3 Deep Learning Techniques in Natural Language Processing

Unlike CV that processes continuous signals that can be directly provided to a Neu-
ral Network (NN), in NLP, we need to deal with the fact that language is written
using discrete symbols. The use of the symbols, how the symbols group into words,
or larger units, the amount of information carried by a single symbol; this all varies
dramatically across languages. Nevertheless, the symbols are always discrete. Deep
learning models for NLP thus need to convert the discrete input into a continuous rep-
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resentation that is processed by the network before it eventually generates a discrete
output.

In all NLP tasks, we can thus distinguish three phases of the computation:
• Obtaining a continuous representation of the discrete input (often called word

or symbol embedding) by replacing the discrete symbols with continuous vectors;
• Processing of the continuous representation (encoding) using various architec-

tures;
• Generating discrete (or rarely continuous) output, sometimes called decoding.

Approaches to the phases may vary in complexity. This is most apparent in the case of
generating an output which can be done either using simple classification, sequence
labeling techniques such as conditional random fields (Lafferty et al., 2001) or con-
nectionist temporal classification (Graves et al., 2006) or using relatively complex au-
toregressive decoders (Sutskever et al., 2014).

The rest of the section discusses these three phases in more detail. First (Sec-
tion 1.3.1), we discuss embedding of discrete symbols into a continuous space. In
the following section (1.3.2), we discuss three main architectures that can be used
for processing an embedded sequence: RNNs, CNNs, and SANs. The following sec-
tion (1.3.3) summarizes classification and sequence labeling techniques as a means of
generating discrete output. Finally, we discuss autoregressive decoding which is a
technique that allows generating arbitrarily long sequences.

1.3.1 Word Embeddings

Neural networks rely on continuous mathematics. When using neural networks for
NLP, we need to bridge the gap between the symbolic nature of the written language
and the continuous quantities processed by neural networks. The most intuitive way
of doing so is using a predefined finite indexed set of symbols called a vocabulary
(those are typically words, characters, or sub-word units) and represent the input as
one-hot vectors.

We denote a one-hot vector having one on the i-th position and zeros elsewhere as 1i
(see Figure 1.8). If the one-hot vector is used as the input of a layer, it gets multiplied
by a weight matrix. The multiplication then corresponds to selecting one column
from the weight matrix. The vectors that form the weight matrix are called symbol
embeddings.

The embeddings are sometimes also called the distributed representation of the in-
put tokens to stress out that the information about the word is no longer present in a
single dimension of the input vector, but distributed in all dimensions of the embed-
dings. However, following this principle, all hidden layers of a NN can be considered
a distributed representation of the input. To avoid this confusion and confusion with
distributional semantics, we avoid using this term.

Note also that in this setup, the only information that the networks have available
about the input words is that they belong to certain classes of equivalence (usually we
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Figure 1.8: Illustration of a one-hot vector.

consider words with the same spelling to be the equivalent) indicated by the one-hot
vector. The only information that the network can later work with is the co-occurrence
of these classes of equivalence and their co-occurrence with target labels. The models
thus heavily rely on the distributional hypothesis (Harris, 1954). The hypothesis says
that the meaning of the words can be inferred from the contexts in which they are
used. The success of neural networks for NLP shows that the hypothesis holds at
least to some extent.

Now, consider we are going to train a neural network that predicts a probabil-
ity of a word in a sentence given a window of its three predecessors, i.e., acts like a
four-gram Language Model (LM). The network has three input words represented by
one-hot vectors with vocabulary V , and one output, a distribution over the same vo-
cabulary. For simplicity, we further assume the network has one hidden layer h ∈ Rm

of dimension m before the classification layer. Formally, we can write:

h = tanh (1wn−3
W3 + 1wn−2

W2 + 1wn−1
W1 + bh) (1.3)

P(wn) = softmax(Wh + b) (1.4)

where Wi ∈ R|V |×m are the embedding matrices for the words in the window of
predecessors and W ∈ Rm×|V | a projection matrix from the hidden state h to the
output distribution, bh and b are corresponding biases, tanh is an arbitrarily chosen
activation function.

All four projection matrices have |V | ·m parameters. With the vocabulary size of
ten thousand words and the hidden layer with hundreds of hidden units, this means
millions of parameters. All three embedding matrices have a similar function in the
model. They project the one-hot vectors to a common representation used in the hid-
den layer, also reflecting the position in the window of the predecessors. The target
representation space used by the hidden layer should be the same because the output
classifier cannot distinguish where the values came from unless the weight matrices
learn this during model training.
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Figure 1.9: Architecture of a feed-forward language model with window size 3 with
shared word embeddings We.

Given this observation, we can factorize the matrices into two parts: the first one
performing the projection to a common representation space of dimension m that can
be shared among the window of predecessors, and the second projection adapting the
vector to the specific role in the network based on the word position. Formally:

h = tanh (1wn−3
WeV3 + 1wn−2

WeV2 + 1wn−1
WeV1 + bh) (1.5)

where We ∈ R|V |×m is the shared word embedding matrix and Vi are smaller projec-
tion matrices of size m ×m. This step approximately halves the number of network
parameters. This is also the way that word embeddings are currently used in most
NLP tasks. The architecture of the described trigram LM is illustrated in Figure 1.9.

The previous thoughts led us exactly to the architecture of the first successful neu-
ral LM (Bengio et al., 2003). The feed-forward architecture not only achieved decent
quantitative results in terms of corpus perplexity, but it also developed word repre-
sentations with interesting properties. Words with similar meaning tend to have sim-
ilar vector representations in terms of Euclidean or cosine distance. Moreover, the
learned representations appear to be useful features for other NLP tasks (Collobert
et al., 2011).
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Mikolov et al. (2010) trained an RNN-based LM for speech recognition where the
word representations manifest another interesting property. The vectors seemed to
behave linearly with respect to some semantic shifts, e.g., words that differ only in
gender tend to have a constant difference vector. Mikolov et al. (2013c) further exam-
ined this property of the word vectors and developed a simple feed-forward archi-
tecture that was no longer a good LM but still produced word embeddings with all
the interesting properties, i.e., being useful machine-learning features for NLP tasks,
clustering words with similar meaning and behaving linearly with respect to some
semantic shifts.

Pre-trained embeddings using one of the above-mentioned methods are an im-
portant building block in NLP tasks with limited training data (dependency parsing:
Chen and Manning, 2014, Straka and Straková, 2017; question answering: Seo et al.,
2016) when the model is supposed to generalize for words which were not seen in
the training data, but for which we have good pre-trained embeddings. In tasks with
a large amount of training data such as MT, we usually train the word embeddings
together with the rest of the model (Qi et al., 2018).

The development of universally usable word vector representations became an
independent subfield of NLP research. The research community mostly focuses on
studying theoretical properties of the embeddings (Levy and Goldberg, 2014; Agirre
et al., 2016) and multilingual embeddings either with or without the use of parallel
data (Luong et al., 2015; Conneau et al., 2017).

Word embeddings and their interpretations are discussed in detail in Chapter 4.

1.3.2 Architectures for Sequence Processing

In NLP, we usually treat the text as a sequence of tokens that correspond to words,
subwords, or characters. Deep learning architectures for sequence processing thus
must be able to process sequential data of different lengths. The length of sentences
processed by the MT systems typically varies from a few words to tens of words. In
the CzEng parallel (Bojar et al., 2016b) 90% of sentences have between 20 and 350
tokens.

The architectures are used to produce an intermediate representation, so-called
hidden states which the network uses further for generating outputs. The intermediate
representation can be trained either end-to-end when learning an NLP task, or it can
be a pre-trained one. In this section, we describe how these architectures work when
treating them as a black box. We open the box and discuss possible interpretations in
Chapter 6.

Currently, there are two main types of architectures used: RNNs, and SANs. The
architectures are explained in detail in the following sections.
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Figure 1.10: States of an RNN unrolled in time.

Recurrent Networks

RNNs are historically the oldest and probably still frequently used architecture for
sequence processing in a variety of tasks including speech recognition (Graves et al.,
2013; Chan et al., 2016), handwriting recognition (Graves and Schmidhuber, 2009;
Keysers et al., 2017), or neural machine translation (Bahdanau et al., 2014; Chen et al.,
2018). It was the architecture of the first choice partially because of its theoretical
strengths—RNNs are proved to be Turing complete (Siegelmann and Sontag, 1995)—
and because an efficient way for training them has been known since 1997 (Hochreiter
and Schmidhuber, 1997).

Unlike the feed-forward networks which are stateless, a recurrent network can be
best described as applying the same function A sequentially on the previous network
state and current input (Elman, 1990). Computation of a new state ht ∈ Rd from
the previous state ht−1 ∈ Rd and current input xt ∈ Rn can be described using a
recurrent equation

ht = A(ht−1, xt) (1.6)

where the initial state h0 is either fixed or a result of the previous computation. De-
pending on the output of the task, either the final state of the RNN hTx

where Tx is
the length of the input sequence or the whole matrix H = (h1,h2, . . . ,hTx

) ∈ RTx×d

is used for further processing.
For inference, only the current state of the network is required. However, to learn

its parameters via back-propagation in time (Werbos, 1990), we need to unroll all
its steps. In this sense, even a simple RNN is a deep network because the back-
propagation must be conducted through many unrolled layers. From the training
perspective, RNNs in NLP tasks can easily have tens or hundreds of layers. Unrolling
the network is illustrated in Figure 1.10.
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The depth of the unrolled network is the factor that makes training of such archi-
tectures difficult. With a simple non-linear activation function (so-called Elman cell,
Elman, 1990):

ht = tanh (W[ht−1; xt] + b) , (1.7)

it would be impossible for the network to learn to also consider longer dependencies
in the sequence due to the vanishing gradient problem (already discussed in Section 1.2).

When we compute the parameter derivatives during the error back-propagation,
the gradients get multiplied by the derivative of tanh every time we go one step back
in time. Because the derivative is between zero and one, the training signal weakens
in every time step, until it eventually vanishes. It effectively prevents the network
from learning to consider also longer dependencies.

ReLU activation is claimed to reduce the issue in the context of CV (see Section 1.2).
Its derivative is zero for x < 0 and one otherwise, so the gradient can eventually vanish
in case of longer sequences too.

A solution to the instability problems came with introducing the mechanism of
Long Short-Term Memory (LSTM) networks, which ensures that during the error
back-propagation, there is always a path through which the gradient can flow via
operations that are linear with respect to the derivative. The path, sometimes called
information highway (Srivastava et al., 2015), is illustrated as the double straight line
on the top of Figure 1.11.

This configuration is achieved by using two distinct hidden states, private state C
and public state h where the state C is updated using the linear operations only. A
gating mechanism explicitly decides what information from the input can enter the
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information highway (input gate), which part of the state should be deleted (forget gate)
and what part of the private hidden state should be published (output gate).

Formally, an LSTM network of dimension d updates its two hidden states ht−1 ∈
Rd and Ct−1 ∈ Rd based on the input xt in time step t in the following way:

ft = σ (Wf · [ht−1; xt] + bf) (1.8)
it = σ (Wi · [ht−1; xt] + bi) (1.9)
ot = σ (Wo · [ht−1; xt] + bo) (1.10)
C̃t = tanh (Wc · [ht−1; xt] + bC) (1.11)
Ct = ft ⊙ Ct−1 + it ⊙ C̃t (1.12)
ht = ot ⊙ tanh Ct. (1.13)

where ⊙ denotes point-wise multiplication. The cell is shown in Figure 1.11.
The values of the forget gate ft ∈ (0, 1)

d control how much information is kept
in the memory cell by point-wise multiplication. In the next step, we compute the
candidate state C̃ ∈ Rd in the same way as the new state is computed in the Elman
RNN cells. Values of this candidate state are not combined directly with the memory.
First, they are weighted using the input gate it ∈ (0, 1)

d and added to the memory
already pruned by the forget gate. The new output state ht is computed by applying
tanh non-linearity on the memory state Ct and weighting it by the output gate ot ∈
(0, 1)

d.
As previously mentioned, LSTM networks have two separate states Ct and ht.

The private hidden state Ct is only updated using addition and point-wise multipli-
cation. The tanh non-linearity is only applied while computing the output state ht.
The gradient from the output passes through only one non-linearity before entering
the information highway.

Later, other numerically stable versions of RNNs appeared. They all have the prop-
erty that there is a path on which the gradient can propagate without vanishing (Bal-
duzzi and Ghifary, 2016; Lee et al., 2017). The most frequently used variant is Gated
Recurrent Units (GRUs) (Cho et al. 2014, Figure 1.12):

zt = σ (Wz[ht−1; xt] + bz) (1.14)
rt = σ (Wr[ht−1; xt] + br) (1.15)
h̃t = tanh (W[rt ⊙ ht−1; xt] + b) (1.16)
ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t. (1.17)

The GRU networks have fewer parameters than LSTM networks which may speed
up training under some circumstances. The performance of both network types is
comparable and is task-dependent (Chung et al., 2014).

A commonly used method for improving RNN performance is building a bidirec-
tional network (Schuster and Paliwal, 1997; Graves and Schmidhuber, 2005). Two in-
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Figure 1.12: Scheme of an GRU cell following the same conventions as Figure 1.11.

dependent RNN networks are used in parallel, each of them processing the sequence
from one end. The output states are then concatenated. In this way, the network can
better capture dependencies in both directions in the input sequence. Bidirectional
RNNs became a standard in many NLP tasks (Bahdanau et al., 2014; Ling et al., 2015;
Seo et al., 2016; Kiperwasser and Goldberg, 2016; Lample et al., 2016). Note that in this
setup, every network state may contain information about the complete sequence.

Self-Attentive Networks

SANs are neural networks where at least for some layers, the states of the next layer are
computed as a linear combination of the states on the previous layer. It is called self-
attention because states from a network layer are used to “attend”, collect information
from themself to create a new layer. The intuition that is often used to explain the
SANs is that in every layer, every word collects relevant pieces of information from
other words and thus gets more informed about in what context it is used. Although
we will see in Chapter 5 that this intuition is often not entirely true, in this section, it
will help us to better understand the technicalities of the architecture.

There exist several variants of SANs (Parikh et al., 2016; Lin et al., 2017). In this sec-
tion, we discuss in detail the encoder part of the architecture introduced by Vaswani
et al. (2017), called Transformer, that achieves state-of-the-art results in MT.

A Transformer layer for sequence encoding consists of two sub-layers2.
The first sub-layer is self-attentive, the second one is a non-linear projection to a

larger dimension followed by a linear projection back to the original dimension. All

2 Note that even the sub-layer consists of several network layers. A better term would probably be block as
in ResNet (He et al., 2016), however, we follow the terminology introduced by Vaswani et al. (2017).
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sub-layers contain dropout, layer normalization, and are connected using residual
connections. The scheme of the architecture is displayed in Figure 1.14.

The self-attentive sub-layer first computes the similarity between all states using
the scaled dot-product attention. One possible interpretation of attention is proba-
bilistic retrieving of values V = (v1, . . . , vn) ∈ Rn×d which are associated with some
keys K = (k1, . . . ,kn) ∈ Rn×d for each ofm query vectors Q = (q1, . . . ,qm) ∈ Rm×d.
Because all queries, keys, and values are sets of vectors, we can for the sake of com-
putational efficiency write them as matrices. The scaled dot-product attention can be
then written as a matrix multiplication:

Attn(Q,K,V) = softmax
(

QK⊤
√
d

)
V (1.18)

where d is the model dimension, i.e., the second dimension of all three matrices in-
volved in the equation, which is the Transformer model constant across the layers.
The matrix-multiplication formulation is important because it allows fast paralleliza-
tion when computing on GPUs.

By normalizing the similarity over the keys using the softmax function, we get a
probability distribution which is then applied over the value matrix V in a weighted
sum. In case of the self-attentive encoder, all three matrices Q, K, V are the same, i.e.,
the states on the next layer H(i) = (hi

1, . . . ,h
(i)
n ) are computed as:

H(i) =
∑

softmax
(

H(i−1)H(i−1)⊤
√
d

)
H(i−1). (1.19)

To allow collecting different pieces of information from different words, Vaswani
et al. (2017) also introduced another innovation to the attention mechanism, multi-
headed attention. In the multi-head setup, all the query, key, and value matrices are
first linearly projected as illustrated in Figure 1.13. Note that even though the inputs
to the attention are the same, the projections do not share parameters. The projected
states are then split into multiple sub-matrices, so-called heads. The attention is com-
puted for each of the heads independently according to Equation 1.18. Outputs of the
attention are then concatenated and linearly projected to the original model dimen-
sion, forming a sequence of context vectors. In the Transformer model, the keys and
values are always the same. In case the attention is used as self-attention, the queries
are identical as well.

The multi-head setup uses two independent projections for keys and values. The
keys and values are thus different in the individual heads. Formally for h heads,

Multihead(Q,V) = (H1 ⊕ · · · ⊕ Hh)WO (1.20)
Hi = Attn(QWQ

i ,VWK
i ,VWV

i ) (1.21)

where WO ∈ Rhd×d, and WQ
i , WK

i , WV
i ∈ Rd×d are trainable parameters.
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Figure 1.13: Scheme of the multi-headed scaled dot-product attention.

SANs do not have any means to capture the order of the symbols and thus re-
quire using additional positional encoding to distinguish the positions within the se-
quence. The Transformer model uses analytically computed positional encoding. The
positional encoding for model dimension 60 is plotted in Figure 1.15. Note that for
different dimensions, the encoding values change with a different frequency which
allows estimating the relative position of the inputs.

Computationally, SANs are as fast as CNNs because the self-attention can be com-
puted in a single matrix multiplication which can be highly parallelized when com-
puted on GPU. On the other hand, we need to store a matrix with the similarity of
all pairs of the input states in the GPU memory for each layer of the network. Due to
this, the memory demands grow quadratically with the length of the input sequence.
A summary of the computational complexity of the discussed networks for sequence
processing is given in Table 1.1.
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1.3.3 Generating Output

So far, we have only discussed how the neural networks process symbolic input into an
intermediate representation. In the following sections, we discuss what architectures
are used to generate output from neural networks.
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Figure 1.15: Visualization of the position encoding used in the Transformer model
with embedding dimension 60 and input length up to 8.

We discuss in detail three special cases:
• The output is a symbol from a closed set of possible answers—classification;
• The output is a sequence of symbols of the same length as the input—sequence

labeling;
• The output is a sequence of symbols of an arbitrary length—autoregressive decod-

ing.

Classification

In the simplest case, the network produces only one discrete output, i.e., we want to
classify the input into a fixed set of previously known classes. An example of such
an NLP task is sentiment analysis (Pang et al., 2002; Pak and Paroubek, 2010) where
the goal is to classify whether a text carries a positive or negative sentiment. Another
example can be classification of text into a set of genres (Kessler et al., 1997; Lee and
Myaeng, 2002).

The most common approach to these tasks is applying a multi-layer perceptron
over a fixed-size representation of the input. The fixed-size vector can be for instance
the final state of an RNN or a result of a pooling function applied over states pro-
duced by one of the architectures mentioned in Section 1.3.2. The most frequently
used methods are max-pooling and mean-pooling, computing the maximum or av-
erage of the states in time, respectively.
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computation sequential operations memory
Recurrent O(n · d2) O(n) O(n · d)
Convolutional O(k · n · d2) O(1) O(n · d)
Self-attentive O(n2 · d) O(1) O(n2 · d)

Table 1.1: Comparison of the asymptotic computational, sequential and memory com-
plexities of the architectures processing a sequence of length n, and state dimension-
ality d. CNN has kernel size k. The first column contains complexity in case of se-
quential computation, the second column shows the asymptotic number of sequen-
tial operation during parallel computation, and the third column shows the memory
complexity.

The classification network can then consist of multiple non-linear layers before the
actual classification, which is usually done by taking the maximum or sampling from
a distribution estimated by the softmax function.

The softmax function over a vector l is defined as:

softmax (l)i =
exp li∑
lj∈l exp lj

. (1.22)

Note that the softmax function is monotonic, so if we are interested only in the best-
scoring prediction, at inference time, we can take the maximum value of vector l before
the softmax function. The values of l are often called logits.

When the output of the network is estimated using the softmax function, we can
measure the error that the network makes as a cross entropy between the estimated
probability distribution Py and the true output distribution, given such distribution
exists. In practice, the true distribution is unknown. However, we usually assume that
the true distribution exists and assigns all the probability mass to the target value y∗

in the training data. This assumption might be problematic, e.g., when estimating the
probability of the next word in a text. It is, in fact, never the case that there is only one
possible follow-up word. Nevertheless, the assumption simplifies the computation of
cross-entropy loss which can be then expressed as

L(Py, y∗) = − log Py(y∗). (1.23)

In this way, the derivative of the loss function with respect to the logits is

∂L(Py, y∗)

∂l
= Py − 1y∗ (1.24)

where 1y∗ is a one-hot vector for value y∗.
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The loss gradient with respect to the logits is back-propagated to the network using
the chain rule. The softmax function with cross-entropy loss is used not only in the
case of single-output classification but also in sequence labeling and autoregressive
decoding discussed in the following sections.

For completeness, we should also mention that when the output of the network is
supposed to be a continuous value, we can perform a linear regression over the input
representation and optimize the estimation using a mean squared error

L(y, y∗) = (y− y∗)
2
, (1.25)

which is differentiable and thus the error can be back-propagated to the network.

Sequence Labeling

When the desired output of a network is a sequence of discrete symbols having the
same length as the input and monotonically aligned with the input, we can apply
a multi-layer perceptron over each state of the network. In this case, the labels as-
signed to every state are conditionally independent given the network states. The
loss function used to train the network is a sum of cross entropy over the network
output distributions.

In NLP, many tasks can be formulated as sequence labeling. Besides the more
theoretically motivated tasks such as part-of-speech tagging or semantic role labeling,
we can mention information extraction where the goal is marking entities in a text or
named entity recognition.

The labels assigned to the input symbols often have their own, usually simple
grammar rules. When we label the beginnings and ends of sequences, we need to
make sure the end symbol never comes before the start symbol. In these cases, condi-
tional random fields can be applied over the state sequence (Lafferty et al., 2001; Do
and Artieres, 2010).

Autoregressive Decoding

In some tasks such as MT or abstractive text summarization, the output cannot be
monotonically aligned with the input and the number of output symbols differs from
the number of the input symbols. In such cases, we need a mechanism that is able
to generate output symbols in a general while loop and is conditioned on the entire
input. Such a while loop is sometimes called autoregressive decoder because the com-
putation in every time step depends on the previous state of the loop and previous
outputs and generates the output symbols left-to-right.

Historically, autoregressive decoding has developed from discriminative language
modeling using RNNs. We will thus first explain this principle on the RNN LMs and
later generalize the principle for CNNs and SANs.
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LMs are probabilistic models estimating the probability of sentences in a language
represented by a corpus that the model is trained on. The probability is factorized over
the words or smaller units. Within the statistical paradigm, word probabilities were
usually estimated based on a finite window of previous words using n-gram statistics
computed on a training corpus (Manning and Schütze, 1999). When approached as a
sequence labeling problem, it can be done using an RNN which can, in theory, handle
unlimited history (Mikolov et al., 2010; Sundermeyer et al., 2012). In both cases, the
probability of a sentence is estimated using the chain rule:

P(w1, . . . , wn) = P(w1|<s>) · · · · · P(wn|wn−1, . . . , w1, <s>) (1.26)
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Figure 1.16: Illustration of LM formulated as a sequence labeling problem.

The inputs to the neural LM are word embeddings. In every time step, the model
estimates a probability distribution over the vocabulary. Formally we let

P(wn+1|wn, . . . , w1, <s>), sn = RNN(wn, sn−1) (1.27)

where sn is the state of the model in the n-th step. The distribution expresses how
likely the following word wn+1 is to appear in a sentence with a prefix of words
w1, . . . , wn. The model is optimized towards cross entropy as a standard sequence la-
beling task. An RNN LM formulated as sequence labeling is illustrated in Figure 1.16.

Autoregressive decoding is based on sampling from such a model. In every time
step, we can sample from a distribution over the output words. In the next step, the
sampled word is provided as the model input as if it were a word in a sentence that

31



1 DEEP LEARNING

..

embed

.RNN.

h0

.

softmax

.

P(w1|<s>)

.

sample

.

embed

. RNN.

h1

.

softmax

.

