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Many of the slides in this presentation were taken from the presentations
of David Rosenberg (New York University)
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Old Faithful Geyser Eruptions
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® | ooks like two clusters.

® How to find these clusters algorithmically? o



k-Means clustering

¢ Standardize the data (equal mean and variance).
® Choose two cluster centers.
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k-Means clustering

® Assign each point to the closest center.
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k-Means clustering

® Compute new cluster centers.

2
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k-Means clustering

® Assign each point to the closest center.
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k-Means clustering

e Compute new cluster centers.
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k-Means clustering

® |terate until convergence.

2
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Dataset D =z, ..., x, € R?
Goal (version 1): Partition data into k clusters.
Goal (version 2): Partition R? into k regions.

Let p, ... 4y, denote cluster centers.
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® For each z;, use a one-hot encoding to designate membership:

rT. = (0’ 07 ’O, O, 17 07 O)

)

® Let r,. = 1if x; is assigned to cluster c.
® Then,

7o = (P15 Tigs oo s Tik)-

10/ 41



Find cluster centers and cluster assignments minimizing:

k

T = D0 riclle — vl

n
=1 c=1

Is this objective function convex?

What is the domain of J?

r € {0,1}™**, which is not a convex set...

So domain of J is not convex => J is not a convex function.
We should expect local minima.

12

Could replace || - || with something else, e.g. using || - || gives k-medoids.
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® For fixed r (cluster assignments), minimizing over p is easy:

erzc i_McHQ

i=1 c=

Zrchx —,uc||2 Z‘]

=1

Jc(:u’c) = Z sz_McHz

i|z,; belongs to ¢

M»

[+
Il
—
5

® J_ is minimized by
i, = mean({z;|x, belongs to cluster c})

12/ 41



For fixed p (cluster centers), minimizing over r is easy:

erw L IU’CHQ

i=1 c=
For each 7, exactly one of the following terms is nonzero:

12

T llT; — g TiszUi—Msz, ~--»7‘ik||93i_ﬂk||2

Take
ri. =1 if c¢=argmin|fz; — u;?
J

That is, assign x; to cluster ¢ with minimum distance

ll2; — pcl?
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We will use an alternating minimization algorithm:
® Choose initial cluster centers = (piy, ..., fg)-
® e.g. choose k randomly chosen data points
® Repeat
® For given cluster centers, find optimal cluster assignments:

rpe =1 if ¢ =argmin||z; — p;l?
J

® Given cluster assignments, find optimal cluster centers:

e = argmin S [, — |2

d .
meR ilre=1
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Note: objective value never increases in an update.
® (Obvious: worst case, everything stays the same)
Consider the sequence of objective values: J;, J,, Js, ...

® monotonically decreasing
® bounded below by zero

Therefore, k-means objective value converges to inf,J,.
Reminder: This is convergence to a local minimum.

Best to repeat k-means several times, with different starting points.
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k-Means: Objective Function Convergence

® Blue circles after “E” step: assigning each point to a cluster.

® Red circles after “M” step: recomputing the cluster centers.

1000

500 |
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k-Means Algorithm: Standardizing the data

® With standardising:

Old Faithful Geyser Eruptions
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k-Means Algorithm: Standardizing the data

® Without standardising:

Old Faithful Geyser Eruptions
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k-Means: Suboptimal Local Minimum

® The clustering for k£ = 3 below is a local minimum, but suboptimal:
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Cases, in which k-Means cannot succeed

® Disadvantages of k-means: different cluster shapes and variances.
e TODO...
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® | et's consider a generative model for the data.
® Suppose
® There are k clusters.
® We have a probability density for each cluster.
® Generate a point as follows:
® Choose a random cluster z € {1,2, ..., k}.
® 7 ~ Multi(my,..., 7).
® Choose a point from the distribution for cluster z.
* X|Z =z~ p(z|z).
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Gaussian Mixture Model (k = 3)

® Choose Z € {1,2,3} ~ Multi(3, £, 3).
® Choose X|Z ~ N(X|u,,X,)

Mixture of Three Gaussians
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Gaussian distribution and its multivariate generalization

T
e

Gaussian distribution with mean u and variance o: flz) = #ﬁe_%

Multivariate Gaussian distribution with mean i and covariance matrix X
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Covariance matrix

® generalizes the notion of variance to
multiple dimensions

® must be symmetric

ZXZ-,XJ- = cov(X;, X)
= E((Xz _E(Xi))(Xj_E(Xj))>

L, x, = var(X;) = E(X; — E(X;))?)




We are generating each point together with its cluster using the joint distribution:

p(@,2) = p(2)p(x]z) = TN (z|p,, X,)

m, is probability of choosing cluster z.
x|z (a point z assigned to cluster z) has a multivariate normal distribution N (p,, X,).

a cluster z corresponding to the point x is the true cluster assignment.
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® Back in the reality, we observe X, not (X, 7).