P(w2| . . .)

.

sample

.

embed

. RNN.

h2

.

softmax

.

P(w3| . . .)

.

sample

.

embed

. RNN.

h3

.

softmax

.

P(w4| . . .)

.

sample

.

<s>

. · · ·

Figure 1.17: RNN LM used as an autoregressive decoder.

the LM is supposed to score. The words are sampled from the model in a while loop
until a special end symbol is generated. The sampling is illustrated in Figure 1.17.

The missing part that distinguishes an LM from an autoregressive decoder is con-
ditioning the LM on other inputs than the previously decoded symbols. In case of MT,
it would be the source sentence. In the simplest case, this can be done by explicitly
assigning the initial state of the RNN with a result of a previous computation.

In the early work, these were max-pooled CNN states (Kalchbrenner and Blunsom,
2013), however, more promising results are achieved with LSTM networks (Sutskever
et al., 2014). A disadvantage of this approach is that the input needs to be represented
as a fixed-sized vector (max-pooled CNN states, the final state of an RNN) regardless
of what the input length is. The performance of such models quickly decreases with
the size of the input (Sutskever et al., 2014).

Bahdanau et al. (2014) introduced a technique overcoming this drawback of au-
toregressive decoding, called attention mechanism. In every decoding step, the model
computes a distribution over the variable-length input representation and uses it to
compute the context vector, a weighted average over the input representation. Having
been originally introduced in the context of Neural Turing Machines (Graves et al.,
2014), the distribution is usually interpreted as addressing the input representation
analogically to addressing memory cells in random-access memory.

For input sequence of length Tx, encoder states H = (h1, . . . ,hTx
) ∈ RTx×dn of

dimension dh, and decoder state si of dimension ds, the attention model with inter-
mediate dimension da defines the attention energies eij ∈ R, attention distribution
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αi ∈ RTx , and the context vector ci ∈ Rdh in the i-th decoder step as:

eij = v⊤
a tanh(Wasi + Uahj + ba) + be, (1.28)

αij =
exp(eij)∑Tx

k=1 exp(eik)
, (1.29)

ci =
Tx∑
j=1

αijhj. (1.30)

The trainable parameters Wa ∈ Rds×da and Ua ∈ Rdh×da are projection matrices
that transform the decoder and encoder states si and hj into a common vector space
and va ∈ Rda is a weight vector over the dimensions of this space, ba ∈ Rda and be ∈
R are biases for the respective projections. The context vector ci is then concatenated
with the decoder state si and used for classification of the following output symbol.

Together with techniques for data preprocessing (Sennrich et al., 2016b,c), the at-
tention model was the crucial innovation that helped to improve neural MT quality
over the statistical MT and set a new state of the art in the field of MT.

SANs can be used similarly to CNNs. In the Transformer model (Vaswani et al.,
2017), a stack of self-attentive and feed-forward sub-layers is applied on the already
decoded sequence and the result is used to produce the next output symbol. Similar to
the CNN decoder, the self-attentive layers are interleaved with cross-attentive layers
attending the encoder states.

At training time, the computation can be parallelized as in the case of the CNN de-
coder. In the self-attentive layers, we need to limit the attention distribution only to
the words that have already been decoded. This is in practice implemented by multi-
plying the matrix of attention energies with a triangle matrix, as shown in Figure 1.18.

Self-attentive sequence-to-sequence models currently provide the best results in
sequence generation tasks (Bojar et al., 2018). Nevertheless, they suffer from the low
decoding speed and quadratic memory demands, limiting the practical application
to sequences of at most hundreds of tokens.

So far, we have only discussed how the output sequence probability is modeled us-
ing the autoregressive decoder. Finding the sequence that receives the highest proba-
bility by the decoder is, however, a difficult problem. The number of possible output
sequences grows exponentially with its length, which makes an exhaustive search
intractable.

The most straightforward heuristics is greedily choosing the most probable output
symbol in every step. Another commonly used heuristic is the beam search algorithm
that approximates the exhaustive search over all possible target strings while keeping
only a few best-scoring hypotheses in every time step (Sutskever et al., 2014). The
algorithm trades off the efficiency of greedy decoding (when the output symbol with
maximum probability is selected at each time step) while maintaining a relatively
wide search space.
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Figure 1.18: Masking while computing energy values in the self-attention layer in the
Transformer decoder. Masking prevents the self-attention to attend to symbols to the
right from the previously decoded symbol.

The algorithm keeps track of k hypotheses (beam). A hypothesis is either a partially
generated sequence (unfinished), or a sequence that ends with a special end symbol
(finished). In each step, all hypotheses are expanded with all possible tokens from the
vocabulary. The expanded hypotheses are scored and k best of them are kept for the
next step.

1.4 Conclusion

After major success in CV in 2012 and 2013, deep learning attracted the attention
of the NLP research community. Soon after that, deep learning methods reached
state-of-the-art results in most NLP tasks and became the first choice method. The
standard deep learning architecture design consists of discrete symbol embedding,
contextualizing the embeddings using an encoder, and using the representations to
generate discrete output.

In practice, the embeddings or the encoder are pre-trained on large corpora and
only the output layers are trained. This is discussed in more detail in the next chapter,
together with NLP modeling breakthroughs from 2013 to 2020.
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Notable Models

In the previous chapter, we described what are the main building blocks of deep neu-
ral networks used for Natural Language Processing (NLP). In this chapter, we will
discuss the deep learning methods on examples of several notable models from re-
cent history. Rather than trying to exhaustively enumerate neural NLP models, we
focus on a few models that brought important innovations into the field which we
broadly discuss in the rest of the book.

2.1 Word2Vec and the Others

When solving NLP tasks, we need to convert a discrete input into continuous values
the neural networks can work with. This is done by learning a vector for each discrete
input symbol and storing the learned vectors in a lookup table. These vectors are
called word embeddings and were discussed in Section 1.3.1.

The pioneering work of Bengio et al. (2003) and Collobert et al. (2008) noticed that
word embeddings learned during language modeling has interesting spatial proper-
ties (similar words get similar representations in terms of Euclidean and cosine dis-
tance) and most importantly, they can be used as very informative input features for
machine learning models.

Pre-trained word embeddings reached mainstream popularity with the Word2Vec
model (Mikolov et al., 2013c). Unlike its predecessors, the model is very simple. It was
also published together with an efficient implementation which caused that the model
can be easily trained on a large amount of data when using a very large vocabulary.

Word2Vec can be viewed as a simple Language Model (LM), however, when train-
ing the model, we are not interested in the LM performance at all. Language modeling
only provides a training signal to train the embeddings. Word2Vec can be trained in
two setups: Continuous Bag of Words (CBOW) and Skip-gram. The difference be-
tween these two models is how they treat the context (see Figure 2.1).

The CBOW model first averages the embeddings of words in a small context win-
dow (typically, windows of size 3–7 are used) and use it to predict what the word in
the middle is using a linear classifier. The Skip-gram model is conditioned the other
way round: given an embedding of a word, a linear classifier predicts what words are
in the window of surrounding words. These two models have a similar performance
in downstream tasks, however, the Skip-gram model demonstrates further interesting
properties that are discussed in greater detail in Chapter 4.
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Figure 2.1: Scheme of the CBOW and Skip-gram training.

Pre-trained word embeddings from Word2Vec found use in many machine-learn-
ing approaches to NLP which triggered further research in pre-trained word embed-
dings.

In the GloVe model, Pennington et al. (2014a) managed to include document-level
information in the embeddings. In FastText models, Bojanowski et al. (2017), on the
other hand, managed to include subword information in the word embeddings. Un-
like Word2Vec and GloVe, that store a single embedding for each word, FastText com-
putes the embeddings as an average of embeddings of character n-grams the word
consists of. FastText currently poses the state of the art in word embeddings pre-
training.

2.2 Attention and Machine Translation with Recurrent Neural Networks

In the second half of 2014, Bahdanau et al. (2014) introduced a Recurrent Neural
Network (RNN)-based model that meant a paradigm change in Machine Translation
(MT). The model introduced the attention mechanism within the autoregressive de-
coding framework that we discussed in Section 1.3.3. It was the first neural model that
attacked the translation quality of by that time state-of-the-art phrase-based models.

MT quality is annually evaluated in competitions at Workshop of Machine Trans-
lation (WMT). Research teams from both academia and industry are invited to use
their MT systems to translate test sets provided by the organizers. The translations
are then rated by bilingual speakers. The findings of the competition provide a nice
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tokenized Strawberry ice cream is the best .
32k vocabulary Stra@@ w@@ berry ice cream is the best .
16k vocabulary Stra@@ w@@ ber@@ ry ice cre@@ am is the best .

Table 2.1: Examples of subword segmentation with byte-pair-encoding (Sennrich
et al., 2016c). Subwords were estimated on the WMT14 training set for English-
German translation.

overview of what the state of the art in MT is. In the WMT 2015 competition (Bo-
jar et al., 2015), the phrase-based statistical MT systems still outperformed the neural
ones (Jean et al., 2015).

Two major innovations in 2016 have allowed the clear dominance of neural models
in machine translation since then. Not only did neural systems from the University
of Edinburgh (Sennrich et al., 2016a) won the WMT competition (Bojar et al., 2016a),
but also Google announced the deployment of neural MT system in Google Translate
(Wu et al., 2016).

The first innovation was using sub-word segmentation (Sennrich et al., 2016c) that
to a large extent eliminates the problem of having a limited vocabulary. Instead of
using word-like tokens, the sentences are segmented using statistical heuristics that
keep frequent words together and split the less frequent ones into smaller units. This
allows the model learning to generalize towards morphology, but most importantly
helps with translating named entities which are often partially translated and partially
transliterated. Examples of subword segmentation are provided in Table 2.1.

The second crucial innovation was synthetic data generation using back-translation
(Sennrich et al., 2016b). In the previous MT paradigm, statistical MT, the translation
process was decomposed into two main components: a translation model for model
translation adequacy and a target language model for modeling target sentence flu-
ency. One of the advantages of this decomposition was that the language model can
leverage monolingual data in the target language. When using back-translation, the
monolingual data in the target language are machine-translated in the source lan-
guage, resulting in parallel data with synthetic source side and authentic target side.
The synthetic data are combined with the authentic parallel data and used to train
the next iteration of the models.

2.3 Transformer for Machine Translation

In a paper with the catchy name Attention is All You Need, Vaswani et al. (2017) intro-
duced a new architecture that significantly pushed the state of the art in translation
quality. The architecture is called Transformer and it is a fully self-attentive architec-
ture (as we described in Section 1.3.2) that uses an autoregressive decoder.
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Transformer-based models show better modeling capabilities, but still heavily de-
pend on the innovations invented for RNN-based models, i.e., sub-word text segmen-
tation and back-translation. Models based on the Transformer were the best-scoring
models in all tasks in recent WMT competitions (Bojar et al., 2018; Barrault et al., 2019).

From today’s view, the invention of the Transformer architecture was the crucial
innovation that found use in almost all areas of NLP. Because it can be heavily par-
allelized, it allows non-autoregressive text generation (Gu et al., 2018; Libovický and
Helcl, 2018). Moreover, it is the basis of the current pre-trained representation models
(Devlin et al., 2019; Liu et al., 2019b) that significantly pushed the state of the art in
many NLP tasks and that we also discuss later in the chapter.

In 2017, research teams competing in the annual WMT competition did not man-
age to take advantage of the recent invention, the best-performing systems in the com-
petition were based on RNNs (Sennrich et al., 2017; Bojar et al., 2017). However, in
2018 and 2019, all the best-performing systems were already based on Transformers
(Junczys-Dowmunt, 2018; Bojar et al., 2018; Barrault et al., 2019).

2.4 CoVe: Contextual Embeddings are Born

The first experiments with model probing (discussed in detail in Chapter 6) discov-
ered that hidden states of the sequence processing network carry a lot of information
about the input sentence. This was especially pronounced in the case of the MT en-
coder that needs to capture the source meaning in such a way that the decoder can
generate a full sentence in the target language (Hill et al., 2017; Adi et al., 2017).

McCann et al. (2017) leveraged this observation and used a trained encoder from
an MT model for transfer learning. They were also the first ones to explicitly intro-
duce the concept of contextual word vectors. In their approach, called CoVe Context
Vectors (CoVe), they train a Neural Machine Translation (NMT) system with a 2-layer
bidirectional Long Short-Term Memory (LSTM) encoder with Global Vectors for Word
Representation (GloVe) word vectors on input, and then explicitly denote the result-
ing hidden states as context vectors:

CoVe(w) = MT-LSTM(GloVe(w)) (2.1)

where w is the input word, GloVe is its pre-trained embedding vector, and MT-LSTM
is the trained MT encoder state corresponding to the word; the equation is reproduced
from (McCann et al., 2017).

Since CoVe, the term contextual word embeddings is often used to refer to hidden
states of a model when these are used outside of the model as vector word repre-
sentations. In this book, we often do not strictly differentiate between hidden states
and contextual word embeddings, as these are just different names for principally the
same thing; the terminology mostly reflects how the representations are used, not how
they are obtained.
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Unlike standard NMT models that work with a relatively small vocabulary of tens
of thousands of subword units, CoVe works on word level and uses GloVe embed-
dings. These design decisions decrease the performance of the MT itself, on the other
hand, it allows using a large embedding table covering 2.2M word forms which would
otherwise be impossible with an MT trained from random initialization.

CoVe was tested on a wide range of NLP tasks: sentiment analysis (Maas et al.,
2011), question classification (Voorhees and Tice, 1999), entailment classification (Bow-
man et al., 2015), and answer span selection (Rajpurkar et al., 2016) and reached state-
of-the-art in all of them.

2.5 ELMo: Sesame Street Begins

Another pre-trained contextual representation model that attracted the attention of
the NLP community is called Embeddings using Language Models (ELMo). A pre-
print announcing CoVe was published in August 2017 on arXiv, and the first preprint
of a paper announcing ELMo appeared only two months later on OpenReview. ELMo
is a part of the AllenNLP software package (Gardner et al., 2018) which also con-
tributed to the popularity of the model before CoVe found wider use. Also, the paper
introducing ELMo was awarded as the best paper at the NAACL 2018 conference.

Unlike CoVe that uses the encoder from an NMT model, ELMo is pre-trained as
a language model and thus only requires monolingual data for pre-training. This is
a large advantage because parallel data in a sufficient amount are only available for
relatively few languages.

The architecture of ELMo (Peters et al., 2018a) is, in principle, similar to CoVe: it
consists of 2 two-layer unidirectional LSTMs. (It was preceded by a 1-layer variant
called Language-Model-Augmented Sequence Tagger (TagLM) (Peters et al., 2017)
which did not perform so well and did not receive such attention.) Instead of us-
ing static word embeddings, ELMo uses a character-level Convolutional Neural Net-
work (CNN) and a stack of feed-forward layers to obtain word representations that are
passed to the LSTMs, so the model can to some extent considered open-vocabulary.
The scheme of the architecture is shown in Figure 2.2.

ELMo is trained as two LMs: one in the forward and one in the backward di-
rection while sharing the input representation and the output layer. The standard
bidirectional network cannot be used here. In bidirectional RNNs, every output state
contains information about the entire input sequence. The sequence-labeling com-
ponent of the LM would only learn to copy the input tokens to the output without
any generalization. As a result, 4 LSTM states correspond to each input word after
running the model.

The model was trained on the 1 billion word benchmark for language modeling
(Chelba et al., 2014). Surprisingly, the forward and backward LM reach approximately
the same perplexity. The evaluation using similar tasks as CoVe and several more
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Figure 2.2: Architecture of ELMo.

tasks such as semantic role labeling and coreference resolution and set up the new
state of the art in all of them.

2.6 BERT: Pre-trained Transformers

One year after ELMo was published, another pre-trained model called Bidirectional
Encoder Representations from Transformers (BERT) appeared. Unlike the previous
general-purpose contextual representation, BERT is based on the Transformer archi-
tecture. The model was developed and published by Google, which as a company
had previously invented Transformers, and used the know-how it already had in this
area. Similar to ELMo, the acronym chosen for the model is the name of a character
from Sesame Street, an American educational children’s television series. Also, the
paper introducing BERT received the same award as ELMo one year later.

It was the third type of a pre-trained representation model in a short time that
significantly pushed state of the art in many NLP tasks. Now, two years later, pre-
trained Transformers are still the major tool used in NLP.
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Already at the time when ELMo was developed, it was well-known for more than
a year that Transformer-based models outperform RNNs in MT. Replacing RNNs by
Transformers might seem like a natural step forward. However, classical LM training
with the Transformer model requires masking future tokens in the self-attentive layers
(see Section 1.3.3 and Figure 1.18 for more details). That would make such a model
very memory-inefficient.

Instead, BERT is trained using the so-called masked language model objective. At
training time, 15% of the input tokens are selected for masking (i.e., either replaced by
a special [MASK] token, replaced by a random word, and kept unchanged). A sequence
labeler applied after the Transformer encoder predicts what were the tokens that were
masked out. The masked LM objective is illustrated in Figure 2.3.

self-attentive sub-layer

[CLS]w1 w2 w3 [SEP]w6w5w4

feedforward sub-layer

w2 w5

embeddings

mask
input words

mask
prediction

output states

N×

Transformer
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Figure 2.3: Illustration of training BERT-like models with masked LM objective.

The original BERT also uses an auxiliary sentence-adjacency training objective. It
is trained using pairs of sentences. The two input sentences are separated using a
special [SEP] token and there is a special [CLS] token at the beginning. A vector cor-
responding to the [CLS] token is then used to predict whether the two sentences fol-
low each other in a coherent text. The vector is thus supposed to be a constant-size
representation of the entire input.

With BERT, it was for the third time in a short time when new state-of-the-art re-
sults on a large variety of tasks were announced. Meanwhile, Wang et al. (2018) intro-
duced GLUE (General Language Understanding Evaluation), a standardized bench-
mark for sentence representation evaluation. It aggregates a collection of NLP tasks
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WordPiece A tiger is a ( big ) cat
SentencePiece A _tiger _is _a _( big ) _cat .

Table 2.2: An example of tokenization when using WordPiece and SentencePiece.

that can be formulated as classification problems. BERT replaced ELMo on top of the
GLUE leaderboard.

Liu et al. (2019b) at Facebook revisited training of BERT and introduced a new
model called RoBERTa. They noticed that BERT was significantly undertrained. They
further noticed that the sentence adjacency objective does hot have a large effect on
transfer learning performance when the model is trained on sufficiently large data.
The original BERT was trained on 3.3 billion English words. Liu et al. (2019b) did not
report the exact number of words only say that they used 160 GB of raw text, which
is approximately 10 times bigger corpus.

One further difference between BERT and RoBERTa is in input tokenization. BERT
uses WordPiece (Wu et al., 2016) tokenization that separates words from punctuation,
whereas RoBERTa uses SentencePiece (Kudo and Richardson, 2018). SentencePiece
keeps spaces as parts of the tokens which makes the tokenization fully reversible.
It makes production deployment easier, on the other hand, the segmentation often
contradicts our linguistic intuition, especially when using punctuation. For instance,
in the example in Table 2.2, the word “big” is a different token when used in brackets
when using SentencePiece.

RoBERTa outperformed BERT in all tasks when having the same number of param-
eters. On the other hand, these results show that sufficient computation resources to
train models that reach state-of-the-art results on a wide range of tasks are only avail-
able to large companies such as Google or Facebook. Nevertheless, it is important to
note the companies publicly released their models and made their code freely avail-
able both for the research community and other enterprises.

The computation demands of training and using a BERT-like model, led to fur-
ther research on computationally cheaper variants of the models. DistillBERT (Sanh
et al., 2020) improves efficiency by introducing a smaller model derived from already
trained BERT using knowledge distillation (Hinton et al., 2015). Better efficiency at
training time can be achieved by a more clever sampling of masked words. In the
standard setup, only the 15% masked words provide training signal to the network.
Clark et al. (2020) address this issue by splitting the model into two parts: a generator
suggesting tokens and a discriminator predicting if those suggestions are part of the
original sentence.

Originally, Google released BERT for English and Chinese. Currently, BERT-like
models are available in many languages among other French (Martin et al., 2019; Le
et al., 2020), Italian (Polignano et al., 2019), Russian (Kuratov and Arkhipov, 2019),
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Spanish (Cañete et al., 2020), Finish (Yang et al., 2020) or Turkish (Schweter, 2020),
mostly developed either by local academic institutions or rarely by local enterprises.

In addition to that, the original release of BERT included a multilingual version of
BERT that was trained for 104 languages. During training, the model is not informed
about the language identity and only works with plain text. Facebook later applied
the methodology used for RoBERTa to a multilingual model and developed XLM-R
(Conneau et al., 2020) covering 100 languages and significantly outperforming mul-
tilingual BERT. The multilingual model is used mostly for zero-shot learning with
languages for which we do not have training data (Pires et al., 2019) or when training
a single model for multiple languages using the shared representation (Kondratyuk
and Straka, 2019).

2.7 GPT and GPT-2

At around the same as BERT, Radford et al. (2019a) from Open AI, a US-based non-
profit private research laboratory published a pre-trained Transformer-based language
model which they called Generative Pre-Trained Transformer (GPT). Similar to BERT
and ELMo, they used the hidden state of the model as input features in a wide range
of downstream tasks, and for a time before BERT was published they set a new state
of the art in few NLP tasks.

The following version of the model from February 2019, GPT-2 (Radford et al.,
2019b) attracted much more attention. It was trained on 40 GB of web text, approx-
imately 5 times more than BERT. The biggest version of the model has around 1.5
billion parameters, which is 18 times more than the standard version of BERT and 5
times more than BERT Large.

GPT-2 showed an excellent performance in a so-called zero-shot setup in tasks like
question answering or text summarization. In the zero-shot setup, the model is not
finetuned on task-specific training data but used in the generative setup. For question
answering it means: the model is given the question on the input followed with a
natural language command that an answer should follow (typically something like
“Answer:”) and we let the model continue in the same way as when we generate a
target sentence in machine translation models. In most of the tasks, the performance
is significantly below the state of the art, however, the zero-shot performance was still
a large surprise for the community.

The authors of the model were reluctant to publish the model because of poten-
tial misuse of the model (Solaiman et al., 2019), e.g., for better automation of fraudu-
lent email management, generating abusive content on social networks, or fake news.
Although it might be difficult for humans to distinguish a genuine and machine-
generated text, it can be relatively easily automatically detected (Gehrmann et al.,
2019). Also because of that, the authors decided that the benefits for the research
community of having access to the model outweigh potential risks and released the
model in November 2019.
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2.8 Conclusion

In this chapter, we have described several models that from today’s perspective pose
milestones for developing models for NLP. With the exception of MT, which is an im-
portant task itself, all the other models only provide vector representation of language
input that is later used in particular NLP tasks. The pre-trained word embeddings
combined with light-weight recurrent architectures are still an important choice in
practical applications under limited resource conditions and when model speed is an
issue. However, nowadays, the pre-trained Transformers reach the state of the art in
almost all NLP tasks.
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Interpretation of Neural Networks

Neural Networks (NNs) are state-of-the-art models in many Machine Learning (ML)
tasks. These NNs are usually trained end-to-end and treated as a black box1 after train-
ing. With rising capabilities and deployment of these models, the demand grows in
the last few years for understanding the inner workings, or interpretation, of these
models. Interpretability may be important for trusting the model in a real-world set-
ting, general human curiosity, detecting bias in the models, or increasing social ac-
ceptance of modern technologies (Molnar, 2020).

Interpretation as a source of trust is most important when ML models’ potential
errors have serious consequences, such as in medical applications or self-driving cars.
In Natural Language Processing (NLP), applications such as machine translation may
benefit from this approach to interpretation. Bias detection is vital in applications
such as automatic CV (curriculum vitae) analysis.

Human curiosity is also a strong motivation for posing questions concerning which
linguistic concepts manifest in NNs and if NNs approach language differently from
humans.

Just as there is not only a single reason to be interested in interpretation, there is
no single definition of the concept of interpretation itself. There is no mathemati-
cal definition of interpretation (Molnar, 2020). Lipton (2018) notes that “the task of
interpretation appears underspecified,” and the “concept of interpretability appears si-
multaneously important and slippery”. Miller (2019) defines interpretability as “the
degree to which a human can understand the cause of a decision,” which leaves us
with a similarly vague notion of understanding.

One way to avoid this issue in the context of a specific research question is to state
in the beginning what does the presented view of interpretation entail (see Montavon
et al. (2018) for an example2 of this practice). However, this approach is rarely used
in research papers, and it will not help us with a general overview. The use of the

1 “A Black Box Model is a system that does not reveal its internal mechanisms. In machine learning, ”black
box” describes models that cannot be understood by looking at their parameters (e.g., a neural network).”
(Molnar, 2020, Section 1.3)

2 They proceed by giving a sequence of definitions that are progressively more specific and delimit the
range of methods that they are concerned with: “An interpretation is the mapping of an abstract concept
(e.g., a predicted class) into a domain that the human can make sense of.”, “An explanation is the collection
of features of the interpretable domain, that have contributed for a given example to produce a decision
(e.g., classification or regression).” (Montavon et al., 2018)
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concept of interpretation of NNs varies significantly in the literature and is rarely
made explicit.

Since we cannot produce a unified concept, we may at least try to sort the var-
ious ways in which researchers use the term. Lipton (2018) distinguishes between
two main groups of properties of interpretable models: transparency and post-hoc in-
terpretability.

Transparency consists of understanding the mechanism by which the model works.
The understanding is achieved by selecting a model architecture and a training algo-
rithm that is sufficiently simple (or decomposable) to be understandable. Restricting
the complexity of the machine learning model to achieve interpretability is also called
intrinsic interpretability (Molnar, 2020). Linear regression, logistic regression, and the
decision tree are often considered interpretable (Molnar, 2020). However, as Lipton
(2018) points out, “neither linear models, rule-based systems, nor decision trees are
intrinsically interpretable. Sufficiently high-dimensional models, unwieldy rule lists,
and deep decision trees could all be considered less transparent than comparatively
compact neural networks.” Building transparent ML models is also sometimes called
explainable Artificial Intelligence (AI). Due to the complexity of NLP tasks, models that
are simple enough to be interpretable in this sense cannot produce good results and
therefore are rarely used.

Post-hoc (or extrinsic) interpretability is a way of extracting information from mod-
els that are already trained. The “advantage of this concept of interpretability is that
we can interpret opaque models after-the-fact, without sacrificing predictive perfor-
mance” (Lipton, 2018).

With the current deep NNs used in NLP, we can only talk about the extrinsic in-
terpretability, which is also what we are interested in the rest of the book. Rather
than developing intrinsically interpretable algorithms, we present empirical post-hoc
interpretation of state-of-the-art NLP models in the last five years.

We can divide the methods of post-hoc interpretability into two categories, struc-
tural and behavioral analysis; we can also distinguish visualization as a third separate
method.

Structural analysis, with which we deal in this book, analyzes and interprets the
internal parameters of trained models, such as emergent word representations (em-
beddings) or attentions. In linguistical structural interpretation, we try to find cor-
respondences of the internal representations to existing linguistic abstractions, such
as part of speech labels or syntactic structures; this may involve (and typically in-
volves) searching for linguistic abstractions which the model was not explicitly trained
to learn (e.g., searching for morphological features in a machine translation model).
Structural analysis can be performed both in a supervised way (probing) as well as in
unsupervised ways. We describe these two approaches in this section.

Behavioral analysis observes the behavior of the trained model on the task for
which it was trained, typically using specially constructed inputs to investigate the
behavior of the model in specific situations to see what the model can or cannot do.
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Behavioral analysis treats the model as a black box, not directly analyzing its learned
parameters. We do not deal with behavioral analysis in this book; please refer, e.g.,
to Section 4 of (Belinkov and Glass, 2019) for an overview.

Visualization methods are usually qualitative, and they can be used to present a
large amount of information.

Further information can also be found in the overview of methods for analyzing
deep learning models for NLP (Belinkov and Glass, 2019).

3.1 Supervised Methods: Probing

According to Belinkov and Glass (2019), the most common approach for examining
linguistic properties in neural network components is using a classifier to predict
these properties from activations of the neural network. We refer to this approach as
probing. Probing models are also sometimes called auxiliary or diagnostic classifiers
Liu et al. (2019a). At first, the term probing was used in general to refer to any post-
hoc interpretations of neural networks. However, gradually the term shifted and is
now almost exclusively used for training supervised classifiers (see, e.g., Hewitt and
Manning (2019)), which is how we use the term in this book.

Probing requires data annotated for the studied property. This means that with
probing, we can only reveal the kind of information that we have previously decided
to look for in the representations and for which we have an annotated dataset.

This introduces a systemic bias into the research. It is easier to probe for proper-
ties that are already described in formal linguistic frameworks with large annotated
datasets. The results that find these properties in the representations then retroac-
tively affirm the correctness of the conceptualization and design decisions made for
the annotation. There have been recent efforts for probing to standardize test data
(Gül Şahin et al., 2019).

Peters et al. (2018a) use a linear classifier to probe for Part of Speech (PoS) in Em-
beddings using Language Models (ELMo) and CoVe Context Vectors (CoVe), assert-
ing that “[a]s the linear classifier adds only a small amount of model capacity, this is a
direct test of the [contextual] representation”. We (Rosa et al., 2020) show that such an
assertion may be problematic without careful evaluation of the memorization effect,
which can occur even with a linear classifier, but in the setting used by authors, the
risk of memorization is not large.

Hewitt and Liang (2019) measured probe’s selectivity, i.e., the difference of accu-
racy for linguistic and control tasks. For instance, one linguistic task was PoS tagging,
and the corresponding control task was retrieving randomly assigned tags to words.

3.2 Unsupervised Methods: Clustering and Component Analysis

Unsupervised methods go in the other direction than supervised methods. Super-
vised methods start from the abstraction that we want to find and try to train a classi-
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fier to extract it from the representation. With unsupervised methods, we first analyze
the features that emerge in the representations and only then do we try to map them
to existing linguistic abstractions. A prototypical example of an unsupervised struc-
tural analysis method is clustering. We first cluster the representations, then observe
the clusters and search for an existing set of labels that can be assigned to them.

Unsupervised methods reduce the bias inherent in the choice of the information
to classify in probing. On the other hand, the results are usually harder to quantify.

We can illustrate this with an example. In (Musil, 2019), we show that it is possi-
ble to train a probing classifier that labels PoS based on the Czech word embeddings
from a Neural Machine Translation (NMT) encoder. However, this merely shows that
it may be possible to divide the high dimensional space by criteria that are mostly ar-
bitrary but do not by themselves prove that this division is important for the NMT
system. The unsupervised approach shows that in the first few dimensions of Prin-
cipal Component Analysis (PCA), the embeddings form clusters that correspond to
PoS, suggesting that PoS is indeed important for the encoder. However, probing en-
abled us to easily compare embeddings from different sources in a quantitative way,
by comparing the accuracy of the probing classifier. That is not possible with the
unsupervised approach.

There is a number of unsupervised approaches that can be used to analyze various
components of the neural models, either analyzing the models directly or after apply-
ing various transformations. We review here two groups of transformation methods:
clustering and component analysis.

Clustering is a method of grouping datapoints together based on their similarity.
The resulting groups (clusters) can then be assigned with labels. A shortcoming of
clustering is that it is “hard” by default, i.e., each data point belongs to exactly one
cluster. This problem can be partially alleviated by hierarchical clustering, which
provides more fine-grained information about similarities of the clusters and thus
indirectly about the similarity of the data points in different clusters.

Component Analysis Component analysis is a process of transforming a multidi-
mensional space (e.g., word embeddings) with the goal of obtaining interpretable fea-
tures as the components of the transformed space. We describe two methods in detail,
PCA in Section 4.6 and Independent Component Analysis (ICA) in Section 4.7.

3.3 Network Layers and Linguistic Units

In analyzing and interpreting internal NN representations of language input, we of-
ten take the representations and investigate how they correspond to some existing
linguistic abstractions. For this, we obviously need to be able to map the representa-
tions to individual language units, such as words and sentences.
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As most of the models we deal with in this book take a single sentence as their
input, it is relatively straightforward to map their internal representations to the sen-
tences.3

However, for analyzing words, we are facing two crucial problems. One is based
on the fact that in most NN models used in NLP, only the input-layer embeddings
directly correspond to words, while the hidden states4 in the subsequent process-
ing layer cannot be easily mapped directly to words; one hidden state might encode
various kinds of information about various words. Moreover, current NLP models
typically do not operate on words but rather on subwords, making the mapping of
the representations to words even harder.

In this section, we review the problems and discuss available ways of dealing with
them.

3.3.1 Words versus States

NLP models employ various mechanisms of passing information between individual
layers of the model. However, be it Convolutional Neural Networks (CNNs), Recur-
rent Neural Networks (RNNs) or Self-Attentive Networks (SANs), what they all have
in common is that the mechanism enables information about individual input words
to be mixed, strengthened, weakened, shifted forward and backward, etc. In the ini-
tial layer, the word representations (static embeddings) are context-independent, and
thus the representation at a given position corresponds to and only to the input word
at the same position (i.e., the ith embedding corresponds to the ith input word). In
subsequent layers, however, the representations (hidden states) at any position may,
in theory, correspond to any and all input words.5 It may thus be that a given ith
state corresponds mostly to the ith word, but it may also be that it mostly represents
the i+ 1th word, it may combine under various weights some information about the
i − 1th word with some other information about the ith word, etc.6 Most NLP mod-
els are not explicitly forced during training to keep the correspondence of the input
words and hidden states at the same positions.7 On a related note, it has been shown
that the neural network models are apt at storing information useful for them at any

3 However, we do not largely deal with analyzing sentence-level representations in this book.
4 As explained in Section 2.4, in our text, we often do not strictly differentiate between hidden states and

contextual word embeddings.
5 The architecture may limit this to some extent, e.g., by using residual connections that explicitly pass

through the state from the previous layer, or CNNs which have a finite kernel size.
6 Technically, as weights within a neural model are rarely exactly zero, a given state typically contains some

information about all of the input words to some extent. However, the distributions of the weights are
often quite peaked rather than flat, which means that a given hidden state is typically mostly determined
by only a few aspects of a few input words.

7 Residual connections may partially encourage this correspondence. Some models are also forced to rep-
resent the input words by the output states at the corresponding positions, which may encourage them
(but not force them) to keep this correspondence even in internal hidden states.
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available place, especially if storing the information at the default place is disabled,
as we will discuss later in Section 5.3.

However, multiple studies found that typically, the hidden states tend to be cen-
tered on the input words, i.e., that the i-th hidden state typically mostly contains in-
formation about the i-th input word.

Already the work of Bahdanau et al. (2014) states that “Each (hidden state) hi con-
tains information about the whole input sequence with a strong focus on the parts
surrounding the i-th word of the input sequence.”, and “Due to the tendency of RNNs
to better represent recent inputs, the (hidden state) hj will be focused on the words
around xj.” However, it is not clear from the work whether the authors have some
solid arguments for these claims or whether these are rather intuitive expectations.

Some indirect evidence is provided by Koehn and Knowles (2017), who find that
in an attention-based NMT system, there is typically a 75% match between the source
word most attended to while producing a given target word, and the source word
aligned to the target word by standard word-aligner. Supposing that the information
about the aligned source word is the most important, we can deduce that the corre-
sponding hidden state mostly contains information about that word. However, the
authors also found that for one of their examined setups, the attention is typically off
by one, mostly attending to the word following the aligned word, which may either be
caused by the decoder operating with the information about the word to translate in
the next step, and/or by the hidden state representations to be shifted by one with
respect to the input words (see Section 5.1).

Ethayarajh (2019) provides some further evidence, showing that for ELMo, Bidi-
rectional Encoder Representations from Transformers (BERT) and Generative Pre-
Trained Transformer (GPT) models, the cosine self-similarity of contextual represen-
tations of a word (the similarity of contextual representations of occurrences of the
same word in different contexts) is practically always greater than the cosine similar-
ity to contextual embeddings of other words.8 The context-specific information within
the contextual embedding can become quite strong, but the signal corresponding to
the identity of the word at the given position seems to stay stronger than the signals
corresponding to any other word.

Thus, even though this is not perfectly accurate, it is common to refer to the i-th
hidden state as a state corresponding to the i-th input word, implying that the i-th hid-
den state somehow represents the i-th input word, in the context of the input sentence
(as well as in the context of the task which the NN system is trained to perform).

8 The self-similarity is lowest for stopwords (such as common determiners, prepositions, and conjunctions),
which are rather semantically vacuous and mostly fulfill a syntactic function within their immediate con-
text.
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3.3.2 Words versus Subwords

As discussed in Sections 2.5 and 2.6, current NLP models typically do not operate
directly on words, but their input is first tokenized into subwords, which has many
important benefits. Therefore, in the network, there are usually no explicit repre-
sentations of words, as all embeddings and hidden states are only computed for the
subwords.

While subwords are a very useful concept for most NLP end tasks, they pose a
problem for linguistic interpretations of the trained models, as many linguistic for-
malisms, such as PoS or syntax, are based on words. A notable exception is the no-
tion of morphs and morphemes, which correspond to parts of words and are thus
similar to NN subwords in principle; however, multiple studies have found that mor-
phemes and subwords seem to be very different and cannot be easily mapped to each
other (Sennrich et al., 2016c; Banerjee and Bhattacharyya, 2018; Bostrom and Durrett,
2020). Therefore, the base unit on which most NN models operate, a subword, is hard
to map to any linguistic abstraction, which poses important challenges for linguistic
interpretation of such models.

There are three common workarounds to this problem.

From Words to Subwords

The first option is modifying the linguistic abstraction to apply to subwords. For ex-
ample, for PoS tagging, we might assign the same PoS tag to all subwords (so, e.g.,
“hell ic opter” would be labelled “NOUN NOUN NOUN”). Alternatively we might
label the first subword with the tag of the original word and the subsequent sub-
words with a special continuation tag (so “hell ic opter” would be labeled for ex-
ample “NOUN –NOUN –NOUN” or “NOUN – –”). This is especially natural when
dealing with linguistic abstractions that span multiple words, such as named entities
or syntactic phrases, where it makes little difference whether the span is composed
of several words or a slightly larger number of subwords (Mareček and Rosa, 2019).
However, for strictly word-based concepts, such as PoS tags, morphological labels, or
dependency syntax, this approach does not seem adequate, as it is not straightforward
to see which linguistic feature should be captured in which subword or subwords of
the original word and thus how the individual subwords should be labeled. This ap-
proach thus may be useful for training NLP models to solve such tasks, but not for
linguistically interpreting such models.

From Subwords to Words

A second option is to reconstruct word representations from the subword represen-
tations ex post. This is usually done by taking the average of the subword representa-
tions (i.e., mean-pooling), although other options are also possible, such as taking the
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sum of the representations,9 max-pooling the representations, or training and apply-
ing a small NN to perform a non-linear combination of the subword representations
(Libovický et al., 2020). This makes it then straightforward to analyze the word rep-
resentations for word-level linguistic features. However, it should be kept in mind
that in this case, we are not directly analyzing the representations in the network, but
only their transformation, which we performed ourselves, which makes the analysis
partially indirect, and any findings obtained via this method should be carefully as-
sessed on the possible influences of the used word embedding reconstruction onto
the analysis (for example, if we find that PoS is seemingly more strongly encoded
in representations of short words than long words, it is quite possible that in fact, it
is strongly encoded only in some subwords of the long words and therefore seems
weaker in the average of the subword representations).

Fully Word-Based Approach

The third workaround is to train the model for analysis in a word-based manner,
without using the subword tokenization (Rosa et al., 2020). While this gets rid of
the problem completely, making the interpretation straightforward, this also means
that we are, in fact, analyzing different models than the ones that are actually used in
practice (typically, word-based models are significantly weaker than subword-based
models). If our goal is to understand a particular model or set of models used in prac-
tice, it is quite unclear how an analysis of a slightly different model relates to this, as
the difference of using words instead of subwords may have a large impact on how
the models work internally. These kinds of analyses are thus highly trustworthy in
interpreting the analyzed word-based models – arguably more trustworthy than any
similar analyses of the subword-based models, as they operate directly on words in all
steps without the need of the somewhat ad hoc word-to-subword or subword-to-word
mappings which may introduce some noise into the analyses. However, we should
be very wary about any interpretative claims about the subword-based models based
on analyses of word-based models, as there is no clear reason why the findings made
for one class of the models should also hold for the other class.

3.4 Conclusion

Although the concept of interpretation is somewhat vague and lacking a proper the-
ory, we can distinguish a few important directions in the expanding field of interpret-
ing neural networks in NLP. Training probing classifiers, transforming and visualiz-
ing the variable space, and constructing challenge sets for behavioral analysis seem

9 Summation and mean-pooling are very similar operations and can often be used interchangeably. How-
ever, since words are split into variable-length sequences of subwords, using summation instead of mean-
pooling leads to the resulting vectors varying in their norm, which is irrelevant if they are only compared
using, e.g., cosine distance, but may be important in other usages.
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to be the most important areas of research. In further chapters, we deal with the first
two.

However, any interpretation approach is potentially problematic. We discussed
some of the problems in this chapter, including the threat of mistaking probing clas-
sifier memorization for model abstraction (especially with strong probing classifiers)
or the difficulties involved in mapping network states to input words.
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4

Emblems of the Embeddings

In this chapter, we discuss the interpretation of continuous space representations of
words, the so-called word embeddings. As explained in Section 1.3.1, word embeddings
are vectors. Either they can be trained as part of a Neural Network (NN) for a specific
task, or they can be obtained by a method that is intended specifically for generating
word embeddings. We call these embeddings pre-trained.

Because the embeddings are randomly initiated before the training and all the di-
mensions of the vector are connected to the same inputs in the next layer of the net-
work, individual dimensions of word embeddings usually do not have a direct inter-
pretation. Any feature that would be represented in the embeddings corresponds to
a linear combination of dimensions. The embedding vector of a single word does not
have any significance by itself. It is only its relations to the other words (embeddings)
that make the vector meaningful (in this respect, word embeddings are a realization
of the structuralist view of language).

In the following sections we will go through a few examples of interpretation of
word embeddings. We have chosen examples that we find interesting without striving
for a complete survey. The reader may find a broader survey in (Belinkov and Glass,
2019).

In Section 4.1 we look at word analogies in various models for pre-trained word
representations. Sections 4.2–4.4 are concerned with visualizing the embedding space.
In Section 4.5 we mention embeddings of emoticons. In Sections 4.6 and 4.7 we talk
about component analysis. We discuss word derivations in Section 4.8. Mapping of
embedding spaces is discussed in Section 4.9. In Section 4.10, we talk about debi-
asing word representations, as an example of a feedback loop, where interpretation
influences the representation itself.

4.1 Word Analogies

In this section we talk about three different models for pre-trained representations
that show interesting linguistic regularities.

4.1.1 Word2Vec and Semantic Arithmetic

Word embeddings often have properties that do not directly follow from the training
task. The most well-known example was found by Mikolov et al. (2013a,c), who de-
veloped the Word2Vec model (see Section 2.1). The Skip-gram variant of this model
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Figure 4.1: Examples of semantic vector arithmetic according to Mikolov et al. (2013c).

was trained to predict the words that form the context of a given word. Surprisingly,
representations from this model frequently obey the vector arithmetic of meanings
illustrated by Figure 4.1 and by the following equation:

vking − vman + vwoman ≈ vqueen,

meaning that if we start with the word “king”, by subtracting the vector for the word
“man” and adding the vector for the word “woman” we arrive at a vector that is near-
est in the vector space to the one that corresponds to the word “queen”. We can in-
terpret this as the word queen being to woman as king is to man. Amongst the types of
relationships that this model captures, they name country–capital (e.g. Italy–Rome),
adjective–comparative (e.g. cold–colder), city–state (e.g. Dallas–Texas), and person–job
(e.g. Picasso–painter).

The problem of finding word b∗, such that the relation b : b∗ is the same as a :
a∗ for given words a, a∗, and b, is in Natural Language Processing (NLP) called an
analogy task.

Mikolov et al. (2013b) also trained the same model with phrases instead of words,
producing vectors that exhibit additive compositionality. For example:

vGermany + vcapital ≈ vBerlin.

The Word2Vec models show us that meaning can be (at least to some extent) orga-
nized in a geometrically interpretable way.

4.1.2 Glove Word Analogies

The predictive methods of training word embeddings use local context in each train-
ing step, and the resulting representation is a generalization of that. This is in contrast
with the older statistical, count-based methods for creating distributed word repre-
sentations, which are using the global co-occurrence matrix or its decomposition.
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(a) Analogies to man–woman relation.

(b) Company and CEO.
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(c) ZIP codes and cities.

(d) Comparison of adjectives.

Figure 4.2: Word analogies in the Glove embeddings. Reprinted from (Pennington
et al., 2014b).
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Following the success of the predictive methods, Global Vectors for Word Repre-
sentation (GloVe) (Pennington et al., 2014a) combined the two paradigms. The vectors
are learned in such a way that the dot product of two word vectors equals the loga-
rithm of the words’ probability of co-occurrence.

GloVe performs well on word analogy tasks. Similarly to Word2Vec, the vector
space of GloVe shows linear substructures (see Figure 4.2) where similar relations
between the words are represented by a similar direction of vector difference in the
embedding space. The authors explain this by “the fact that the logarithm of a ratio
equals the difference of logarithms, this objective associates (the logarithm of) ratios of
co-occurrence probabilities with vector differences in the word vector space. Because
these ratios can encode some form of meaning, this information gets encoded as vector
differences as well.” (Pennington et al., 2014b)

Another interesting property of the model is that nearest neighbors in the embed-
ding space (by Euclidean distance or cosine similarity) may “reveal rare but relevant
words that lie outside an average human’s vocabulary.” (Pennington et al., 2014b) The
authors give the following example with the closest words to the target word “frog”:
frog, frogs, toad, litoria, leptodactylidae, rana, lizard, and eleutherodactylus.

4.1.3 FastText Subword Correspondence

In morphologically rich languages, each word has many forms that share the same
meaning. The difference in the form expresses various syntactic properties. Assign-
ing a vector to each word-form prevents the representations of the forms of the same
word to share information. Bojanowski et al. (2017) proposed a method of obtaining
vector representations from unsupervised data that makes sharing information across
word-forms possible. The FastText method is based on Skip-gram (see Section 2.1). It
assigns embeddings to character n-grams. Then it treats words as bags of character
n-grams.

Figure 4.3 illustrates that character n-grams with similar meaning have similar
embeddings. It shows that parts of words with similar meaning, e.g., -ness and -ncy
have similar embeddings.

4.2 Positioning Words

In Figure 4.4, we see a method of word embeddings visualization, which aims at il-
lustrating relations between specifically chosen words. In this case, we regard the
embeddings as points in a multidimensional space. For both the horizontal and the
vertical axis in the figure, we selected a pair of words. The pair determines a line in
the embedding space. Other selected words are then mapped onto the axes by geo-
metrically projecting their embedding vectors onto the line defined by the axis words.
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Figure 4.3: Similarity between character n-grams in FastText embeddings. Red in-
dicates positive cosine, blue indicates negative. Reprinted from (Bojanowski et al.,
2017).
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Figure 4.5: Horizontal bands in the Glove word embeddings. Each column represents
one embedding vector. The columns are sorted by the frequency of the words they
represent, with the most frequent on the right. Reprinted from (Pennington et al.,
2014b).
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Glove

FastText

Word2Vec

Figure 4.6: Horizontal bands in Glove, FastText and Word2Vec embeddings. The ver-
tical axis represents embedding dimensions, the horizontal axis is the vocabulary.
Thefore each column of the colormap is a single embedding vector, with similar col-
ors representing similar values. The embeddings were trained on the Czech National
Corpus (version SYN4, Hnátková et al., 2014)
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4.3 Embedding Bands

An interesting way to visualize embeddings is a colormap where the color of each
pixel represents one numeric value, and each column represents an embedding for a
particular word (Pennington et al., 2014b). In Figure 4.5, we see that there are horizon-
tal bands that are more pronounced for more frequent words. The vertical bands are
caused by clusters of similar words with similar frequencies (such as numbers). The
horizontal bands may result from the fact that the cost function of the model contains
a dot product of the embeddings. The vectors are multiplied component-wise in the
dot product, and this has a greater impact than additive interactions. According to
Pennington et al. (2014b), the bands are unlikely to have a linguistic origin, and this
feature is not unique to GloVe. Figure 4.6 shows that other word vector models have
this property as well.