® (Cluster assignment Z is called a hidden variable.

® Gausssian mixture model is a Latent Variable Model, i.e. a probability model for
which certain variables are never observed.
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We observe X = z.

The conditional distribution of the cluster z given (assigned to) the point z is

p(zlz) = p(z, 2)/p(x)

The conditional distribution is a soft assignment to clusters.

A hard assignment is

z*=argmaxP(Z = z|X = x)
ze{l,...,k}

So if we have the model, clustering is trivial.
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We'll use the common acronym GMM.
What does it mean to “have” or “know” the GMM?

It means knowing the parameters:

Cluster probabilities: 7 = (mq,...,7T)
Cluster means: g = (fq, ..., fg,)
Cluster covariance matrices X = (X,,...,%})

We have a probability model: let’s find the MLE.
Suppose we have data D = {z{,...,z,}.
We need the model likelihood for D.
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Gaussian Mixture Model: Marginal Distribution

® Since we only observe X, we need the marginal distribution:

k

k
pla) =3 pla,2) = 3w N (], £.)

z=1 z=1

® Note that p(z) is a convex combination of probability densities.

® This is a common form for a probability model...
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Definition:

A probability density p(x) represents a mixture distribution or mixture model, if we can

write it as a convex combination of probability densities. That is,
k
p(z) = sz‘pi(iﬁ),
i—1

where w; > 0, Ele w; = 1, and each p, is a probability density.

® |n our Gaussian mixture model, X has a mixture distribution.
® More constructively, let S be a set of probability distributions:

® Choose a distribution randomly from S.
® Sample X from the chosen distribution.

® Then X has a mixture distribution.
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Estimating/Learning the Gaussian Mixture Model

® The model likelihood for D = {zy,...,x,} is

n n k
7T Ma Hp = H Ter(‘rz‘:u’z?
1

i=1 z=

® As usual, we'll take our objective function to be the log of this:

J(m,p, 2 Zlog{ZW N (ilp., 2.)}

).
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GMM log-likelihood:

7T /’[/7 Zlog{zﬂ- N 'Z‘IU’Z7 z }

Let's compare to the log-likelihood for a single Gaussian:

n

- nd n 1
> log N (i, £) = =" log(2m) — T log | X — 5 Y (a, — ) ¥, — )
i=1 i=1
For a single Gaussian, the log cancels the exp in the Gaussian density.

For the GMM, the sum inside the log prevents this cancellation = No closed form
expression for MLE.
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Let's start by the MLE for the Gaussian model.
For data D = {z4,...,x,}, the log likelihood is given by

n

n nd n 1 e
> 109N (a;]p, ¥) = —=-log(2m) — 7 log | X — o D (= u) 7 (w; — )
=1

i=1

With some calculus, we find that the MLE parameters are

1 n
KpMLE = n E Z;
=1

1 n
YymLe = n Z(% — parpe) (@ — tirrp)”
i=1
For GMM, if we knew the cluster assignment z; for each z;, we could compute the
MLEs for each cluster.
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Denote the probability that observed value z; comes from cluster j by
vl = P(Z =j|X = ;).

The responsibility that cluster j takes for observation z;.

Computationally,

Pz =X =) =PI =S X =T N (|5, )
K @) ;

p Zc:l WCN(:EZ"MC’ EC)
The vector (v}, ... ,’yf) is exactly the soft assignment for z,.

Let n, = Z?zl ¢ be the number of points “soft assigned” to cluster c.
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Initialize parameters p, X,
“E step”. Evaluate the responsibilities using current parameters:
= TN (], 25)
v k ?
Zczl 7TCN<1'Z»|,UC, Ec)

fori=1,...,nand j=1,..., k.
“M step”. Re-estimate the parameters using responsibilities:

1 X

new __ E c

He - n YiTq
¢ i=1

1 n
Tnew — - Z’yf(:tz — parpe) (@ = parne)”
Cc =1

new __ nc
c - 9

n
Repeat from Step 2, until log-likelihood converges.

s
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EM for GMM

® |nitialization:

@)
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EM for GMM

® First soft assignment:
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EM for GMM

® First soft assignment:
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EM for GMM

® After 5 rounds of EM:
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EM for GMM

e After 20 rounds of EM:

2 .o
L=20 .j.; é:&
| L
B O
-2 0
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EM for GMM seems a little like k-means

In fact, there is a precise correspondence.

First, fix each cluster covariance matrix to be o3I

As we take 02 < 0, the update equations converge to doing k-means.

If you do a quick experiment yourself, you'll find
® Soft assignments converge to hard assignments.

We can use k-means to initialize parameters of the GMM EM algorithm
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