4.4 Visualising Word Embeddings with T-SNE

Word embeddings typically have hundreds of dimensions. There are various ways to
project embeddings from the high-dimensional vector space to two or three dimen-
sions to visualize them. One popular method is t-SNE (Maaten and Hinton, 2008).
It is a stochastic method that aims to project vectors close to each other if they were
close in the original vector space. You can see an example of t-SNE mapping in Fig-
ure 4.7. The word embeddings in this figure are taken from a neural Language Model
(LM), trained on the Czech part of the CzEng corpus (Bojar et al., 2016b). With Czech
word embeddings, we can identify larger clusters organized by Part of Speech (PoS),
divided into smaller clusters organized by meaning similarities.

4.5 Emoji Embeddings

An increasing volume of online communication contains emojis. Since they can be
represented in Unicode, it is possible to treat them the same way as standard text.

Illendula and Yedulla (2018) have successfully induced emoji embeddings based
on co-occurrence of emojis in tweets. The resulting embeddings helped them achieve
state-of-the-art results in sentiment analysis, suggesting that the sentiment expressed
by the emojis can be identified in this way.

A different approach was chosen by Eisner et al. (2016), who trained emoji em-
beddings based on their Unicode descriptions. This also leads to better sentiment
analysis. The resulting embeddings visualized by t-SNE are shown in Figure 4.8. We
see that emojis with similar meaning (e.g., state flags, astrological signs, animals) tend
to form clusters.
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Figure 4.7: A t-SNE projection of 300 dimensional word embeddings from a neural
language model trained on the Czech side of the CzEng corpus. Clusters of modal
verbs (1), numbers (2), words related to time (3), pronouns (4), verbs related to knowl-
edge (5), and prepositions (6) are clearly visible. Reprinted from (Musil, 2017).
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Classification accuracy on entire dataset, N = 12920

Word Embeddings Random Forest Linear SVM
Google News 57.5 58.5
Google News + (Barbieri et al., 2016) 58.2* 60.0*

Google News + emoji2vec 59.5* 60.5*

Classification accuracy on tweets containing emoji, N = 2295

Word Embeddings Random Forrest Linear SVM
Google News 46.0 47.1
Google News + (Barbieri et al., 2016) 52.4* 57.4*

Google News + emoji2vec 54.4* 59.2*

Classification accuracy on 90% most frequent emoji, N = 2186

Word Embeddings Random Forrest Linear SVM
Google News 47.3 45.1
Google News + (Barbieri et al., 2016) 52.8* 56.9*

Google News + emoji2vec 55.0* 59.5*

Classification accuracy on 10% least frequent emoji, N = 308

Word Embeddings Random Forrest Linear SVM
Google News 44.7 43.2
Google News + (Barbieri et al., 2016) 53.9* 52.9*

Google News + emoji2vec 54.5* 55.2*

Table 1: Three-way classification accuracy on the Twitter sentiment analysis corpus using Random Forrests (Ho, 1995) and Linear

SVM (Fan et al., 2008) classifier with different word embeddings. ”*” denotes results with significance of p < 0.05 as calculated

by McNemar’s test, with the respect to classification with Google News embeddings per each classifier, and dataset

Figure 3: Emoji vector embeddings, projected down into a 2-dimensional space using the t-SNE technique. Note the clusters of

similar emojis like flags (bottom), family emoji (top left), zodiac symbols (top left), animals (left), smileys (middle), etc.Figure 4.8: The space of emoji embeddings visualised by t-SNE. Reprinted from (Eis-
ner et al., 2016).
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4.6 Principal Component Analysis

Principal Component Analysis (PCA) is a process that decomposes multidimensional
data into principal components. Each component is a linear combination of the individ-
ual dimensions. The PCA algorithm (Pearson, 1901; Hotelling, 1936) iteratively finds
components that best characterize the data by maximizing the components’ variance.
PCA is commonly used to decorrelate data or project data into a lower-dimension
space, e.g., to visualize it.

The input of the PCA algorithm is a dataset consisting of n samples, each repre-
sented by a d-dimensional vector. The output is a linear projection of the dataset,
such that the first dimension of the output vectors explains the most of the possible
variance. The next dimension explains the most of the remaining variance, etc.

4.6.1 Visualisation

PCA is commonly used as a tool for dimensionality reduction. It fits this purpose
because it is a linear transformation that explains the most variance for a given number
of dimensions. It can be used to reduce the multidimensional embeddings down to 2
or 3 dimensions for visualization.

In Figure 4.9, we see an example of this practice. We (Musil, 2019) examined Czech
word embeddings from a Recurrent Neural Network (RNN) based Neural Machine
Translation (NMT) system. Each point in the plot corresponds to one word, and the
color represents PoS of that word. We see that the PoS form clusters in the embedding
space.

4.6.2 Correlations with Principal Components

We know that individual dimensions of word embeddings usually do not have a
conceptual interpretation. What about principal components? Hollis and Westbury
(2016) have found that principal components from Word2Vec embeddings correlate
with psycholinguistic qualities such as concreteness, meaning specificity, valence, or dom-
inance. Inspired by their approach, we compared the structure of Czech word embed-
dings for English-Czech NMT and Word2Vec (Musil, 2019). Our method is based on
correlating PCA dimensions with categorical linguistic data. Figure 4.10 shows cor-
relations of PoS information with PCA components for NMT encoder, NMT decoder,
and Word2Vec embeddings. We show that although it is possible to successfully pre-
dict the PoS tags from word embeddings of Word2Vec and various translation models,
not all of the embedding spaces show the same structure. The information about PoS
is present in Word2Vec embeddings. Still, the high degree of organization by PoS
in the NMT decoder suggests that this information is more important for machine
translation; therefore, the NMT model represents it more directly.
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RNN NMT ENCODER RNN NMT DECODER

RNN NMT ENCODER RNN NMT DECODER

Figure 4.9: Distribution of the four largest PoS classes for Czech word embeddings
along the first/second and second/third PCA dimensions of the embeddings from
a NMT RNN model. The Czech-English RNN NMT ENCODER is on the left and the
English-Czech RNN NMT DECODER on the right. V = verbs, N = nouns, A = adjectives,
D = adverbs.
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RNN NMT ENCODER RNN NMT DECODER

N Noun
A Adjective
P Pronoun
C Numeral
V Verb

D Adverb
R Preposition
J Conjunction
T Particle
I Interjection

Word2Vec

Figure 4.10: Correlations of PoS and PCA dimensions from the encoder of the Czech-
English RNN NMT model (top left), the decoder of the English-Czech RNN NMT
model (top right) and the Word2Vec model (bottom). The direction of the PCA di-
mensions is arbitrary, so the sign of the correlation is not important in itself, only if
there are values with opposite signs in the same row we know that they are negatively
correlated. Reprinted from (Musil, 2019).
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4.6.3 Histograms of Principal Components

We also show that further examining histograms of classes along the principal com-
ponent is important to understand the structure of representation of information in
embeddings (Musil, 2019):

Look at the histograms of the four most important PoS classes along the dimen-
sions of the PCA of the embeddings in Figure 4.11. The histogram for the first dimen-
sion of the RNN NMT ENCODER embeddings (Fig. 4.11, bottom left) demonstrates that
in this dimension, verbs are separated from the rest of the PoS categories.

For the first PCA dimension of the RNN NMT DECODER embeddings, nouns are
concentrated on one side, adjectives on the other side, and verbs with adverbs are in
the middle.

For the second PCA dimension of the RNN NMT DECODER embeddings, verbs are
concentrated on one side, and all other categories are on the other side.

The second PCA dimension shows an interesting distribution of nouns. There is
a separate cluster of nouns, which is even more apparent if we plot the distribution
along two PCA dimensions in a planar graph in Figure 4.9. When we take a sample
of words from this cluster, it contains almost exclusively named entities: Fang, Eliáši,
Još, Aenea, Bush, Eddie, Zlatoluna, Gordon, Bellondová, and Hermiona.

There is a similar distribution of nouns in the third PCA dimension of the RNN
NMT DECODER embeddings. The smaller group again consists of named entities.

This is a stronger result than just being able to predict these categories with a clas-
sifier: not only can the PoS (named entities, verb forms, and possibly other categories)
be inferred from the embeddings, but the embeddings space is structured according
to these categories.

4.6.4 Sentiment Analysis

Sentiment analysis is the task of deciding whether the given text is positive or nega-
tive, how much, and what makes it so.

We have found (Musil, 2019) that the shape of the space of word embeddings for
a model trained for sentiment analysis is triangular. We examined a Convolutional
Neural Network (CNN) trained to predict the sentiment of comments in a Czech
film database. In Figure 4.12, we see a sample of the words plotted along the first
two principal components. The first component represents the polarity of the words
(good/bad); the second component represents intensity (strong/neutral). The trian-
gular shape may be explained by the fact that words that are far from the center on
the polarity axis are never of low intensity. This is an example of a neural network
adapting to a specific task.
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RNN NMT ENCODER RNN NMT DECODER

Figure 4.11: Histograms of the four largest PoS classes along the first three PCA di-
mensions of the embeddings from the NMT RNN model. The Czech-English RNN
NMT ENCODER is on the left and the English-Czech RNN NMT DECODER on the right.
V = verbs, N = nouns, A = adjectives, D = adverbs, Y = other. Reprinted from (Musil,
2019).
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Figure 4.12: A random sample of words from the distribution of the embeddings from
the sentiment analysis CNN model along the first (horizontal) and second (vertical)
PCA dimension. The top right subplot shows the complete distribution.
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4.7 Independent Component Analysis

Independent Component Analysis (ICA) (Jutten and Herault, 1991; Comon, 1994;
Hyvärinen and Oja, 2000) is a method similar to PCA that decomposes multidimen-
sional data into components along which the data are distributed as non-Gaussianly
as possible. It can be used, e.g., to extract features from distributed representations of
words (Honkela et al., 2010).

In this section, we present preliminary findings of our ongoing research into Inde-
pendent Component Analysis (ICA). We have used NMT and Word2Vec embeddings
from models trained on the fiction part of the Czech side of the Czeng corpus (Bojar
et al., 2016b).

We look at the words that are closest to the extremes in each ICA component. We
have found that the components represent various types of categories. In the fol-
lowing examples, each list contains 20 words associated with one component, having
either the 20 highest or 20 lowest values for that component. We show that the com-
ponents represent various types of categories:

Semantic category: words with similar semantic content (e.g., law and justice) from
various syntactic categories (in this case predominantly nouns in nominative and gen-
itive morphological case):
zákona, Unie, členských, zákon, stanoví, Komise, zákony, soud, zákonů, zákonem, Evropské,
práva, práv, ustanovení, nařízení, porušení, soudu, tj, souladu, podmínek
Glosses: lawnoun gen. sg., unionnoun nom. sg., memberadj. gen. masc., lawnoun nom. sg.,
determinesverb, comitteenoun nom. sg., lawsnoun nom. pl., courtnoun nom. sg., lawsnoun gen. pl.,
lawnoun inst. sg., europeanadj. gen. fem. sg., rightsnoun nom. pl., rightsnoun gen. pl., provisionnoun sg.,
regulationnoun sg., violationnoun sg., courtnoun gen. sg., ieshortcut, compliancenoun gen. sg., condi-
tionsnoun gen. pl.

Semantic and syntactic category: words that are defined both semantically and syn-
tactically, in this case, predominantly verbs associated with going somewhere in the past
tense masculine:
šel, zašel, zajít, jít, spěchal, šla, zavedl, vešel, dopravit, nešel, vrátil, poslal, vydal, šli, poslat,
přišel, odjel, přijel, jel, dorazil
Glosses: wentverb masc., went downverb masc., go downverb inf., goverb inf., hurriedverb masc.,
wentverb fem., ledverb masc., enteredverb masc., transportverb inf., didn’t goverb masc.,
returnedverb masc., sentverb masc., issuedverb masc., wentverb masc. pl., sendverb inf., cameverb masc.,
leftverb masc., cameverb masc., wentverb masc., arrivedverb masc.

Syntactic subcategory: words with specific syntactic features, but semantically di-
verse (in this case, adjectives in feminine singular form):
Velká, moudrá, občanská, dlouhá, slabá, čestná, železná, překrásná, hladká, určitá, marná,
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4.8 WORD DERIVATIONS

tmavá, hrubá, příjemná, bezpečná, měkká, svatá, nutná, volná, zajímavá
Glosses: bigadj. fem., wiseadj. fem., citizenadj. fem., longadj. fem., weakadj. fem., honestadj. fem.,
ironadj. fem., beautifuladj. fem., smoothadj. fem., certainadj. fem., in vainadj. fem., darkadj. fem.,
grossadj. fem., pleasantadj. fem., safeadj. fem., softadj. fem., holyadj. fem., necessaryadj. fem.,
freeadj. fem., interestingadj. fem.

Feature across POS categories: e.g., feminine plural form for adjectives, pronouns
and verbs:
tyto, tyhle, neměly, byly, mohly, začaly, vynořily, zmizely, měly, objevily, všechny, vypadaly,
nebyly, zdály, změnily, staly, takové, podobné, jiné, tytéž
Glosses: thesepron. fem. pl., thosepron. fem. pl., didn’t haveverb fem. pl., wereverb fem. pl.,
couldverb fem. pl., beganverb fem. pl., emergedverb fem. pl., disappearedverb fem. pl., hadverb fem. pl.,
discoveredverb fem. pl., allpron. fem. pl., lookedverb fem. pl., weren’tverb fem. pl., seemedverb fem. pl.,
changedverb fem. pl., happenedverb fem. pl., suchpron. fem. pl., similaradj. fem. pl., otheradj. fem. pl.,
samepron. fem. pl.

Stylistic: in this case, words that often appear in informal spoken language (often
second person verbs and colloquial forms):
máš, bys, tý, nemáš, seš, ses, víš, Hele, kterej, sis, jseš, bejt, vo, svýho, celej, děláš, chceš, teda,
každej, velkej
Glosses: haveverb 2nd, wouldverb 2nd, thepron. fem. gen. coll., don’t haveverb 2nd, areverb 2nd coll.,
haveverb 2nd refl., knowverb 2nd, Heyintj. coll., whichpron. masc. coll., haveverb 2nd refl., areverb 2nd coll.,
beverb inf. coll., aboutprep. coll., yourpron. masc. gen. coll., wholeadj. masc. coll., doverb 2nd, wantverb 2nd,
wellpart. coll., eachpron. masc. coll., bigadj. masc. coll.

We are finding that many ICA components represent various features of words.
It seems to classify not only morphology and syntax but also semantics, so it is a
promising research direction for inquiries about representations of meaning.

4.8 Word Derivations

Word derivation is a type of word formation, where new words are created by adding
or changing affixes of existing words. We studied word embeddings from an English-
Czech NMT system and found that they contain interesting information about mor-
phological derivation (Musil et al., 2019).

In Figure 4.13, each data point represents a pair of Czech words, one of which is
derived from the other, usually by a prefix or a suffix. We have identified several
classes of word derivations, corresponding to the semantic change associated with
them, such as creating a diminutive or making an adjective into a corresponding ad-
verb. The figure shows a plot where each point corresponds to the difference of the
two vectors that represent the pair of words in a derivational relation. The vector dif-
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Figure 4.13: Clusters of the derivation types. Each point represents a pair of words,
e.g. ▲ kompenzovat – kompenzace (compensate – compensation), ■ luxus – luxusní
(luxury – luxurious), ▲ filosofie – filosofický (philosophy – philosophical).
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4.9 MAPPING EMBEDDING SPACES

Figure 4.14: Unsupervised mapping of embedding spaces. (A) English – Italian, (B)
adversarial learning, (C) Procrustes, (D) expanding dense regions. Reprinted from
(Conneau et al., 2018a).

ferences were projected into the first two dimensions by PCA. It is evident that the
derivational pairs form clusters corresponding to the classes of the semantic deriva-
tional type.

4.9 Mapping Embedding Spaces

It is sometimes possible to map vectors from one embedding space into another in an
unsupervised manner. This mapping can then serve as a starting point for an unsu-
pervised NMT system. Unsupervised NMT is a recent technique that allows training
translation models without parallel corpora. One of the first methods for unsuper-
vised NMT (Lample et al., 2018) starts by mapping the word embedding spaces of
the two languages on each other. Then it creates a simple word-for-word transla-
tion model for each translation direction and creates a training corpus by translating
monolingual data with these models. It iteratively improves the models and train-
ing corpus by training one of the systems on the data produced as translations by
the other system. Each system is learning to translate from the synthetic data (trans-
lations) to the natural data (original monolingual corpus). As it is getting better, it
produces better translations and, therefore, better training data for the other model,
which translates in the opposite direction.

The first step of this method, the mapping of the embedding spaces, can be done
in an unsupervised manner (Conneau et al., 2018a). The method is illustrated in
Figure 4.14. It finds a linear mapping between two sets of embeddings that were
trained on monolingual data for two different languages. The initial mapping is found
with adversarial learning. The discriminator part of the model is learning to predict
whether two randomly selected word embeddings come from the same distribution
(from the same language). The other part of the model is learning a rotation matrix
to fool the discriminator. When the discriminator cannot effectivelly distinguish the
languages, the embedding spaces have been roughly aligned. This is possible because
the embedding spaces have similar shapes, even for different languages. This is an in-
teresting property of word embeddings, given that unless the two languages are very
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Figure 4.15: A sample of words from the Word2Vec model. The horizontal line repre-
sent the she–he axis. The vertical axis denotes whether the corresponding word should
be gendered according to the classifier. Reprinted from (Bolukbasi et al., 2016).

closely related, the words cannot be mapped between them one-on-one. Because the
embeddings are randomly initialized at the beginning of the training, they are not
the same even for two instances of the same model trained on the same data. The fact
that despite all this, the embedding spaces can be linearly mapped on each other with
enough precision to serve as a base for a translation system, based only on the shape
of the embedding spaces, means that there is a structure that is common to (at least
Indoeuropean) languages and it is captured in the shape of the embedding space.

4.10 Debiasing: Interpretation as Manipulation

Real-world datasets reflect the biases of the society that produced them. Computers
may seem impartial, but machine learning can turn biased datasets into biased mod-
els that can even amplify the biases from the training data (Zhao et al., 2017). NLP
models can be deployed in various contexts where preserving or amplifying biases
can be potentially harmful to specific social groups. The discussion of necessity and
particular techniques for mitigating bias is beyond the scope of this book. Regardless
of that, biases in word embeddings pose a problem that can be diminished with the
help of interpretation of the learned representations.

Bolukbasi et al. (2016) have found that Word2Vec embeddings tend to contain bi-
ases implicit to the data that the model has been trained on. One way to show the
bias is to use the vector analogy method. For example, the model they have been
inspecting says that man is to programmer as woman is to homemaker.

76



4.11 CONCLUSION

They trained a classifier to determine the words that should be gendered. Fig-
ure 4.15 shows a sample of words from the model. The horizontal axis represents the
she-he direction in the embedding space. The vertical axis represents the score from a
model that predicts whether the word should be gendered. The horizontal line sep-
arates the gendered words (below), such as brother, or queen and words that should
not be inherently gendered, such as genius or tanning. The words above the line that
are far from the center on the horizontal axis show gender bias. The debiasing pro-
cess consists of finding these words and removing the gender dimension from their
embeddings.

4.11 Conclusion

There are two main techniques of interpretation for word embeddings: probing and
component analysis. With probing, we can show that various linguistic features are
represented in the embeddings, depending on the task that the model is trained for.
With component analysis, we can show what features are important for a given task.
However, for more complex tasks, such as language modeling or machine translation,
we do not yet understand the structure of the embedding space completely.

Pretrained word embeddings contain information about both morphology and lex-
ical semantics. When the embeddings are trained for a specific task, the embeddings
tend to be organized by the information that is important for the given task (e.g., emo-
tional polarity for sentiment analysis).
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5

May I Have Your Attention?

With the advent of neural networks in Natural Language Processing (NLP), tradi-
tional linguistics-based methods such as parsing or word-alignment are no longer a
part of modern NLP solutions. Instead, new mechanisms were introduced that are
capable of generating these linguistic abstractions latently, but of course, only if they
are needed and in the form most suitable for the particular task. The attention mech-
anism (described in Sections 1.3.2 and 2.2) allows the network to consider each com-
ponent individually (typically words or subwords) of the input (typically sentences)
and to decide how much this component will contribute to currently computed in-
put representation. It provides weighted links between the language units that can
be interpreted as a sentence structure relevant to the particular task. These emergent
structures may be compared to explicit discrete linguistically motivated structures
such as dependency trees, constituency trees, word alignment, coreference links, or
semantic relations.

For example, consider syntactic trees, which have been widely used in the past as
a preprocessing step for various NLP tasks and provided the systems with informa-
tion about relations between words. The syntactic trees were learned from manually
annotated treebanks. Such annotations required many design decisions on how to
capture specific language phenomena in the tree structure. Moreover, various NLP
tasks might benefit from differently annotated trees. The main limitation of using the
treebanks is that the tree structures are discrete and include only a limited number of
relations between words.

In the current neural architectures, the attention mechanism learns the relations
between tokens in an unsupervised way. With the current complex architectures,
models can capture many different weighted relations between the same tokens over
different layers and attention-heads. Therefore, the structures generated by the atten-
tion mechanism overcome the drawbacks of using explicit syntactic structures. They
consist of multiple complete graphs with weighted edges optimized for the target
NLP task.

However, the price paid for using the attention mechanism is very difficult in-
terpretability. The number of relations the current neural architectures consider is
enormous and makes the attention hard to interpret even when it is fully trained. For
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example, for one 10-words-long sentence, instead of 10 discrete labelled edges in a
dependency tree, we have 20,736 real numbers in the attention mechanism.1

Our goal is to organize these vast amounts of numbers, find the underlying struc-
ture of the attention mechanism, and visualize it. We want to find out to what extent
the self-attentions resemble syntactic relations, and cross-lingual attentions resemble
word alignment as we know them from the original non-neural systems. We also
want to investigate whether these structures differ across NLP tasks.

5.1 Cross-Lingual Attentions and Word Alignment

The term attention was first introduced by Bahdanau et al. (2014) for modelling word
alignments in neural machine translation, and its generalization then became a uni-
versal approximation of NLP structures. This work was a breakthrough for the Neu-
ral Machine Translation (NMT) systems since it brought the translation quality to the
level of previously widely used phrase-based systems (see Section 2.2). Each time the
translation model generates a word, it attends to (“looks at”) all the positions (tokens)
in the source sentence representation and chooses the ones that are most relevant for
the current translation. The weighted average of the attended representations is then
used as input into a classifier predicting the target word to be generated. It is im-
portant that the search itself is “soft”; non-negative weights are assigned to all the
positions. In practice, however, a trained model assigns typically only a small num-
ber of positions with weights significantly greater than zero. Therefore, the concept of
word-alignment was preserved in the modern NMT systems; it was only transformed
into a softer and more flexible shape.

In the previously used phrase-based systems (Koehn et al., 2007), the word align-
ment was used as a preprocessing step for developing phrase dictionaries. The con-
nections between tokens were discrete. Each connection either was there or was not.
Even though the algorithms for unsupervised word alignment (Och and Ney, 2000)
were based on Expectation-Maximization algorithm and used probability distribu-
tions, the resulting alignments were discrete. A specific symmetrization approaches
were needed to get the final word-alignment from the two one-directional 1-to-many
alignments.

In the early NMT architectures using a fixed-size transition vector (Sutskever et al.,
2014), the word alignment disappeared entirely since the only transition between en-
coder and decoder was one fixed-sized vector.

The connections between individual positions in source and target sentences re-
turned with the attention mechanism, but with the following essential differences.
First, the attention mechanism is soft and may be represented as a complete bipar-
tite graph with weighted edges. Second, the attention mechanism connects only the

1 We consider BERT’s base model using the initial [CLS] and final [SEP] tokens. The number is computed
for ten subword units.

80



5.1 CROSS-LINGUAL ATTENTIONS AND WORD ALIGNMENT

" T
h

is
w

ill
ch

a
n

g
e

m
y

fu
tu

re
w

it
h

m
y

fa
m

ily
, " th

e
m

a
n

sa
id

. <
e

n
d

>

"
Ce la

va
changer

mon
avenir

avec
ma

famille
"
,

a
dit

l'
homme

.
<end>

Figure 5.1: Example of cross-lingual attention distributions. Soft alignment of “the
man”. Reprinted from (Bahdanau et al., 2014, Figure 3d).

contextual embeddings on respective positions,2 not the words themselves, as it was
in the original word-alignment. It is difficult to find what information a contextual
embedding stores or to what extent it represents the word at its position. Moreover,
we cannot know what information from the attended contextual embeddings, if any,
is eventually used by the classifier. Even though it is very often simplified into an
assumption that a given contextual embedding mostly represents the word on that
position, it may not be true (see Section 3.3.1). Therefore, we deliberately talk about
attention to source sentence positions instead of attention to particular words.

The soft word-alignment used by the attention mechanism is much more adequate.
To translate a word correctly, one needs to know not only its counterpart in the source
language but also many other words from its context. Even though the necessary
context might be present in the contextual embedding, the visualisations of attention
weights show that the attentions are indeed more spread across different positions in
the source sentence than the traditional word-alignment was. In the attention visual-
isation in Figure 5.1, we can see that the source phrase ‘the man’ was translated into
‘l’ homme’. Traditional word-alignment would map ‘the’ to ‘l’’ and ‘man’ to ‘homme’.
However, such alignment is not sufficient for translation, as one must consider also

2 In the NMT architecture proposed by Bahdanau et al. (2014), the contextual embeddings are concate-
nations of forward and backward Recurrent Neural Networks (RNNs) and therefore may contain any
information from the whole sentence.
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Figure 5.2: Word alignment (marked by blue squares) compared to attention weights
(green squares). Reprinted from Koehn and Knowles (2017, Figures 8 and 9) under
CC-BY-4.0 licence.

he word following ‘the’ to determine whether it should be translated as ‘le’, ‘la’, ‘les’ or
‘l’’. The attention mechanism solves it naturally letting the model look at the context
vector of the word ‘man’ as well and translate the word ‘the’ correctly into ‘l’’.

The translation model has two possibilities on how to deal with the context. Some
information is stored in the contextual embeddings themselves, and the attention
mechanism controls everything else needed for the translation. The contextual em-
beddings must contain information about how much they are important for translat-
ing different words; such information is passed to the attention mechanism.

Koehn and Knowles (2017) compared the attention weights to the word-alignment,
which was automatically created by fast-align alignment tool3 (Dyer et al., 2013). The
results are illustrated in Figure 5.2 and show that translation of some words requires
information from more source contextual embeddings when compared to the word-
alignment.

However, they also showed that training an NMT system can lead to very non-
intuitive attentions. In Figure 5.2, we can see an example of attentions in German-
English translation. The model learned that in order to generate the English word, it
is best not to attend to its counterpart in German but to the following token. Despite

3 https://github.com/clab/fast_align
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5.1 CROSS-LINGUAL ATTENTIONS AND WORD ALIGNMENT

such shifted attentions, this translation system had comparable results with other sys-
tems, in which the attentions roughly matched the alignments.

The explanation of such a non-intuitive behaviour is probably a side effect of the
end-to-end training setup. Although the architecture is designed to learn particu-
lar words at particular places, it may sometimes be more convenient for the network
to learn the problem differently. Here the forward part of the encoder might put a
strong emphasis on the previous word in its contextual representations. The atten-
tion mechanism then prefers to attend to the following positions, which also represent
the previous words well.

The mismatch between the attention mechanism and the word-alignment led some
researchers to develop systems that would increase the correspondence with word-
alignments using some kind of supervision. For example, Liu et al. (2016) came with
an additional loss function that penalized the disagreement between attention weights
and the conventional word-alignment models. In this way, they treated the attention
variables as observable variables. The training objective then resembled that in the
multi task-learning. However, all of these attempts gained no or only tiny improve-
ments in translation quality.

Ghader and Monz (2017) published a more detailed analysis answering the ques-
tion of what the attention-mechanism really models and how similar are attentions
to alignments in different syntactic phenomena. They show that attention follows
different patterns depending on the type of the word being generated.

For example, the attention model matches with word alignment to a high degree
in the case of nouns. The attention distribution of nouns also has one of the lowest
entropies meaning that on average, the attention of nouns tends to be concentrated.

A different situation was observed when translating verbs. The low correlation
with word-alignment confirms that attention to other parts of source sentence rather
than the aligned word is necessary for translating verbs and that attention does not
necessarily have to follow alignments. The attention entropy of verbs is high and
shows that the attention is more distributed compared to nouns. It also confirms that
the correct translation of verbs requires the systems to pay attention to different parts
of the source sentence. This may be the reason why the approaches pushing the at-
tention mechanism to be more similar to alignments did not succeed.

In Table 5.1, Ghader and Monz (2017) show what types of tokens the translation
model attends to when generating different parts-of-speech. When generating nouns,
the most attended roles (besides their noun counetrparts) are adjectives and deter-
miners. When generating verbs, the attention model covers auxiliary verbs, adverbs,
negation particles, subjects, and objects.

These analyses were performed on German-English translation. We suppose that
the observations may be different for other language pairs.
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POS tag roles (attention %) description

NOUN

punc (16%) Punctuations
pn (12%) Prepositional complements
attr (10%) Attributive adjectives or numbers
det (10%) Determiners

VERB

adv (16%) Adverbial functions including negation
punc (14%) Punctuations
aux (9%) Auxiliary verbs
obj (9%) Objects
subj (9%) Subjects

CONJ
punc (28%) Punctuations
adv (11%) Adverbial functions including negation
conj (10%) All members in a coordination

Table 5.1: Statistics of syntactic labels at positions attended by nouns, verbs, and con-
junctions. Reprinted from Ghader and Monz (2017, Table 7) under CC-BY-4.0 licence.

5.2 Self-Attentions and Syntactic Relations

Another breakthrough in machine translation architecture occurred with the publi-
cation of the article by Vaswani et al. (2017). The authors introduced a new architec-
ture called Transformer (see Section 1.3.2) using the attention mechanism as the main
building block. Later, the Transformer proved to be a universal encoder for many NLP
task, mainly thanks to the Bidirectional Encoder Representations from Transformers
(BERT) model (see Section 2.6). Transformer’s self-attentive encoder consists of sev-
eral (6 to 24) layers. Each layer produces contextual embeddings that correspond to
sub-words of the source sentence, and each one can possibly attend to any of the con-
textual embeddings from the previous layer using the self-attention mechanism (see
Figure 5.3). In each layer, the contextual representation of the whole sentence is up-
dated and passed to the next layer. The information stored at the contextual embed-
dings may also diverge from the sub-words at the respective positions in the source
sentence (see Section 3.3.1). However, due to residual connections skipping the atten-
tion layers, which are mixed with the attention outputs in 1:1 ratio, we can probably
safely assume that each attention head at each layer corresponds to the sub-word at
the respective position.

While the cross-lingual attention may be seen as a parallel to the word alignment
in statistical Machine Translation (MT), the self-attention mechanism may be seen as
a parallel to structural relations between words. The original paper by Vaswani et al.
(2017) already mentioned that many attention heads exhibit behaviour that seems re-
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BERT

Trm Trm Trm

Trm Trm Trm

...

...

T1 T2 TN...

E1
E2 EN...

Figure 5.3: Self-attention mechanism in Transformer (BERT). Reprinted from Devlin
et al. (2019, Figure 3 left) under CC-BY-4.0 licence.

lated to the structure of the sentence, such as dependency syntax or coreference links.
Note that the models are trained end-to-end for MT or language modelling, and there
is no explicit supervision that would direct the models towards specific attention pat-
terns. They are emergent and only formed using the training signal that comes from
the errors the Neural Network (NN) makes when generating words. Each attention
head forms a complete bipartite weighted graph expressing the connections between
individual pairs of sub-word units (or more precisely, between their contextual rep-
resentations of two consecutive layers).

In the following sections, we try to categorize different types of attention heads and
discuss what structural phenomena can be identified within the attention patterns.

5.2.1 Categorization of Self-Attention Heads

One way of analyzing the self-attention mechanism is to inspect individual attention
heads visually and describe frequently occurring patterns.

Many related papers attempt to classify patterns in self-attention heads. They an-
alyzed different model variants and tasks (Raganato and Tiedemann, 2018; Mareček
and Rosa, 2019; Vig and Belinkov, 2019; Kovaleva et al., 2019; Voita et al., 2019; Clark
et al., 2019; Kim et al., 2020). Based on the literature and our own qualitative explo-
ration, we put together all the self-attention patterns that were observed. For each
pattern, we show an example of a self-attention heatmap, comment in what models
and how often it occurs, and speculate what might be its function in the model. Even
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Figure 5.4: Two examples of self-attention heads mostly attending to the same posi-
tion. The head on the left also captures some types of function words. The head on
the right attends to all equal tokens in the sentence.

though the self-attention patterns may differ across Transformers trained for different
tasks, many of the basic patterns were reported by all the cited papers.

Main diagonal – Attending to the same position. One of the most trivial head pat-
terns is the attention to the same position. We observe such heads appearing for al-
most all tasks. In BERT, they are more frequently in the lower layers. Clark et al.
(2019) note that, even though attention to the same position is generally very scarce,
these specialized heads do the opposite and they, in fact, double the residual connec-
tions and allow the network to copy the whole information to the next layer. In NMT,
such heads occur typically in the first layer (Mareček and Rosa, 2019). In some cases,
most states attend to the same positions, but some of them attend elsewhere. The role
of such partially diagonal head may be processing a specific phenomenon that only
occurs for some of the states.4

Two examples of this kind of heads are given in Figure 5.4.

Diagonal – Attending to the adjacent position. Another pattern, similar to the first
one, is attending to the previous or the next position. We suppose that such heads are
essential for Transformers since the keys and values in the self-attention are treated as

4 For example, consider a head attending to subjects when processing verbs. In this case, all the verbs
attend to their subjects, whereas all the other words attend to the same position.
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Figure 5.5: Two examples of self-attention heads mostly attending to the previous and
pre-previous position.

unordered sets, so the model must learn the token adjacency. Some attention heads
attend to more distant positions, e.g., the pre-previous one, and there are also heads
dividing their attention into more adjacent tokens. Two examples are given in Fig-
ure 5.5. As for the main diagonal pattern, such heads occurs in NMT mainly in the first
layer. In BERT, they appear mostly in earlier layers of the network. Therefore, Ra-
ganato and Tiedemann (2018) speculate the transformer tries to find long dependen-
cies between words on higher layers, whereas it tends to focus on local dependencies
in lower layers.

Vertical – All positions attend to one particular position. Almost all relevant lit-
erature discusses the pattern where all positions attend to one particular position
in the previous layer. One example is given in Figure 5.6 (left). Such positions of-
ten correspond to technical or functional tokens. Kovaleva et al. (2019) and Clark
et al. (2019) show that in BERT, there exist attention-heads focusing mainly on the
separator [SEP] or class [CLS] position. We (Mareček and Rosa, 2019) and Raganato
and Tiedemann (2018) show that NMT transformer also includes heads focusing on
punctuation marks, especially on the final period. One possible explanation is that
these positions are used for aggregating sentence-level information. The [CLS] token
is deed designed for this purpose. It is forced to aggregate the information about the
whole sentence by one of the BERT’s training objective. This pattern is a special case
of the following Heterogenous pattern. We provide some observations related to this
pattern in the following paragraph.
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Figure 5.6: Self-attention heads representing the vertical pattern (on the left) and the
heterogeneous pattern (on the right).

Heterogenous. Some of the heads typically combine several of the previously de-
fined patterns. An example is given in Figure 5.6 (right). Kovaleva et al. (2019) men-
tion that they are highly variable depending on the specific input and cannot be char-
acterized by a distinct structure.

Many attention heads found both in BERT and NMT encoders combine attention
to one particular position (typically [CLS] or [SEP] in BERT and punctuation marks
in NMT) with another function. Clark et al. (2019) report that over half of BERT’s at-
tention in layers 6–10 focuses on [SEP]. The specific role of [SEP] and [CLS] may be
caused by the fact that they are guaranteed to be present and are never masked out,
whereas the most common tokens as punctuation marks are not. They found atten-
tion heads where the direct objects attend to respective verbs or where the possessive
pronouns attend to respective nouns. All tokens for which the attention head’s func-
tion was not applicable attended to [SEP]. They conducted additional experiments
using gradient-based measures (Sundararajan et al., 2017) showing that gradients for
attentions to [SEP] are very low. Therefore they conclude that attending to [SEP] can
be understood as a “no-op” function. In NMT, we found many heterogenous heads
combining two of the previous functions. For example, the first half of the positions
attends to the previous tokens and the second half attends to the final punctuation.

Balustrades. In our experiments with NMT (Mareček and Rosa, 2019) we observe
that the most frequent pattern, appearing in about two-thirds of the attention heads, is
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Figure 5.7: Two examples of self-attention heads representing the balustrades pattern.

a series of vertical bars, typically placed at the diagonal, which resemble the balusters
of a staircase railing. We show a couple of examples in Figure 5.7. In such attention
heads, sequences of consecutive tokens attend to one position in the previous layer.
The lengths of the sequences differ; some heads include a higher number of rather
short, e.g. 3- to 5-token long sequences; other heads include only a couple of long se-
quences. A typical sequence attends to a position inside it, very often to its first or the
last token. Longer sequences often attend to positions that correspond to punctuation
marks or conjunctions. Some heads attend almost exclusively to the sentence-final
punctuation. This pattern, therefore, combines the Diagonal and the Vertical patterns
and fills the transition between them. The balustrades were observed in NMT models
across different languages. The individual vertical bars may be treated as linguistic
phrases and may be used to infer syntactic trees (see more in Section 5.2.5).

Attending to the equal word-pieces. In NMT, there is typically one or two heads
where each output state attends to all instances of the same subword, usually with a
more or less uniform distribution (see the subwords “of”, “have” and “that” in Fig-
ure 5.4 (right). We have also seen these heads to sometimes attend to very similar but
not identical subwords (e.g. singular and plural).

Attending to everything. Clark et al. (2019) noticed that some attention heads, es-
pecially those in the lower layers of BERT, attend broadly across many positions in
the previous layer. These high-entropy attention heads typically spend at most 10%
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Figure 5.8: Examples of self-attention heads attending to the rare tokens from the
BERT model (in blue) and NMT model (in green).
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Figure 5.9: Examples of self-attention heads with scattered attentions from the BERT
model (in blue) and NMT model (in green).
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of their attention mass on each of the positions and their output is then roughly the
representation of the whole sentence.

Block. For tasks with two distinct sentences at the input, Kovaleva et al. (2019) iden-
tified heads doing only the intra-sentence attention (e.g. in BERT finetuned for Tex-
tual Entailment or Paraphrase Detection). Similarly, as in the Attending-to-everything
pattern, these heads spread the attention across many positions. However, in this
pattern, all the attention goes into the other sentence, forming a shape of two square
blocks.

Attending to rare words. Voita et al. (2019) mention that some of the BERT’s heads,
all the positions attend to some least frequent tokens in the sentence. Two examples
are given in Figure 5.8.

Scattered. The rest of the heads do not resemble any of the patterns mentioned
above. We cannot exactly say what they do. Their entropy is rather low, and therefore,
they look more like random points scattered within the matrix. Examples are given
in Figure 5.9.

We identified eight patterns of self-attention heads in total. The distinction between
individual types of patterns is often somewhat fuzzy. Moreover, their distributions
vary across different trained models. The main aim was to describe the heads and try
to outline what is their function in the model. In Table 5.2, we present rough counts
of types of heads for each layer of Transformer NMT5 and pre-trained BERT, respec-
tively. The first layer of NMT systems contains many diagonal patterns and differs
from all the other layers containing many balustrade patterns and scattered heads.
The situation is different in the BERT model. The whole first half of its heads contains
diagonal and scattered patterns. After that, the heterogeneous patterns prevail, and
in the last two layers, there are mainly vertical patterns.

5.2.2 Highly Redundant Attention Heads

When examining the patterns of self-attention heads, we observe a high level of re-
dundancy. We can find heads in the same layer performing almost the same function.
Many similar heads can be found across layers. However, their roles may differ since
different layers encode different information.

5 The numbers were computed manually on a sample of source sentence processed by English-to-German
NMT system. However, the other language pairs from experiments by Mareček and Rosa (2019) exhibit
similar proportions.
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L5 0 1 0 8 0 1 5 0
m

ai
n

di
ag

on
al

di
ag

on
al

ve
rt

ic
al

ba
lu

st
ra

de
s

ra
re

w
or

ds

he
te

ro
ge

no
us

sc
at

te
re

d

eq
ua

l

L0 0 3 0 0 0 0 9 0

L1 0 2 0 0 0 1 9 0

L2 0 2 0 0 0 0 9 1

L3 0 2 1 0 0 1 8 0

L4 1 2 1 1 0 1 6 0

L5 0 2 0 2 0 3 5 0

L6 0 0 0 1 1 6 4 0

L7 0 0 0 1 0 7 4 0

L8 0 0 2 0 0 4 6 0

L9 0 0 3 2 0 3 4 0

L10 0 0 9 0 0 3 0 0

L11 0 0 10 0 0 2 0 0

Table 5.2: Proportions of the self-attentions patterns over layers in NMT (left) and
BERT (right).

We show some studies that were examining whether such a large number of self-
attention heads is really needed. Recall that the standard Transformer model’s en-
coder for neural machine translation consists of 6 layers, each includes 16 self-attention
heads, which is 96 heads in total. The large model of BERT uses 24 layers with 16
heads, i.e. 384 heads in total.

Michel et al. (2019) experimented with Transformer NMT and BERT models. They
made an interesting observation that most attention heads can be individually re-
moved at the inference time (i.e. without retraining the model) without any signif-
icant degradation of the model’s performance. In the Transformer NMT Encoder,
they found only eight heads out of 96 whose elimination significantly changed the
translation quality. Interestingly, four of them improved the translations, and four
of them worsened it. They also experimented with iterative pruning of more heads
at once (in order from the least important ones) and concluded that about 20% of
the NMT heads and about 40% of the BERT’s heads can be removed at once without
any significant negative impact of the model’s performance without any retraining of
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5.2 SELF-ATTENTIONS AND SYNTACTIC RELATIONS

the model. They also notice that the attention-heads in the Encoder-Decoder part of
NMT are much less redundant that the self-attention heads used in the Encoder and
the Decoder.

Voita et al. (2019) performed more elaborated experiments for head pruning us-
ing fine-tuning of the encoder’s parameters and therefore were able to prune even
more heads. However, their approach required changes in the original architecture.
They introduced a gating mechanism to individual attention heads and a relaxation
of L0 regularization that converges to head-gates being either almost open or almost
closed. During the fine-tuning, they fix the decoder’s parameters and fine-tune only
the encoder so that the functions of the pruned encoder cannot move to the decoder.
They performed their experiments on English to Russian NMT and showed that their
method is able to prune 44 out of 48 heads with the BLEU drooped only by 0.25 points.
If there are ten heads left (and 38 of them are pruned), the BLEU score decreases only
by 0.15 points. Further, they examined which heads are being pruned and concluded
that the diagonal heads, the heads having some clear syntactic functions, and the one
head attending to rare words are mostly retained, whereas the heads with rather un-
clear functions are mostly removed.

To conclude, experiments showed that many of the attention heads in the Trans-
former architectures are redundant and may be removed without strongly affecting
the output quality. Interestingly, the redundancy cannot be avoided simply by train-
ing a model with fewer attention heads. Voita et al. (2019) showed that if a model
with the same head-counts as resulted from their experiments is trained from scratch,
it does not reach as good results as the one acquired by pruning the heads from the
fully equipped base model.

5.2.3 Syntactic Features of Self-Attention Heads

In the Transformer’s self-attention mechanism, each position (corresponding to one
token) may attend to any of the positions on the previous layer. These inter-token
relations may be seen as internal, latently learned structures of sentences. Many works
are aiming to compare these latently learned relations to dependency or constituency
syntactic structures proposed by linguists (see the overview Table 5.3). Three issues
make such comparison difficult:

• There are usually many attention heads along the layers working in parallel. It is
possible to infer the structure of a sentence from one head only (Raganato and
Tiedemann, 2018), but it is more likely that many more heads perform some
kind of syntactic function, and therefore we need to use them all or better to
somehow choose only the syntactic ones (Voita et al., 2019; Clark et al., 2019;
Limisiewicz et al., 2020).

• Even though the vectors that are attended do not represent the words them-
selves but rather some kind of contextual representations that may be very dis-
tant from the original input words at respective positions, many papers simplify
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Research Transformer
model

Tree
type

Syntactic
evaluation

Evaluation
data

Syntactic
heads

Raganato and
Tiedemann (2018)

NMT encoder
(6 layers 8 heads)

dep. tree induction PUD treebank 0% – 8%

Vig and Belinkov
(2019)

GPT-2 dep. dep. alignment Wikipedia —

Clark et al. (2019) BERT dep. dep. accuracy,
tree induction

WSJ PennTB —

Voita et al. (2019) NMT Encoder
(6 layers 8 heads)

dep. dep. accuracy WMT,
OpenSubtitles

15% – 19%

Limisiewicz et al.
(2020)

BERT, mBERT dep. dep. accuracy,
tree induction

PUD,
EuroParl

46%

Mareček and Rosa
(2019)

NMT encoder
(6 layers 16 heads)

const. tree induction EuroParl 19% – 33%

Kim et al. (2020) BERT, GPT-2,
RoBERTa, XLNet

const. tree induction WSJ PennTB,
MNLI

—

Table 5.3: Summary of syntactic properties observed in self-attention heads of vari-
ous Transformer models. The evaluation methods used are: (a) dependency (dep.)
or constituency (const.) tree induction, (b) dependency alignment, (c) dependency
accuracy.

this problem and treat the attentions as relations between words. See Section 3.3
for details.

• Traditional linguistic structures are trees, whereas the attention mechanism is
generally a complete graph. It could be possible to adapt the Transformer ar-
chitecture to work with more tree-like-shaped attentions (Wang et al., 2019a).
However, it would then diverged from the original network we want to anal-
yse.

The questions we would like to answer in this section are the following: How much
syntax is hidden in the self-attention weight-matrices? Which attention heads match
known syntactic features? Is it possible to infer complete syntactic trees form self-
attentions weight-matrices without any supervision?

We divide the analysis into three parts: searching for dependency syntax, search-
ing for constituency syntax, and searching for other sentence relations, such as coref-
erence links.
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5.2.4 Dependency Trees

The first observations that some of the self-attention heads exhibit behaviour related
to a syntactic structure were provided in the original paper introducing Transformer
(Vaswani et al., 2017).

Raganato and Tiedemann (2018) induce dependency trees from self-attention ma-
trices of NMT encoder. Their experiments were done for translations from English to
7 different languages. Their approach assumes that the whole syntactic tree can be in-
duced from just one attention head. For each head, they use the maximum spanning
tree algorithm (Edmonds, 1967) to add edges for pairs of tokens with high attention
weights and assure that the obtained graph is a tree. They use the tree root from the
annotated gold data to find the direction of the edges. The trees extracted in this way
are generally worse than the right-branching baseline6 and outperform it slightly for
a few heads. Nevertheless, their experiments showed that the syntactic behaviour of
individual heads changes along the layers and the most syntactic heads in NMT ap-
pear at the top layers of the encoder. The results are visualized in the overview in
Figure 5.11 under letter F.

Following articles focused on the analysis of individual features and classification
of Transformer’s self-attention heads.

Vig and Belinkov (2019) apply multiple metrics to examine properties of atten-
tion matrices computed in GPT-2 language model. They showed that in some heads,
the attentions concentrate on tokens representing specific POS tags, and the pairs of
tokens are more often attended one to another if they are connected by an edge in de-
pendency tree. They observe that the strongest dependency alignment occurs in the
middle layers of the model (4th and 5th counting from the input out of 12 layers in
total). They also point that different dependency types (relation labels) are captured
in different places of the model. Attentions in upper layers align more with subject
relations whereas in the lower layer with modifying relations, such as auxiliaries, de-
terminers, conjunctions, and expletives. This is also related to the fact that the higher
the layer, the more distant the attention connections are. See letter D in Figure 5.11.

Voita et al. (2019) analyzed NMT encoders of translation systems from English
to three European languages and also observed an alignment with dependency re-
lations. They picked four types of dependency labels (noun subject, direct object,
adjective modifier, and adverbial modifier) and measured how t extent they are cap-
tured by individual self-attention heads. -They separately address the cases where a
verb attends to its dependent subject, and a subject attends to its governor verb. The
heads with more than 10% improvement over positional baseline7 were identified as
syntactic. Such heads were found in all encoder’s layers except from the first one.
6 The right-branching baseline is a tree where each token is governed by its left neighbour.
7 In the positional baseline, the most frequent offset is added to the index of relation’s dependent/governor

to find its governor/dependent, e.g., for the adjective-to-noun relations in English, the most frequent
offset is +1.
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In the head-pruning experiments, which we described in Section 5.2.2, the authors
showed that the share of syntactic heads rises from 17% in the original model to 40%
when 75% heads are cut out, while a change in BLEU is negligible. These results sup-
port the claim that the model’s ability to capture syntax is essential to its performance
in not syntactic tasks.

A similar evaluation of dependency accuracy, but for BERT pre-trained model, was
conducted by (Clark et al., 2019). They identify syntactic heads that significantly out-
perform positional baseline for syntactic labels: prepositional object, determiner, di-
rect object, possession modifier, auxiliary passive, clausal component, marker, phrasal
verb particle. Most of the syntactic heads were found in the middle layers (4th to 8th
out of 12). However, there exist no single heads that would capture all the relations
of one type.

In another experiment, Clark et al. (2019) induce dependency tree from attentions.
Instead of extracting structure from each head (Raganato and Tiedemann, 2018) they
use probing to learn the weights of individual attention heads and then use maximum
spanning tree on the weighted-average of the attention matrices. This approach pro-
duces trees with 61% Unlabeled Attachment Score (UAS) and can be improved to 77%
by making weights dependent on the static word representation (fixed GloVe vectors).
Both the numbers are significantly higher than the right-branching baseline (27%).

We conduct a related analysis for English (BERT) and multilingual model (Multi-
lingual BERT (mBERT)) in (Limisiewicz et al., 2020). We observe that the information
about one dependency type can be split across many self-attention heads. In other
cases, the opposite may happen: many heads perform the same syntactic function.
Examples of two heads aligned with dependency relations are shown in Figure 5.10.
We introduce algorithms for averaging self-attention matrices to obtain better depen-
dency accuracy than in a single matrix. Furthermore, we extract labelled dependency
trees from the averaged heads and achieves 52% UAS and show that in the multi-
lingual model (mBERT) specific relation (noun subject, determines) are found in the
same heads across typologically similar languages.

5.2.5 Constituency Trees

Less effort was devoted to analysing attention heads in terms of syntactic phrases and
deriving constituency tree structures.

In Mareček and Rosa (2019), we examine the encoder of Transformer NMT sys-
tem for translation between English, French, and German. We observe that in many
heads, continuous sequences of words attend to the same token, forming shapes sim-
ilar to balusters (Figure 5.7). Furthermore, these continuous sequences often overlap
with syntactic phrases. This notion is employed in our method for constituency tree
induction. We compute weights for all such continuous sequences of tokens across
all heads by summing the respective attentions. Then we induce constituency trees
using the CKY algorithm (Ney, 1991). As a result, we produce trees that achieve up to
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Figure 5.10: Self-attentions in particular heads of a Language Model (BERT) aligns
with dependency relation adjective modifier and object. The gold relations are marked
with red crosses.
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32.8% F1 score for English sentences, 43.6% for German and 44.2% for French.8 The
results can be improved by selecting syntactic heads and using only them in the algo-
rithm. This approach requires a sample of 100 annotated sentences for head selection
and raise F1 by up to 8% in English.

The extraction of constituency trees from several Transformer-based Language
Models was described by Kim et al. (2020). They present a comprehensive study
that covers many different pre-trained networks, including BERT and Generative Pre-
Trained Transformer (GPT)-2. Their approach is based on computing distances be-
tween each pair of subsequent words. In each step, they perform tree branching in the
place where the distance is the highest. The authors propose three distance measures
for pairs of contextual embeddings in a given layer: cosine, L1, and L2 distances; and
two measures for comparing attention distributions of the subsequent words in each
self-attention head: Jensen-Shannon and Hellinger distances. The best parse trees,
which were extracted from XLNet-base model using Helinger distance on averaged
attentions in the 7th layer, achieved 40.1% F1 score on WSJ Penn Treebank. Generally,
attention distribution distances perform better than contextual vector ones. Authors
also observe that models trained on common language modelling objective (i.e., next-
word prediction in GPT) captured syntax better than masked language models (e.g.,
BERT). In line with the previous research, the middle layers of analyzed networks
tend to be more syntactic.

5.2.6 Syntactic Information across Layers

Figure 5.11 summarizes the evaluation of syntactic information across layers for dif-
ferent models and approaches. The values are normalized so that the best layer for
each method has 1.0. The methods A), B), C), and G) show undirected UAS trees ex-
tracted by probing the n-th layer (Hewitt and Manning, 2019; Chi et al., 2020). The
method D) shows the Dependency alignment averaged across all heads in the n-th
layer (Vig and Belinkov, 2019). The methods E) and F) show UAS of trees induced
from attention heads by maximum spanning tree algorithm (Raganato and Tiede-
mann, 2018; Limisiewicz et al., 2020).

In Transformer-based language models (BERT, mBERT, and GPT-2), middle layers
are the most syntactic. In the NMT models, the top layers of the encoder are the most
syntactic. However, it is important to note that the NMT Transformer encoder is only
the first half of the whole translation architecture. Therefore the most syntactic layer
is, in fact, in the middle of the process. In RNN Language Model (ELMo) the first
layer is more syntactic than the second one.

8 The evaluation was done on 1000 sentences for each language parsed with supervised Stanford Parser.
9 The results for the best layer (corresponding to value 1.0 in the plot) are: A) 82.5; B) 79.8; C) 80.1; D) 22.3;

E) 24.3; F) en2cs: 23.9, en2de: 20.9, en2et: 22.1, en2fi: 24.0, en2ru: 22.4, en2tr: 17.5, en2zh: 21.6; G) 77.0.
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Figure 5.11: Relative syntactic information across attention models and layers.9

We conjecture that the initial Transformer’s layers capture simple relations (e.g.,
attending to next or previous tokens) and the last layers mostly capture task-specific
information. Therefore, they are less syntactic.

We also observe that in supervised probing (Hewitt and Manning, 2019; Chi et al.,
2020), relatively better results are obtained from initial and top layers than in unsuper-
vised structure induction (Raganato and Tiedemann, 2018; Limisiewicz et al., 2020),
i.e., the distribution across layers is smoother. It suggests that the syntactic structure
could be memorized to a more considerable extent in the probe instead of being cap-
tured by non-syntactic layers.

5.2.7 Other Relations between Words

Self-attention heads do not capture only syntactic relations. Besides the trivial ones,
which were overviewed in Section 5.2.1, there are heads that exhibit rather semantic
or discourse functions. Vaswani et al. (2017) claim that some of the attention heads in
the Transformer NMT encoder are apparently involved in anaphora resolution (coref-
erence). Clark et al. (2019) found a similar head performing coreference in the BERT
model. This head achieved 65% accuracy at linking the coreferent to its antecedent,
which is comparable to rule-based coreference resolvers. This is a very good result;
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note that the learning is fully unsupervised. The attention head is particularly capable
of fuzzy matching between synonyms.

5.3 Interpretability of Attentions Not as Easy as Expected

There has been a substantial amount of work done on interpreting attention mech-
anisms across different tasks and architectures. Many papers suggested reasonable
explanations of the behaviour of the attention models, and it was generally assumed
that each attention mechanism could be explained. For example, Bahdanau et al.
(2014) consider the attention is the explanation and does not dispute its validity in
any way. However, in 2019 several papers appeared (Jain and Wallace, 2019; Serrano
and Smith, 2019; Pruthi et al., 2019) showing that some of the interpretations may be
useless. Serrano and Smith (2019) suggest that an interpretable attention model must
“not only suggest explanations that make sense to people, but also ensure that those
explanations accurately represent the true reasons for the model’s decisions.” This is
sometimes called a faithful explanation (Ross et al., 2017).

The basic questions that these articles raised are:
• How do the model predictions change if we change the distributions of attention

weights?
• Would alternative (or even contra-factual) attention weights necessarily yield

different results?
• How much do the attention weights correlate with the importances of input

representations?
Earlier studies (Serrano and Smith, 2019; Pruthi et al., 2019) focused mainly on

the text classification tasks, i.e., the tasks where a single sequence is classified into a
small number of classes and concluded that these tasks do not satisfy their definition
of being interpretable. Vashishth et al. (2019) extended the analysis to more com-
plex tasks and showed that attention weights are interpretable in the architectures, in
which attentions are essential for models predictions. In simple architectures, where
the function of the attention mechanism may be equally performed by RNN gating
units, the interpretability is questionable.

In the following text, we show three methods addressing the questions about in-
terpretability of different types of neural architectures. This section aims to show that
we cannot blindly interpret the attention weights as importances of individual inputs
for the network decisions. We always have to bear in mind that the information flow
in the network may be different than expected.

5.3.1 Eliminate the Highest Attention Weight

One of the experiments that attempt to disprove the direct interpretability of atten-
tions was proposed by Serrano and Smith (2019). It is based on zeroing out the high-
est attention weight from the attention distribution and measuring how it affects the
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model’s output distributions. All the experiments were done at test time; training of
the model remained unchanged.

Consider a trained model which is applied to a test data and consider one attention
layer inside the model which is going to be examined. For each instance of the test
data, select the most attended input component i∗ (the one with the highest attention
weight), leave it out by setting the weight to 0, and renormalize all the other weights
so that they sum to 1. How does it affect the model? The impact of such change can
be measured using Jensen-Shannon (JS) divergence of the output distributions over
labels10 or by examining how many final decisions of the model were flipped.

Serrano and Smith (2019) performed experiments on single sequence tasks of topic
classification and sentiment analysis. Not surprisingly, when αi∗ was small, it caused
almost no changes in the output distribution. However, even for larger attention
weights as 0.4, the JS divergences were still close to zero. The number of model deci-
sions that were flipped (changed from 0 to 1 or from 1 to 0) was also relatively small.
Only slightly more than 10% of decisions has changed. These results suggested that
the interpretation of such single-sequence tasks is at least questionable.

Vashishth et al. (2019) categorize NLP tasks into the three groups according to their
inputs and outputs:

• Single sequence tasks, e.g., sentiment analysis, topic classification,
• Pair sequence tasks, e.g., natural language inference, question answering,
• Generation tasks, e.g., machine translation, text summarization.

Unlike Serrano and Smith (2019), who tested their method only on the single sequence
tasks, they applied the same method also on the pair-sequence and generation tasks
and reported much more apparent correlations on them. Figure 5.12 shows that in the
machine translation task, the components which are important according to the at-
tention weights really have an impact on the results and zeroing the attentions harms
the model predictions. They conclude that attention weights are interpretable in the
architectures where attentions are essential for models predictions and do not only
behave as gating units.

Serrano and Smith (2019) also showed results for different model architectures.
They compared

• RNN architecture with an attention layer on top
• Convolutional Neural Network (CNN) with an attention layer on top
• no encoder, only one attention layer looking at the input word embeddings

and showed that zeroing out the attentions in the architecture without encoder proved
to have a higher effect on the number of decision flips. This is probably caused by the
fact that zeroing out an attention weight really eliminates the word from computa-
tions. In contrast, RNN may propagate information about the important words to the

10 To be able to assess the magnitudes of the JS divergence, the authors compare it with the JS divergence
after erasure of a random component r from the attention input. The difference between these two JS
divergences should then correlate with the differences of the zeroed-out attention weights αi∗ − αr.
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Figure 5.12: Eliminating the highest attention weights affects the output distributions.
Comparison for different types of NLP tasks. Reprinted from (Vashishth et al., 2019,
Figure 3).

following representations. In CNN, information about the word can be present in as
many components as the window size is. The results are shown in Figure 5.13.

5.3.2 Change the Whole Attention Distribution

Another approach was suggested by Jain and Wallace (2019). Instead of zeroing out
one attention weight, they propose to change the whole distribution of weights at
once and measure their impact on predictions. Putting together the works by Jain
and Wallace (2019), Vashishth et al. (2019), and Wiegreffe and Pinter (2019), we found
four tested variants for changing the attention weights:

• uniform – distribute the weights uniformly,
• random – randomly sample weights from the uniform distribution U(0, 1) and

normalize,
• random permutation – scramble the original weights, reassigning each value to an

arbitrary, randomly sampled index,
• adversarial attention - search for such attention distribution that differs as much

as possible from the original attentions, but at the same time, does not substan-
tially change the predictions.

Moreover, there are two possibilities when to apply the changes. We can either
use the original trained model and apply the changes of attention weights at inference
time or manipulate with attention weights during training so that the other parame-
ters of the model could adapt to these different conditions.

First, it is necessary to answer an important question: Is the attention mechanism
needed for a given task at all? Wiegreffe and Pinter (2019) argue that “if attention
models are not useful compared to very simple baselines, i.e. their parameter capac-
ity is not being used, there is no point in using their outcomes for any type of expla-
nation.” They performed a simple baseline experiment in which all attention weights
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Yahoo IMDB
Yes No Yes No

Yes 0.5 8.7 Yes 2.2 12.2
No 1.3 89.6 No 1.4 84.2

Amazon Yelp
Yes No Yes No

Yes 2.7 7.6 Yes 1.5 8.9
No 2.7 87.1 No 1.9 87.7

Yahoo IMDB
Yes No Yes No

Yes 1.2 3.3 Yes 3.4 14.7
No 2.1 93.4 No 2.6 79.3

Amazon Yelp
Yes No Yes No

Yes 4.4 13.1 Yes 3.3 11.1
No 5.4 77.0 No 4.0 81.6

Yahoo IMDB
Yes No Yes No

Yes 2.5 18.2 Yes 6.7 34.7
No 3.7 75.7 No 3.2 55.4

Amazon Yelp
Yes No Yes No

Yes 13.8 25.8 Yes 8.4 18.0
No 6.0 54.3 No 5.2 68.4

a) recurrent neural network

b) convolutional network

c) no encoder

Figure 5.13: How eliminating the highest attentions affects the model’s decisions.
Comparison of different architectures. Reprinted from Serrano and Smith (2019, Fig-
ure 9) under CC-BY-4.0 licence.

were frozen and uniformly distributed over the input states, both during training and
testing. The idea is that if the results of such a network with fixed attentions are com-
parable to the results of the original network with trained attentions, we can say that
the attention mechanism is unnecessarily complex and useless for that task. However,
we cannot say that the attention weights of the original network are not interpretable.
They might be, since it may be convenient for the network to use the attention mecha-
nism, but at the same time, the weights may be very random, and there may be a high
variance between two independently trainined models. The irrelevance of trained at-
tentions may be partially confirmed by an experiment in which a network is trained
normally, but the attention weights are frozen to uniform only during the inference
time. Then, if the results are still similar, we can say that the attention model is really
not interpretable, since the weights do not matter at all. Similar experiments can be
done with the random and random permutation baselines.

The results across a variety of different tasks were reported by Vashishth et al.
(2019), and we show their results in Figure 5.14.

The differences between the results for the single sequence tasks (SST, IMDB) are
very small. If the attention weights were fixed already in the training phase, the rela-
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Figure 5.14: Performance comparison between the original models and the baseline
models using uniform, random, or permuted attention weights. The results are taken
from Vashishth et al. (2019).
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tive drop in performance is about 1% compared to the original model. Therefore, the
attention mechanism is not necessary for this type of tasks. 11

If the originally trained model was used instead, but the attention weights re-
mained fixed to uniform/random/permuted during the inference, the performance
drops are higher. It is still quite small for the SST task, which means that the attention
weights of the original models cannot be interpreted since they are irrelevant for the
predictions. The performance drop on the IMDB dataset is higher, so the attention
weights are sometimes needed, but they bring only at most 7% improvement.

The performance drops on the pair sequence tasks (SNLI, CNN) and generation
tasks (Multi30k, NC) are far more substantial, which proves the importance of the
attention model in these tasks.

All the three baseline approaches of changing the attention distribution showed to
have a similar impact on the models.

Jain and Wallace (2019) introduced a method called adversarial attention with the
aim of “explicitly seek out attention weights that differ as much as possible from the
observed attention distribution and yet leave the prediction effectively unchanged.”
They want to examine whether the attention models provide transparency (Lipton,
2018), i.e. whether the attention weights explain why the model generated a particu-
lar output. They claim that if such adversarial attention distributions are found, they
may be viewed as an alternative and equally plausible explanation for the same output
and, therefore, violate the property of transparency. Their approach aims to find k ad-
versarial attention distributions α(i) by maximizing their Jensen-Shannon divergence
from the original attention distribution α and keeping the new output distributions
similar to the original distributions. They show that for the single-sequence and pair-
sequence tasks, they can find many mutually different attention weight distributions
with Jensen-Shanon Divergence about 0.512 and conclude that the explainability of
attention weights in such tasks is thus questionable.

However, Wiegreffe and Pinter (2019) pointed out that the adversarial distribu-
tions proposed by (Jain and Wallace, 2019) do not confirm non-explainability of the
attention model, because the attentions were not assigned arbitrarily by the model,
but were computed separately on top of the originally trained parameters. Moreover,
the adversarial distributions were computed independently for each instance, which
increased the degree of freedom and therefore, the adversarial attentions were easy
to find.
11 We would need to investigate further what are the 1% of cases for which the original model is better; these

may be the hard cases that cannot be solved by the baseline models. However, it may also be possible
that increasing the number of parameters by enlarging the vector sizes of the baseline models would also
bring such improvement.

12 Note that the Jensen-Shannon divergence between two categorical distributions is bounded from above
by 0.69.
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Model Objective
function

Gender identification Sentiment analysis
Acc. Attn.mass Acc. Attn.mass

orig. 100.0 99.2 70.7 48.4
Embeddings + Attention penal. 99.2 0.8 48.4 8.7

unused 66.8 – 48.9 –
orig. 100.0 96.8 76.9 77.7

BiLSTM + Attention penal. 100.0 < 10−6 61.0 0.07
unused 63.3 – 49.1 –
orig. 100.0 80.8 90.8 59.0

BERT + Mean pooling penal. 99.9 < 10−3 90.6 < 10−3

unused 72.8 – 50.4 –

Table 5.4: Accuracy of various attention models and their attention mass on the im-
permissible tokens. A comparison between the original models (orig.), models with
penalized impermissible tokens (penal.) and models not using these tokens at all (un-
used). These results were taken from Table 3 of the original paper Pruthi et al. (2019).

5.3.3 Do Not Attend to Useful Tokens

Unlike Jain and Wallace (2019) and Serrano and Smith (2019), who modified the at-
tention distributions of a trained model post-hoc, Pruthi et al. (2019) proposed a fully
trained method interfering the model only with a different training objective. They
construct a set of simple tasks. Each task has a known set of tokens that are needed for
that task. They mark these tokens as impermissible and penalize them in the objective
function. They perform experiments on three architectures:

• Static embeddings + Attention mechanism
• Recurrent network + Attention mechanism
• BERT + Mean pooling
In Table 5.4, we show the results of the following two of their tasks:
• Gender Identification – labelling Wikipedia biographies with gender (female or

male). Impermissible tokens here are all gender pronouns (he, she, himself,
herself etc.)

• Sentiment Analysis with Distractor Sentences – labelling movie reviews with a sen-
timent (positive or negative). A distractor sentence was added to each movie,
and all original movie-review sentences were treated as impermissible.

In the Gender identification task, we can see that even though when the gender
pronouns are omitted from the data, the accuracy is at most 72.8%, with only mini-
mal attention paid to the pronouns (less than 1% of attention mass) the accuracies are
almost perfect (at least 99.2%). This shows that even though the attention may be di-
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minished, the models are still able to rely on them. In the Sentiment analysis task, we
can see that reducing attention mass to impermissible tokens sometimes reduces over-
all accuracy. The drop in accuracy depends on the complexity of the model. Whereas
we observe more than 20% drop for the simple Embeddings+Attention model, the
drop for BERT model is only 0.2%, even though the attention mass to impermissible
tokes was lower than 0.001%. This can be explained by the fact that both RNN and
BERT can transfer the needed information from one token to the contextual represen-
tations of other tokens.

5.4 Conclusion

The attention mechanism is currently a central and important component of neural
networks used for solving NLP tasks. Naively, individual attention weights may be in-
terpreted as importances of individual tokens or dependencies between them. Many
studies appeared showing that attention mechanism resembles some linguistic rela-
tions. For example, cross-lingual attentions in machine translations align counterpart
words, some of the self-attentions heads capture specific syntactic functions between
words, some of the heads resemble coreferential links.

We categorized the self-attention heads into eight patterns and showed their dif-
ferent distributions in the BERT and NMT models. We also summarized the distribu-
tions of syntactic heads across layers and different models.

However, we must realize that the attentions might be sometimes misleading and
may carry very different information from which we would think based on the at-
tended tokens.

• Even the attention with only a minimal weight may be significant, and, con-
versely, the information from the most attended token may be discarded by the
model.

• The more complex models as RNNs or Transformers may easily transfer any in-
formation between individual contextual representations of words. Therefore,
attention to a contextual representation of one token may obtain properties of a
different token.

• The attentions may be misleading mainly when a too strong neural network with
many parameters is used on a very simple and effortless task.
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Contextual Embeddings as Un-hidden States

In this chapter, we deal with contextual word embeddings. We start by briefly looking
at how they emerged as reinterpretations of hidden states of neural models trained
for various tasks in Section 6.1. The main section of this chapter, 6.2, summarizes the
current state of knowledge about various kinds of linguistically interpretable features
that can (or cannot) be found in contextual embeddings, going from morphology and
syntax to semantics, world knowledge and common sense. Section 6.3 takes a different
point of view, investigating to what extent these linguistic features can be found in
individual models and model layers. We also touch on the multilingual aspects of
contextual embeddings in Section 6.4.

By contextual word embeddings, we understand word representations taken from
neural models trained for a Natural Language Processing (NLP) task, such as lan-
guage modeling. As the model typically only needs unannotated plaintext data for
training, which are available in large quantities, very strong contextual word embed-
dings can be obtained in this way. These can then be directly used in many end tasks,
where training even a very simple classifier on top of the contextual word embeddings
often reaches or outperforms previous state-of-the-art. Those previous approaches
are typically sophisticated models designed and tuned specifically for the end task
but severely limited by only being trained on the end task dataset, not making full
use of the general language knowledge learnable from the available vast plaintext
data.

The general understanding is that this power of contextual word embeddings
comes from the fact that a wide range of general features emerge in the represen-
tations through training, capturing various important properties of the input words
and sentences. While one might expect the model to learn only features necessary to
solve the task for which the model is trained, it seems that with a sufficiently chal-
lenging and general training task, the model cannot easily “cheat” the task by learn-
ing only a handful of features and ignoring most of the information on the input.
Rather, it seems that it becomes economical for the model to latently develop some
general language understanding and use this to solve the task eventually. Thus, it is of
great interest to investigate this phenomenon, analyzing the contextual word embed-
dings to see whether the emergent features somehow correspond to the traditional
ways and abstractions in which linguists think about language understanding, such
as morphology, syntax, and semantics.
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6 CONTEXTUAL EMBEDDINGS AS UN-HIDDEN STATES

6.1 How Contextual Embeddings Came to Be

Static word embeddings were a key invention that made it possible to efficiently use
Neural Networks (NNs) for processing textual language data. Much has been said
about the words’ properties captured by the word embeddings (see Chapter 4). How-
ever, they are unable to capture information about the immediate context of the word;
they are type-based, not token-based representations, fixed for the model’s vocabu-
lary of words (or subwords).1 Static word embeddings are thus somewhat impractical
for handling homonymous or polysemous words, where the word needs to be under-
stood differently based on its context.2

Instead, what has been the mainstream approach practically since the boom of
deep neural NLP are NN architectures which look at input words together with their
immediate context, using Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and attentive meachanisms. In CNNs, filters look at short spans of
words at once. In RNNs, the internal state when processing a word is influenced by
the previous words; or also following words in case of Bidirectional Recurrent Neural
Networks (biRNNs). Attentive and self-attentive mechanisms allow the network to
attend selectively to multiple words at once, or, while processing a word, to attend to
other words that provide important context.

As an RNN iterates over the sequence of input words, the RNN cell passes through
a series of hidden states until reaching a final state at the end of the sequence. One way
of looking at that, especially if the individual input words are of no further interest to
us, is that the hidden states are only temporary intermediate states, and only the final
state is of interest and represents the whole sentence.

In many cases, however, we are still interested in the individual words, e.g., in the
case of Part of Speech (PoS) tagging or Named Entity Recognition (NER).3 In such
cases, we are thus mostly interested in the hidden states – which might also be called
output states in such case, but the term hidden states is much more common – as these
may serve as representations of the words in the context of the sentence and the end
task. Indeed, already the seminal work by Bahdanau et al. (2014) did choose to use the
hidden states as representations of the input words for Neural Machine Translation
(NMT) with great success, even though Machine Translation (MT) is, in principle, a

1 In this chapter, we will mostly talk about words, even if this can often mean subwords. The main reason
is that it is much more complicated to assign linguistic categories to subwords than to words. Therefore,
all of the analyses of word representations that operate on subword representations need to deal with this
issue, typically by deriving word representations by averaging the subword representations, as has been
discussed in Section 3.3.2.

2 While there have been attempts at disambiguating individual word senses and assigning them different
word embeddings, such as the work of Neelakantan et al. (2015), such methods are somewhat limited,
never became the mainstream in NLP, and eventually mostly fell out of use.

3 Leaving aside the fact that the RNN final state usually turns out not to be a very good representation of
the sentence (Graves, 2014; Hochreiter et al., 2001).
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sentence-to-sentence mapping task and so using the RNN final state as input repre-
sentation might theoretically make more sense.

In this way, hidden states of recurrent neural encoders started to be used as con-
textual word representations, at first only as intermediate representations within a
model trained for a given task.4 Gradually, however, researchers have realised that
these representations are often more general and can be used as pre-trained word
representations even for other tasks than the one they were originally trained for,
within the concept of transfer learning. To understand why this is possible, many
studies investigated the representations using probing and other methods, showing
that, while containing some end-task-specific information, the representations often
capture some linguistically interpretable features to some extent. For example, a lin-
ear projection of the representations can often be found which quite accurately maps
onto some traditional PoS labels.

Once hidden states started to be used as word representations independently of
the models within which they were trained, they started to be referred to as contextual
word embeddings (see Section 2.4); since then, we could also metaphorically say that
the hidden states stopped being hidden.5 The neural model which is trained and used to
provide the hidden states is typically referred to as a contextualizer, as it enriches static
word embeddings with information based on the immediate context of the words.

While nearly any model with a word-level encoder trained for any NLP task can be
used as a contextualizer, it has been found that some models work better than others.
At first, NMT models were typically used, with CoVe Context Vectors (CoVe) being
a typical representative. Later, it has been found that the Language Model (LM) task
seems to lead to better, more general and more expressive contextual word embed-
dings, with Embeddings using Language Models (ELMo) being the first widely suc-
cessful contextualizer. Further research then led to even more advanced and special-
ized architectures and training methods. Currently, the most well-known and most
successful contextualizer is Bidirectional Encoder Representations from Transformers
(BERT) and its subsequent derivates.

6.2 What do Hidden States Hide?

In the next sections, we try to summarize the current state of knowledge about features
that tend to emerge in contextual word embeddings and can be mapped to various
linguistic abstractions.

Generally, as explained, e.g., by Liu et al. (2019a), basic linguistically interpretable
features can be easily extracted from the representations, even with a linear classifier

4 It is usually assumed that the recurrent encoder’s ith hidden state can be thought of as a representation
corresponding to the ith input word. While this is by no means theoretically guaranteed, it has been
found that, in practice, this mostly holds, as we discussed in Section 3.3.

5 As explained in Section 2.4, in our text, we often do not strictly differentiate between hidden states and
contextual word embeddings.
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(i.e., they are linearly encoded in the representations). For more fine-grained abstrac-
tions, such as higher-order syntactic relations or semantics, it might be necessary to
train a more powerful Multi-Layer Perceptron (MLP) extractor; and still, some infor-
mation simply seems not to be captured at all (e.g., third-order syntactic relations).

We would like to note that several surveys on this topic have already been pub-
lished, which we have partially used as inspiration and which we can recommend
to a reader interested in a more extensive list of existing work on the topic; in our
book, we rather focus on summarizing the existing knowledge than on providing an
exhaustive overview of all existing studies.

• Belinkov and Glass (2019) review analysis and visualization methods, challenge
sets (probing datasets), and include a table of works categorized by the compo-
nent they analyze, the linguistic property they look for, and the method they
use.6

• Rogers et al. (2020) review studies that analyze and interpret the representations
from BERT.

6.2.1 Morphology

In the last years, multiple researchers demonstrated that hidden states of trained NLP
models usually encode various morphological information to some degree. They
mostly focused on PoS, but also investigated various other more fine-grained mor-
phological features. They mostly utilized probing with linear models or MLPs (see
Section 3.1).

The general finding is that all models trained for any NLP task, such as MT or LM,
seem to capture morphological information to some extent (Belinkov et al., 2017a;
Peters et al., 2018a; Tenney et al., 2018). All contextual embeddings seem to capture
morphology to a greater extent than static embeddings, such as Skip-Gram (SG) or
Global Vectors for Word Representation (GloVe) (Belinkov et al., 2017b; Blevins et al.,
2018; Tenney et al., 2018). This is demonstrated by the probing models being able to
predict PoS from the contextual embeddings with higher accuracies than from static
embeddings.

In multilayer contextualizers, we have the option to extract hidden states to use as
contextual embeddings from various layers. As we will discuss in Section 6.3.2, it has
been found that linguistic features tend to be mostly captured at different layers based
on the architecture of the contextualizer. For RNN-based contextualizers, such as
ELMo, all linguistic features tend to be most strongly captured in the first layer. How-
ever, for Transformer-based contextualizers, different linguistic features are spread
across the layers differently; morphology tends to be captured most strongly in the
hidden states of the initial and middle layers of the model.

6 https://boknilev.github.io/nlp-analysis-methods/table1.html
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As we will discuss in more detail in Section 6.3.3, contextual embeddings obtained
from models trained for the LM task tend to capture morphological features more
strongly than models trained for other tasks (such as MT or autoencoding). This does
not hold if the task itself contains strong morphological signals (such as PoS tagging,
syntactic parsing or Semantic Role Labelling (SRL)), in which case PoS can be often
predicted from the hidden states with an accuracy approaching 100% (Blevins et al.,
2018). A comparison of the PoS probing accuracies for several pre-training tasks can
be seen in Figure 6.4 on page 128.

There is also evidence that models which apply a character-level CNN to the inputs
tend to capture morphological features to a greater extent (Belinkov et al., 2017a).

6.2.2 Syntax

We have already discussed the possibility of looking for syntactic features in self-
attentions (see Chapter 5). Probably an even wider range of works have successfully
looked for syntactic features in contextual word embeddings.

As even static embeddings have been shown to capture morphology to a consider-
able extent, it came as no surprise that it is also captured by contextual embeddings.
However, as static embeddings cannot in principle capture the syntactic structure of
a sentence, probing contextual embeddings for syntactic abstractions is of great inter-
est.

Constituency Syntax

Various authors have shown that most deep NN models trained for NLP tasks do
encode features which can be mapped to constituency syntax.

Most works focus on predicting syntactic constituent labels,7 showing that these can
be predicted from contextual embeddings with much higher accuracy than from static
embeddings, suggesting that such syntactic features emerge in the model. This has
been shown already for simple MT and LM models (Shi et al., 2016; Blevins et al.,
2018), and later confirmed also for more complex contextualizers (Tenney et al., 2018;
Peters et al., 2018b). The authors used classical probing, as well as other methods,
such as edge probing of Tenney et al. (2018), probing gold node pairs for the constituent
labels, or indirect evidence provided by improvements observed when contextual em-
beddings are used as input for training a syntactic parser (Peters et al., 2018b). These
results suggest that capturing the language’s syntax helps the models in understand-
ing the language.

7 E.g., VP (verb phrase), NP (noun phrase), or SINV (inverted declarative sentence, using the VSO word
order).
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The trained models have been also shown to capture features relevant for other lin-
guistic abstractions, such as chunking boundaries8 or Combinatory Categorial Gram-
mar (CCG) supertags9 (Liu et al., 2019a).

Dependency Syntax

The first studies aimed at looking for dependency syntax in trained neural network
models looked at activations of individual neurons. For example, Karpathy et al.
(2015) found some patterns in gate activation statistics of individual neurons in Long
Short-Term Memory (LSTM) cells in character-level LMs that correspond to various
long-range dependencies in the sentence, concluding that such a neuron can capture,
e.g., the correspondence relation of quotes or brackets.

Blevins et al. (2018) train a binary classifier on contextual representations of pairs
of words, predicting whether there is a dependency edge between the two words. All
of the probed models showed a considerable amount of syntactic features.10

Tenney et al. (2018, 2019) use edge probing to probe contextual embeddings for de-
pendency syntax. They use gold information about the dependency tree structure,
taking gold syntactic edges as input and trying to predict the dependency edge re-
lation label from the contextual representations of the two words. They find that
information about the edge label is rather easy to extract from the representations,
suggesting that they do capture features that correspond to the syntactic relations
abstractions.

Hewitt and Manning (2019) take an unusual approach, designing structural probes
and probing for various numeric structural descriptors rather than training binary
or multiclass classifiers. In this way, they are able to find linear transformations from
ELMo and BERT contextual embeddings to node tree distance and to node tree depth,
which achieve sufficiently high performance for the authors to claim that “entire syn-
tax trees are embedded implicitly in deep models’ vector geometry”.11

8 In the syntactic sense, a chunk is a constituent phrase; the task of chunking, which is a simplification of the
task of full syntactic parsing, typically consists of splitting the sentence into a flat sequence of unlabeled
chunks, instead of a hierarchy of labeled constituents.

9 CCG (Steedman and Baldridge, 2011) supertags encode partial constituent labels using forward and back-
ward slashes; e.g., “the” could be labeled as NP/N as it must be completed by a noun (N) from the right
to form a noun phrase (NP).

10 Hidden states from an MT model led to a 73% accuracy, and hidden states from an LM model led to an
80% accuracy in probing, compared to 95% accuracy achieved by using hidden states from a syntactic
parser model; the random baseline is 50%.

11 We see these claims as probably inadequately strong, as the authors do not convincingly show that the
syntactic features are indeed embedded in the representations and not just, to some extent, memorized
by the strong probing classifier.
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More Complex Syntactic Relations

Liu et al. (2019a) investigate ELMo, finding that the contextual representations do not
capture information about third-order syntactic relations (great-grandparent predic-
tion task) or conjuncts (identification of conjunct tokens in a coordination construc-
tion), which is manifested by the fact that a linear probe is unable to extract such
information from the representations.

A stronger MLP probe is able to perform these predictions, which Liu et al. (2019a)
interpret as the representations capturing information necessary to solve the task, but
not directly capturing features that would correspond to these more complex syntactic
abstractions. As, obviously, the task is solvable even from plain text (even though a
stronger classifier would be needed), this only means that ELMo does not forget the
necessary features from the input and stores them in such a way that they can be easily
extracted and utilized by a strong-enough classifier.

Grammatical Correctness

One of the classical views of a Language Model is that of an LM being a tool which
decides whether a given sentence is or is not valid in the given language. It is thus
quite natural to ask whether LM representations capture features that would distin-
guish between grammatical and agrammatical sentences; and whether these features
are general, or whether they are rather limited to certain structures or phenomena.

Probably the first work that looked for evidence of trained NN models captur-
ing syntax was the work of Linzen et al. (2016). The authors designed a task of pre-
dicting the grammatical correctness of a sentence, with a number of hard cases pre-
sumably requiring the model to understand morphological number agreement be-
tween subject and predicate.12 They then probed a simple single-layer unidirectional
LSTM-based LM with a logistic regression probe. Based on the negative results on
the hard cases, the authors concluded that the model does not capture this syntactic
phenomenon. However, they only used the final state of the LSTM, assuming that
it would capture information about the whole sentence. With the current state of
knowledge, we can see the flaw in the experiment, as the final state typically mostly
captures information about the corresponding word (i.e., sentence-final punctuation)
and, to some extent, neighboring words; e.g., the mean of all hidden states should
have been probed instead. Nevertheless, the authors also tried training the model di-
rectly for the end task, this time obtaining positive results, and thus concluding that
even a simple LSTM-based model is capable of learning syntax if trained to do so.

The task of predicting grammatical correctness was revisited by Liu et al. (2019a),
who trained a probe to predict token-level grammatical errors, i.e., for each token, the

12 The hard cases require a deeper syntactic understanding of language than only checking a small local
context by containing intervening nouns or phrases between the agreement participants, as in “Alluvial
soils carried in the floodwaters add nutrients to the floodplains.”.
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task is to say whether the token needs to be edited to make the sentence grammati-
cally correct; the authors posit that solving this task requires understanding of syntax
and grammar of the language. They probe ELMo representations, finding a similar
situation as with harder syntactic relations: the model captures some information nec-
essary for solving the task (as shown by a successful MLP probe), but does not capture
the information about the grammatical correctness itself (attested by an unsuccessful
linear probe). Moreover, even the stronger probe reaches rather low accuracies in
absolute terms, even though it outperforms previous state-of-the-art (which is also
rather low), suggesting that this is a rather hard task, still beyond the capabilities of
current models.

6.2.3 Coreference

In coreference, we deal with the phenomenon of several entities (typically pronouns
or noun phrases) referring to the same real-world entity.13 While based on the per-
formance of neural models on various tasks, we may assume that they have a way
of understanding this notion, we may ask how they capture this, and whether their
grasp of the phenomenon is general or limited.

The contextual embeddings seem to understand coreference in easier cases where
it can be determined from morphosyntactic cues, as shown, for example, by Peters
et al. (2018b), who find that the similarity of the embeddings of the referential pro-
noun and the antecedent noun is often high enough for correct coreference resolution.

However, in harder coreference cases which require deeper semantic understand-
ing, as represented by the Winograd coreference resolution dataset (Levesque et al.,
2012),14 the contextual embeddings typically perform poorly, only slightly outper-
forming static embeddings baselines (Tenney et al., 2018).

6.2.4 Semantics

In Chapter 4, we have seen that neural models can learn lexical semantics to a great
extent. In this section, we thus go beyond lexical semantics, particularly focusing on
semantic labels that are context-dependent, such as semantic roles or word senses.

A grave issue with any probing for semantic information is the strong threat of
falsely positive results, as many semantic ambiguities can be resolved solely based on
morphosyntactic cues. As we already know that morphosyntactic features are well
captured by the contextual embeddings, a semantic probe can easily learn to perform

13 E.g., “John told Mary he liked her, and she let him kiss her on her cheek.”, where “John”, “he” and “him”
refer to one entity (John) and “Mary”, “her” and “she” to another entity (Mary).

14 The Winograd scheme focuses on cases of coreference which are morphologically and syntactically am-
biguous and irresolvable, such as “Characters entertain audiences because they want people to be happy.”
where resolving whether “they” refers to characters or audiences requires semantic understanding or
even real-world knowledge.
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the semantic labeling based on these morphosyntactic cues, failing to reveal whether
the semantic distinction is captured in the contextual representation explicitly.

When the analyses are properly executed and carefully examined, we typically find
only mildly positive results for various specific semantic labels, showing that some se-
mantics is captured. It is rare to find a semantic feature which would be captured very
strongly in the representations; and if so, it is often the case that the seemingly seman-
tic feature can actually be very well predicted based solely on morphosyntactic cues,
and thus the probe does not prove that, beyond morphology and syntax, semantics
would also be captured.

Semantic Tagging

Various authors have probed contextual embeddings for various semantic labels, such
as semantic roles (Palmer et al., 2005),15 semantic proto-roles (Teichert et al., 2017;
Rudinger et al., 2018),16 or sem-tagging (Bjerva et al., 2016).17 The general finding
seems to be that the models do not capture deeper semantic features to a great extent,
only lightly outperforming the static embeddings baselines (Belinkov et al., 2017b;
Tenney et al., 2018).

We can also understand named entity labels18 as a kind of semantic labels. Here,
contextual embeddings seem to capture information about named entity types to
some extent, strongly outperforming a static embeddings baseline but still being far
from comparable state-of-the-art results (Liu et al., 2019a).

The good performance of some semantic label probes can usually be explained by
inspecting the results more thoroughly, revealing that the good results are obtained,
especially for the cases where the correct label can be easily determined solely from
morphosyntactic cues (Tenney et al., 2018). Thus, the experiments mostly only re-
confirm the interpretation that the representations capture morphological and syn-
tactic features, but do not seem to exhibit a deeper understanding of the meaning of
the sentence.

However, any negative result in interpreting neural networks must be taken with a
grain of salt. The aforementioned results clearly show that the probed neural models
do not seem to capture semantic features similar to various classical semantic labels.
While a plausible explanation is that the models do not capture any semantic features
at all, an alternative explanation is also possible: that the models do have a deeper
understanding of language than we have been able to show, but that the way in which
they encode the semantics of the language is so different from the labels we use that
we just have not been able to recognize it yet.
15 E.g., agent, location, purpose, direction.
16 This is a more fine-grained variant of semantic roles.
17 This is a semantic extension of PoS tagging, distinguishing, e.g., determiners into categories such as

proximal (e.g. “this”) and distal (e.g. “that”).
18 E.g., person, organization, geographical entity.
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Noun Gender

It has been already discussed in Chapter 4 that even static embeddings do typically
capture features which correspond to the morphological gender of nouns in languages
where nouns are gendered, as in Czech. However, in this section, we are rather inter-
ested in capturing the semantic gender of nouns, even and especially when this is not
morphologically marked, as in English.

Zhao et al. (2019) find that ELMo captures gender in nouns. The authors iden-
tify two gender-related principal components of the representations using Principal
Component Analysis (PCA):

• contextual gender, based, e.g., on the occurrence of a “he” or “she” pronoun in
the sentence (so, e.g., a “librarian” is disambiguated as being male or female in
the given sentence),

• occupational gender, which is the gender embedded in the word itself, either ex-
plicitly marked (e.g. “actress”) or stereotypical (e.g. a female “nurse” versus a
male “developer”).

The authors interpret this as the contextual representations being gender-biased,
which happens because of the inherent gender bias of the text corpora used to induce
the representations; the authors also present an effective way of debiasing the repre-
sentations by augmenting the training data with gender-swapped sentences. This is
related to the findings of static word embeddings capturing gender, as discussed in
Section 4.10.

6.2.5 Context

It is logical to expect contextual word embeddings to encode the context of the word
to some extent. But is it only limited local immediate context, so that we could obtain
competitive contextual embeddings just by mixing the static embeddings of several
neighboring words? Or are the embeddings also influenced by more distant words
in more intricate ways? Research shows that the strongest component of a contextual
word embedding still is the word identity, especially in shallow layers of the contex-
tualizers. However, as we go to deeper layers of the contextualizers, the contextual
embeddings capture wider and wider context, starting with immediate surroundings
but eventually being able to capture information about other words from anywhere
in the sentence.

Tenney et al. (2018) compare the ELMo embeddings both to classical non-contextu-
al embeddings, as well as to locally contextualized embeddings, obtained by applying
a word-level CNN with a kernel size of either 3 or 5 over the static word embeddings,
i.e., integrating information about 1 or 2 neighboring words at each side of the word.
They find that for morphological and syntactic probing tasks, not much is gained by
full contextual embeddings over the locally contextualized embeddings (0–2 percent-
age points); this might mean that little non-local information is encoded in the con-
textual embeddings or that non-local information is of little relevance for the probing
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tasks. The latter actually seems more likely, as the situation is quite different for the
semantic tasks; these seem to require more non-local information for the probe to
perform well, and, accordingly, the full ELMo embeddings outperform the locally
contextualized embeddings more clearly (1-5 percentage points). Thus, the conclu-
sion seems to be that ELMo embeddings are much more than just static embeddings
enriched with information about neighboring words, and do actually also capture
important non-local features from the sentence.

Ethayarajh (2019) investigated how contextual the contextual embeddings really
are. They found that the base of a contextual word embedding still seems to be a
static component shared by all occurrences of the same word. However, especially for
higher layers of multilayer contextualizers, the static component is rather weak, with
the cosine self-similarity of different occurrences of the same word getting weaker in
the higher layers, i.e., the representations are getting more context-specific.

Peters et al. (2018b) note that local syntax seems to be the dominant signal in the
contextual embeddings, encoding syntactic phrase pertinence and boundaries; i.e.,
the contextualizer does not simply combine neighboring words weighted by their dis-
tance, it does also take syntax into account.

6.2.6 Word Senses

A concept closely related to context are word senses, i.e., discriminating between mul-
tiple senses of a single polysemous word (such as “train” in “I came on a train.” versus
“I train young children.”). Trivially, static word embeddings are incapable of that dis-
tinction since the same vector is used for the word in any context. As contextual word
embeddings do take context into account and represent the word with a different
vector in each context, we may expect that the word sense distinction could be made
based on the contextual embeddings. This turns out to be true, even to the extent
that the contextual embeddings pertaining to various occurrences of an individual
polysemous word often tend to form multiple clusters or clouds corresponding to its
individual senses.

We might also be interested in the distinction between simply encoding context
and encoding features more directly corresponding to a word sense abstraction. As
a word sense is predominantly determined by the immediate context in which the
word is used, such a distinction is not trivial to make. However, there seems to be
evidence that the contextual representations do indeed go beyond simply encoding
context and actually distinguish the individual senses.

Peters et al. (2018a) use a k-nearest neighbours (k-NN)-based approach to inves-
tigate the relation of contextual word embeddings to word senses. They first com-
pute CoVe and ELMo representations of words in sentences from SemCor 3.0 (Miller
et al., 1994), a corpus with annotations of word senses. Then, for each sense of each
polysemous word, they compute a representation of the sense as the average of the
contextual embeddings of these senses of the word which occur in the training part
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Figure 6.1: Clustering of the English word “bear” according to its verb sense (corre-
sponding to Spanish “tener”) and its animal sense (corresponding to Spanish “oso”).
Reprinted from Schuster et al. (2019, Figure 2) under CC-BY-4.0 licence.

of the corpus. Then, they assign each word in the test sentences with the sense cor-
responding to the sense vector closest to the contextual vector of the word. This can
be seen as k-NN with k = 1, i.e., checking whether, given an oracle clustering of the
contextual embeddings according to word senses, the tested word would fall into the
correct cluster.

The authors find that ELMo contextual embeddings do surpass the most-common-
sense baseline (F1 65.9%) by several percentage points, showing that word senses are
captured by ELMo embeddings to some extent. This is not true for CoVe, which does not
surpass the baseline.

As the approach used does not involve training a probing classifier but rather uses
a non-parametric method, there is no risk of the sense disambiguation information
to be hidden elsewhere than in the representations themselves. Nevertheless, Peters
et al. (2018a) do not investigate how the sense information is encoded. Therefore, it
is unclear whether what the representations capture can be mapped to an actual ab-
straction over senses or whether the sense disambiguation information only consists
of information about several neighboring words.
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Schuster et al. (2019) demonstrate that, for a fixed word form, ELMo contextual
embeddings cluster according to the various senses of the word. In their example,
reprinted in Figure 6.1, they show how the contextual embeddings for the English
word “bear” cluster into two clouds, one corresponding to the verb meaning, and the
other corresponding to the animal meaning; the image also shows that the represen-
tation for the animal “bear” is closer, e.g., to “elephant” or “cat” than to the repre-
sentation for the verb “bear”. They further claim that the word sense is the strongest
signal in the contextual embeddings, as they show that the representations of a given
word with an identical sense in different contexts are more similar to each other than
representations of the same word in similar contexts but with different senses. Inter-
estingly, all of these are just side-results for the authors, as their main goal is cross-
lingual alignment of contextual word embeddings.

6.2.7 World Knowledge and Common Sense

Da and Kasai (2019) show that BERT captures some world knowledge or common-
sense information to some extent, such as how large something is or whether some-
thing is an animal. They show that using BERT for this kind of common sense reason-
ing outperforms previous approaches, but that the model still often fails, suggesting
that BERT is unable to get sufficient world knowledge from its training data.

Rogers et al. (2020) review some works in this area, concluding that BERT can per-
form well in some tasks focusing on world knowledge, reaching competitive perfor-
mance to state-of-the-art question-answering systems (Petroni et al., 2019). However,
BERT’s apparent world knowledge is rather of a stereotypical factoid nature, mostly
based on frequent cooccurrences but not able to infer more complex relations and in-
teractions (Poerner et al., 2019). The BERT model thus seems to contain some world
knowledge but is not able to use for reasoning.

6.3 What is Hidden Where?

In the previous section, we looked at what kinds of linguistic features are captured by
contextual word embeddings, disregarding where the contextual embeddings come
from. We now fill this gap by reviewing how the contextualizers differ in the num-
ber of linguistic features captured and looking at how the linguistic features are dis-
tributed among various layers of the contextualizer models.

6.3.1 Comparison of Architectures and Models

All of the contextual word embeddings, including hidden states taken from models
trained for another purpose (such as NMT models), seem to capture morphology and
syntax rather well and even a little of semantics, typically to a greater extent than static
embeddings (Tenney et al., 2018).
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In this section, we focus mostly on the effect of the architecture of the contextual-
izer; we will focus on the effect of the pre-training task in Section 6.3.3.

In general, the representations from simpler models, such as CoVe, typically seem
to be weaker than representations from the more recent and complex contextualizers,
as demonstrated by their lower probing accuracies; nevertheless, CoVe representa-
tions still typically capture the linguistic features to a significantly higher degree than
static word embeddings (Tenney et al., 2018).

Tenney et al. (2018) find that ELMo seems to capture syntax better than CoVe.19

However, this difference can be mostly explained by the underlying character-CNN
static word embeddings being more informative in this sense – i.e., already the char-
acter-based static embeddings used in ELMo seem to be significantly more syntactic
than classical word-based embeddings, and the further layers seem to add a similar
amount of contextual and syntactic information as in CoVe. It should also be noted
that these experiments did not control for the different data sizes of the contextualizer
pre-training data, with CoVe being pre-trained on a several times smaller dataset.20

Even though BERT typically outperforms ELMo on practical tasks, it does not seem
to capture the linguistic features to a considerably greater extent; it can be used to
predict various linguistic accuracies with higher accuracy than ELMo (typically by 2
to 3 percentage points), but only if the weights of the layer mix are trained on a task-
specific dataset (Tenney et al., 2018). It is possible that a considerable portion of this
difference is caused by tokenization, where ELMo uses rather standard tokenization
which matches the tokenization in the probing datasets to a great extent, while BERT
uses a purely technical splitting into subwords and may thus operate on very different
tokens than what is used in the benchmarks.

A large improvement of BERT over ELMo can be observed for Winograd corefer-
ence (see Section 6.2.3), where all previous models failed to significantly outperform
the static embeddings baseline. BERT is the first model to outperform the baseline
by 6 percentage points, suggesting that it does capture some more elaborate semantic
information.

Generative Pre-Trained Transformer (GPT) usually seems to be similar to ELMo or
slightly weaker, but still way above CoVe (Tenney et al., 2018). I.e., although perform-
ing better than BERT as an LM, it seems to be slightly weaker in capturing linguistic
features.

An exception to this general trend may be found in the work of Kim et al. (2020),
who focused on extracting constituency trees from pre-trained LMs, finding that GPT-
2 actually outperforms BERT on this task. The authors hypothesize that this may be

19 Probe accuracies consistently seem to be about 10% higher for ELMo than CoVe, regardless of whether
we probe for, e.g., constituent labels or dependency relations.

20 As CoVe is an MT model, it requires parallel data, while monolingual data are sufficient for ELMo. In
the work of Tenney et al. (2018), the particular probed models used 7 million sentences versus 30 million
sentences, respectively.
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due to the training objective, with a standard auto-recursive LM being better suited
for constituency phrases than a masked auto-decoding LM.

6.3.2 Distribution of Linguistic Features across Layers

In multilayer contextualizers, contextual representations can be taken from any layer,
or multiple layers can be concatenated or mixed.21 We now investigate into which
layers to look for what kind of linguistic features.

RNN-based models capture linguistic features in the first layer

We first look at the RNN-based models, such as CoVe and ELMo. These models pro-
totypically contain two layers of hidden states, but some authors also investigated
deeper multilayer variants of these models.

Many authors show that, especially for morphological and syntactic annotation,
the linguistic features can be best extracted by probes or projections applied to the
first layer of the model, no matter whether the network has two or more layers (Zhang
and Bowman, 2018; Liu et al., 2019a; Peters et al., 2018b). It is further claimed that the
second layer (as well as potential subsequent layers) are already more task-specific
and do not capture easily interpretable linguistic features very well (Liu et al., 2019a).

However, Peters et al. (2018a) show that for word sense disambiguation, using the
second layer of a two-layer CoVe or ELMo model for prediction of the sense class
actually leads to better results than using the first layer. This suggests that even in
the simpler models, some deeper linguistic information (such as some semantic as-
pects) is better captured in deeper layers. Nevertheless, this may also be explained
as the word senses actually being crucial for the training task (machine translation or
language modeling). This would corroborate the hypothesis of other authors that the
subsequent layers are more task-specific but go against their implication of the deeper
layers thus being less useful for extracting linguistic features.

Figure 6.2, reprinted from (Tenney et al., 2019, figure A.1), provides yet another
view on this issue. The authors show that morphological, syntactic as well as some
shallow semantic features are mostly captured in the first layer of ELMo; while not-
ing that the shallow semantic tasks – semantic role labeling and coreference – can be
mostly solved using syntactic cues. For deeper semantic tasks (semantic proto-roles
and semantic relations), the information seems to be rather equally distributed among
the first and second layer of ELMo; however, as ELMo is shown not to capture these
semantic features to a great extent, this probably does not mean that semantic features
are also captured in the second layer, but rather that they are not even captured in the
first layer.

21 E.g., for ELMo, it is a standard approach to take a weighted combination of the individual layers to utilize
for transfer learning.
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Figure 6.2: Scalar mixing weights for the ELMo encoder. Layer 0 is the character
CNN that produces per-word representations, and layers 1 and 2 are the LSTM layers.
Reprinted from Tenney et al. (2019, Figure A.1) under CC-BY-4.0 licence.

Transformers encode more complex linguistic features in later layers

With the more complex multilayer Transformer-based contextualizers, the situation
is quite different, as linguistic features seem to be more spread out across the layers.

Multiple authors have found and repeatedly confirmed that generally speaking:
• the initial layers learn morphological features (Belinkov et al., 2017a)
• the intermediate layers capture syntax (Peters et al., 2018b); different levels of

syntax are captured at different layers (Blevins et al., 2018), e.g., with constituen-
cy syntax being more local and captured at lower layers than dependency syntax
(Tenney et al., 2018)

• the later layers tend to encode more semantic features and coreference-related
features (Peters et al., 2018b)

• the final layers do not capture many linguistic features as they already seem to
be overly specialized for the language modeling training task, i.e., typically for
next word prediction (Peters et al., 2018b)

• the linguistics features generally tend to be concentrated in the intermediate
layers (Liu et al., 2019a)

• features pertaining to a given linguistic abstraction are typically not contained to
only one layer, but are spread over multiple layers (Tenney et al., 2019); therefore,
the linguistic information is best extracted by using a specifically trained scalar
mix of all the layers (Liu et al., 2019a)
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Most weight Gravity center Linguistic Layer attention
over layers of layer attention features distribution shape

11–13 11.7 Part of speech peaked
11–17 13.1 Constituency syntax very peaked
12–17 13.8 Dependency syntax very peaked
13–18 13.6 Semantic roles peaked
14–20 13.2 Named entities flat
13–22 12.7 Semantic proto-roles very flat
15–22 12.8 Semantic relations very flat
16–20 15.8 Coreference peaked

Table 6.1: Distribution of linguistic features in the 24-layer BERT-large, intepreted
from Tenney et al. (2019). For each feature type, we list an estimate of the range of
layers on which it is captured significantly more than on other layers, together with the
“center of gravity” of the layer attention, and a note how peaked or flat the distribution
of the layer attention weights is.

It is easy to note that the depth of the layers capturing the linguistic features seems
to roughly correspond to the depth traditionally assigned to the respective linguistic
abstractions;22 i.e., as we go deeper in the Transformer layers, we find deeper lin-
guistic features. Tenney et al. (2019) go as far as to claim that BERT rediscovered the
classical NLP pipeline. They demonstrate that, similarly to classical pipelines, BERT
first determines the PoS of the words, continuing with syntax and named entities,
and moving on to semantics. The division of the analyses is not hard, the individual
“steps” actually overlap and gradually develop across layers, but the authors argue
that the analysis steps still seem to depend on each other similarly as in the classical
pipelines. However, some aspects of these claims have been disputed, e.g., by Elazar
et al. (2020).

Similar claims are made by Jawahar et al. (2019), who particularly focus on syntax.
They show that BERT captures short-range syntactic phenomena, such as syntactic
phrases, in lower layers than long-range dependencies. They also explicitly analyze
the compositional structure of BERT representations and draw parallels to traditional
syntactic analysis.

However, the findings of Kim et al. (2020) are partially in conflict with the other
authors, showing that the syntacticity of BERT layers indeed seems to increase as we
move to further layers, but the trend seems to be opposite for GPT-2, observing higher
syntacticity in the initial layers.

22 When understanding the surface forms as the shallow abstractions, taking the analytical approach which
goes in the direction from the surface to meaning, not the other way round.
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We try to interpret the findings of Tenney et al. (2019) in Table 6.1. The authors
use probes to extract the linguistic features from the layers employing layer attention,
i.e., a trained task-specific linear combination of the model representations from the
model layers. This provides them with a set of layer weights for each of the tasks (i.e.,
for each of the linguistic features which they probe for). The authors then interpret
these layer weights as a measure of the degree to which the given linguistic feature is
encoded within the given layer.

For each linguistic feature type examined by the authors, we also report its “center
of gravity” (the authors’ term) of the layer attention from (Tenney et al., 2019, Fig-
ure 1); please refer to the original paper for the full figure. The center of gravity is the
weighted average of the layer numbers weighted by the layer attention weights, i.e.,
it is the average layer capturing the given linguistic feature.

Figure 6.3, reprinted from (Tenney et al., 2019, figure 2), shows the distribution of
the layer weights for the individual tasks. In Table 6.1, we estimate how peaked or
flat the distribution of these weights is. Some features seem to be mostly captured on
only a few layers (the layer attention is rather peaked), while others seem to be more
spread out (the layer attention is rather flat).

Thus, based on the graphs in Figure 6.3, we can estimate the layers on which the
features are mostly captured. Unfortunately, the authors present the data in the form
of graphs, but the exact numbers are not listed. Therefore, the layers which seem to
capture the features significantly more than other layers were only approximately esti-
mated from the graphs. In this way, we attempt to approximately answer the question
of on which layers the respective linguistic features are captured. However, please
note that this is all rather approximate, as there is no clear way of answering that
question; refer to (Tenney et al., 2019) for the original data and interpretations.

The table confirms the rough notion of the layer depth corresponding to the depth
of the linguistic features, going from morphology over syntax and semantics, with
coreference being the deepest. However, the distribution of some features across lay-
ers is actually quite flat, especially for the semantic ones; i.e., some features seem to
be spread quite evenly across most or all of the layers. We thus should be careful with
any strong claims based on the observations.

6.3.3 Effect of Pre-training Task

Technically, any NLP task can be used to pre-trained a contextualizer to provide con-
textual embeddings. However, not all pre-training tasks are equally good for this
purpose, as shown by several studies (Belinkov et al., 2017a,b; Peters et al., 2018b;
Blevins et al., 2018; Zhang and Bowman, 2018; Liu et al., 2019a).

In general, many authors have found that using the LM task for pre-training is the
best choice in most cases, as such contextual embeddings seem to best transfer to other
tasks. Relatedly, such contextual embeddings are also usually found to most strongly
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Figure 6.3: Mixing weights for layer attention (solid blue) for BERT-large. The hori-
zontal axis is the encoded layer. Reprinted from Tenney et al. (2019, Figure 2) under
CC-BY-4.0 licence.
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Figure 6.4: Accuracy of PoS tag probing from RNN representation divided by the pre-
training objective.
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capture linguistically interpretable features, compared, e.g., to hidden states from an
MT model (even if training data of comparable sizes are used to pre-train the models).

Nevertheless, quite logically, if the contextualizer is directly trained for a linguis-
tic feature, then this feature is typically captured more strongly in its hidden states
than in a general LM; e.g., when a model is trained for PoS tagging, it will capture
PoS features more strongly than an LM. This also generalizes to models trained for
a different but strongly related task; e.g., a parsing model will also capture PoS very
strongly. Still, this provides task-specific contextual embeddings, which are stronger
in capturing task-specific features but weaker in capturing other features. In this sense,
the LM task seems to be the most general language-related task, as it seems to provide
the most general contextual embeddings.

However, LM as a pre-training task has an additional benefit of typically having
much larger training data available than any other task. Thus, in practice, contextual
embeddings from an LM typically outperform even task-specific contextual embed-
dings unless task-specific training data of considerable size are available.

A detailed study of the effects of the pre-training task, as well as effects of the
size of the training data, was conducted, e.g., by Zhang and Bowman (2018), investi-
gating CoVe and ELMo contextual embeddings obtained using various pre-training
tasks (LM, MT, skip-thought23 and autoencoding24) and probing them on several
morphosyntactic tasks (PoS prediction and CCG supertag prediction).

In Figure 6.4, we present a comparison of the effects of different pre-training tasks
for contextual embeddings probed for PoS tags. Each point denotes a pair of results
obtained in the same paper and for the same dataset, but with different types of em-
beddings or pre-training objective (but with a similar amount of training data used
for the pre-training). Therefore, we can observe that the setting plotted on the y-axis
is better than the x-axis setting if the points are above the plotted identity function
(red dashed line).25 We can see that MT models capture PoS features much better
than auto-encoders, which can be interpreted as translation from and to the same
language. It is likely that the latter task is straightforward and therefore, does not
require the model so strongly to encode morphosyntactic features in the latent space.
However, we can see that when using same-sized pre-training data, the difference be-
tween the results of Machine Translation and Language Model pre-training is small;
still, much larger data are typically available for LM than for MT pre-training.

23 For a sentence in a longer text, predict it’s preceding and its following sentence.
24 Using a classical denoising autoencoder, where the input is corrupted to some extent and the autoencoder

is trained to predict the original uncorrupted input.
25 We cannot say whether a method represented by another point performs better, as the evaluation settings

differ.
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6.4 Multilinguality

So far, we have only talked about pre-trained representation models for a single lan-
guage evaluated on English. However, pre-trained Transformers show remarkable
ability to work with multiple languages within a single model.

Multilingual BERT (mBERT) (Devlin et al., 2019), which was followed by XLM-
RoBERTa (XLM-R) (Conneau et al., 2020) and DistilBERT (Sanh et al., 2020), gained
popularity as a contextual representation for many multilingual tasks.

mBERT is a deep Transformer encoder that is trained in a multi-task learning setup,
first, to be able to guess what words were masked-out in the input and, second, to
decide whether two sentences follow each other in a coherent text.

It was trained using the same procedure as English BERT: a combination of a
masked language model (MLM) objective and sentence-adjacency objective using
plain text in over 100 languages without making any difference among the languages.

Conneau et al. (2020) claim that the original mBERT is under-trained and train
a similar model on a larger dataset that consists of two terabytes of plain text ex-
tracted from CommonCrawl (Wenzek et al., 2020). Unlike mBERT, XLM-R uses a
SentencePiece-based vocabulary (Kudo and Richardson, 2018) of 250k tokens, the rest
of the architecture remains the same as in the case of mBERT. The model is trained
using the MLM objective, only without the sentence adjacency prediction.

Kondratyuk and Straka (2019) managed to achieve very strong results in depen-
dency parsing in 75 languages by training a single model that used mBERT as an input
representation without telling the model what the input language was. In this way,
the model reached very good results even for languages where only test data and no
training data are available.

Often, the success of zero-shot transfer is implicitly considered to be the main mea-
sure of language neutrality of a representation. Despite many positive results, some
findings in the literature are rather mixed, indicating limited language neutrality.

Zero-shot learning abilities were examined by Pires et al. (2019) on NER and PoS
tagging, showing that the success strongly depends on how typologically similar the
languages are. Similarly, Wu and Dredze (2019) trained good multilingual models but
struggled to achieve good results in the zero-shot setup for POS tagging, NER, and
XLNI. Rönnqvist et al. (2019) draw similar conclusions for language-generation tasks.

Wang et al. (2019b) succeeded in zero-shot dependency parsing, but required su-
pervised projection trained on word-aligned parallel data. The results of Chi et al.
(2020) on dependency parsing suggest that methods like structural probing (Hewitt
and Manning, 2019) might be more suitable for zero-shot transfer.

Pires et al. (2019) also assessed mBERT on cross-lingual sentence retrieval between
three language pairs. They observed that if they subtract the average difference be-
tween the embeddings from the target language representation, the retrieval accuracy
significantly increases.
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XTREME (Hu et al., 2020) and XGLUE (Liang et al., 2020), two recently introduced
benchmarks for multilingual representation evaluation, assess representations on a
wider range of zero-shot transfer tasks that include natural language inference (Con-
neau et al., 2018b) and question answering (Artetxe et al., 2019; Lewis et al., 2019).
Their results show a clearly superior performance of XLM-R compared to mBERT.

Many works clearly show that downstream task models can extract relevant fea-
tures from the multilingual representations (Wu and Dredze, 2019; Kudugunta et al.,
2019; Kondratyuk and Straka, 2019). But they do not directly show language-neutrali-
ty, i.e., to what extent similar phenomena are represented similarly across languages.
It is thus impossible to say whether the representations are language-agnostic or if
they contain some implicit language identification.

We (Libovický et al., 2019) argue that in zero-shot transfer from the source lan-
guage to the target language, there is a risk of “overfitting” the source language –
validation data in the source language are typically used to stop the training once the
performance on the data stops increasing, but this might mean that the model is al-
ready too specialized to the source language, while a less specialized model might be
more transferable, i.e., the training should probably be stopped earlier.

We (Libovický et al., 2019) circumvent the identified problem by analyzing the
representations on tasks of cross-lingual word-alignment, cross-lingual sentence re-
trieval, and machine translation quality estimation, which directly utilize the pre-
trained multilingual contextual embeddings with no further training; the embeddings
are simply averaged and compared using cosine distance to measure word or sentence
similarity, which for each of the tasks should be maximized. We find that the multi-
lingual contextual embeddings outperform bilingual static word embeddings which
were explicitly trained to be cross-lingual, whereas the cross-linguality of the con-
textual embeddings is an emergent property not explicitly imposed during training.
We observe high accuracies for sentence retrieval and state-of-the-art performance for
word alignment. For quality estimation, the results are very poor, suggesting that a
deeper understanding of the meaning of the sentences is required than what is cap-
tured by the representations.

Following Pires et al. (2019), we (Libovický et al., 2019) also show that, while the
representations are already quite language-neutral, they in fact strongly encode the
language identity, actually leading to state-of-the-art results in language prediction.
However, the language-neutral component and the language-specific component are
easy to separate: a language centroid can be computed as an average of representa-
tions of sentences in the given language and subtracted from the contextual embed-
ding to obtain a mostly language-neutral embedding. These language-neutral em-
beddings perform even better in the cross-lingual tasks, while the language centroids
cluster nicely according to traditional typological language families (see Figure 6.5).
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Figure 6.5: Language centroids of the mean-pooled representations from the 8th layer
of cased mBERT on a tSNE plot with highlighted language families. Reprinted from
Libovický et al. (2019).

6.5 Conclusion

In this chapter, we looked at contextual word embeddings, which emerged as “un-
hidden” states and turned out to be a further improvement over static word embed-
dings, taking into account not only the word identities (type-level information) but
also the context of the sentence (token-level information).

The contextual embeddings seem to capture morphological and syntactic features
quite well. However, they typically perform rather poorly on tasks requiring a deeper
understanding of the meaning of the sentence, suggesting that semantic features are
mostly not captured by the contextual embeddings.

Contextual embeddings thus constitute a clear improvement over static embed-
dings as well as over many classical symbolic approaches based on explicit linguistic
knowledge, but only for a certain range of shallow and medium-depth linguistic ab-
stractions, such as morphology and syntax. However, for deeper linguistic abstrac-
tions, such as semantics and pragmatics, the current contextual embeddings still fail
to demonstrate a sufficient level of capturing the relevant features; in these areas, we
are probably still far from outperforming and replacing the classical approaches.

Contextual embeddings are obtained as hidden states of neural models, trained
for NLP tasks. In the past, representations from MT models were often used, but
eventually, it was established that training the network for the language modeling
task on a large dataset leads to very versatile high-quality contextual embeddings,
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transferrable to many other tasks. If transferability is not required, better contextual
embeddings can be obtained by training directly on the target task, but usually only if
a large-enough dataset is available; for tasks with small datasets, the LM-pre-trained
embeddings are a better choice.

As new and better NN models are introduced, often thanks to research in MT,
better contextual embeddings can be obtained by training these new models for the
LM task. However, even the simplest models usually lead to contextual embeddings
which capture linguistic features way better than static word embeddings, and switch-
ing to better models often brings only slight further improvements.
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Afterword

The representations and structures that emerge in neural models have been shown
to often have some similarity to classical linguistic abstractions. However, this only
answers the first and simplest of a sequence of logical questions. There are some
similarities to classical linguistic structures, but what are the differences? Can we e.g.
define a new syntactic formalism that would closely correspond to the features we
observe in the models? The latent linguistic features emergent in neural models have
proven themselves to be far more useful for solving various language processing tasks
than any abstractions previously defined by linguists; should we thus rethink the way
we describe and understand language to reflect this fact? And can we, in turn, further
improve the models we now use for processing language based on these new ways of
viewing language?

Still, all of these questions are only further steps on a path to the ultimate goal of
linguistics: Can a complex interpretation and understanding of what is really going
on in the state-of-the-art neural models bring us closer to actually understanding how
language works?
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Summary

In this book, we explore neural-network architectures and models that are used for
Natural Language Processing (NLP). We analyze their internal representations (word-
embeddings, hidden states, attention mechanism, and contextual embeddings) and
review what properties these representations have and what kinds of linguistically
interpretable features emerge in them. We use our own experimental results, as well
as the results published by other research teams to present an overview of models
and representations and their linguistic properties.

In the beginning, we explain the basic concepts of deep learning and its usage
in NLP and discuss details of the most prominent neural architectures and models.
Then, we outline the concept of interpretability, different views on it, and introduce
basic supervised and unsupervised methods that are used for interpreting trained
neural-network models.

The next part is devoted to static word embeddings. We show various methods for
embeddings space visualization, component analysis and embedding space transfor-
mations for interpretation. Pretrained word embbedings contain information about
both morphology and lexical semantics. When the embbedings are trained for a spe-
cific task, the embeddings tend to be organised by the information that is important
for the given task (e.g. emotional polarity for sentiment analysis).

We also analyze attention mechanisms, in which we can observe weighted links
between representations of individual tokens. We show that the cross-lingual atten-
tions mostly connect mutually corresponding tokens; however, in some cases, they
may be very different from the traditional word-alignments. We mainly focus on self-
attentions in Transformers. Some heads connect tokens with certain syntactic rela-
tions. This motivated researchers to infer syntactic trees from the self-attentions and
compare them to the linguistic annotations. We summarize the amount of syntax in
the attentions across the layers of several NLP models. We also point out the fact that
attentions might sometimes be very misleading and may carry very different infor-
mation from which we would think based on the attended tokens.

In the last part, we look at contextual word embeddings and the linguistic features
they capture. They constitute a clear improvement over static word embeddings, es-
pecially in terms of capturing morphological and syntactic features. However, some
higher linguistic abstractions, such as semantics, seem to be reflected in the current
contextual embeddings only very weakly or not at all.
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