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Many of the slides in this presentation were taken from the presentations
of David Rosenberg (New York University)

1/ 41



Example: Old Faithful Geyser

• Looks like two clusters.
• How to find these clusters algorithmically?
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k-Means clustering
• Standardize the data (equal mean and variance).
• Choose two cluster centers.
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k-Means clustering
• Assign each point to the closest center.
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k-Means clustering
• Compute new cluster centers.
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k-Means clustering
• Assign each point to the closest center.
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k-Means clustering
• Compute new cluster centers.
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k-Means clustering
• Iterate until convergence.
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k-Means: Formalization

• Dataset 𝐷 = 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑑

• Goal (version 1): Partition data into 𝑘 clusters.
• Goal (version 2): Partition ℝ𝑑 into 𝑘 regions.
• Let 𝜇1, … 𝜇𝑘 denote cluster centers.
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k-Means: Formalization

• For each 𝑥𝑖, use a one-hot encoding to designate membership:

𝑟𝑖 = (0, 0, … , 0, 0, 1, 0, 0)

• Let 𝑟𝑖𝑐 = 1 if 𝑥𝑖 is assigned to cluster 𝑐.
• Then,

𝑟𝑖 = (𝑟𝑖1, 𝑟𝑖2, … , 𝑟𝑖𝑘).
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k-Means: Objective function

• Find cluster centers and cluster assignments minimizing:

𝐽(𝑟, 𝜇) =
𝑛

∑
𝑖=1

𝑘
∑
𝑐=1

𝑟𝑖𝑐||𝑥𝑖 − 𝑥𝑐||2.

• Is this objective function convex?
• What is the domain of 𝐽?
• 𝑟 ∈ {0, 1}𝑛×𝑘, which is not a convex set...
• So domain of 𝐽 is not convex ⟹ 𝐽 is not a convex function.
• We should expect local minima.
• Could replace || ⋅ ||2 with something else, e.g. using || ⋅ || gives k-medoids.
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k-Means: Algorithm

• For fixed 𝑟 (cluster assignments), minimizing over 𝜇 is easy:

𝐽(𝑟, 𝜇) =
𝑛

∑
𝑖=1

𝑘
∑
𝑐=1

𝑟𝑖𝑐||𝑥𝑖 − 𝜇𝑐||2

=
𝑘

∑
𝑐=1

𝑛
∑
𝑖=1

𝑟𝑖𝑐||𝑥𝑖 − 𝜇𝑐||2 =
𝑘

∑
𝑐=1

𝐽𝑐

𝐽𝑐(𝜇𝑐) = ∑
𝑖|𝑥𝑖 belongs to 𝑐

||𝑥𝑖 − 𝜇𝑐||2

• 𝐽𝑐 is minimized by
𝜇𝑐 = mean({𝑥𝑖|𝑥𝑖 belongs to cluster 𝑐})
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k-Means: Algorithm

• For fixed 𝜇 (cluster centers), minimizing over 𝑟 is easy:

𝐽(𝑟, 𝜇) =
𝑛

∑
𝑖=1

𝑘
∑
𝑐=1

𝑟𝑖𝑐||𝑥𝑖 − 𝜇𝑐||2

• For each 𝑖, exactly one of the following terms is nonzero:

𝑟𝑖1||𝑥𝑖 − 𝜇1||2, 𝑟𝑖2||𝑥𝑖 − 𝜇2||2, … , 𝑟𝑖𝑘||𝑥𝑖 − 𝜇𝑘||2

• Take
𝑟𝑖𝑐 = 1 if 𝑐 = argmin

𝑗
||𝑥𝑖 − 𝜇𝑗||2

• That is, assign 𝑥𝑖 to cluster 𝑐 with minimum distance

||𝑥𝑖 − 𝜇𝑐||2
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k-Means algorithm: summary

We will use an alternating minimization algorithm:
• Choose initial cluster centers 𝜇 = (𝜇1, … , 𝜇𝑘).

• e.g. choose 𝑘 randomly chosen data points
• Repeat

• For given cluster centers, find optimal cluster assignments:

𝑟𝑛𝑒𝑤
𝑖𝑐 = 1 if 𝑐 = argmin

𝑗
||𝑥𝑖 − 𝜇𝑗||2

• Given cluster assignments, find optimal cluster centers:

𝜇𝑛𝑒𝑤
𝑐 = argmin

𝑚∈ℝ𝑑
∑

𝑖|𝑟𝑖𝑐=1
||𝑥𝑖 − 𝜇𝑐||2
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k-Means algorithm: convergence

• Note: objective value never increases in an update.
• (Obvious: worst case, everything stays the same)

• Consider the sequence of objective values: 𝐽1, 𝐽2, 𝐽3, …
• monotonically decreasing
• bounded below by zero

• Therefore, k-means objective value converges to inf𝑡𝐽𝑡.
• Reminder: This is convergence to a local minimum.
• Best to repeat k-means several times, with different starting points.
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k-Means: Objective Function Convergence

• Blue circles after “E” step: assigning each point to a cluster.
• Red circles after “M” step: recomputing the cluster centers.
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k-Means Algorithm: Standardizing the data

• With standardising:
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k-Means Algorithm: Standardizing the data

• Without standardising:
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k-Means: Suboptimal Local Minimum

• The clustering for 𝑘 = 3 below is a local minimum, but suboptimal:
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Cases, in which k-Means cannot succeed

• Disadvantages of k-means: different cluster shapes and variances.
• TODO...
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Probabilistic Model for Clustering

• Let’s consider a generative model for the data.
• Suppose

• There are 𝑘 clusters.
• We have a probability density for each cluster.

• Generate a point as follows:
• Choose a random cluster 𝑧 ∈ {1, 2, … , 𝑘}.

• 𝑍 ∼ 𝑀𝑢𝑙𝑡𝑖(𝜋1, … , 𝜋𝑘).
• Choose a point from the distribution for cluster 𝑧.

• 𝑋|𝑍 = 𝑧 ∼ 𝑝(𝑥|𝑧).
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Gaussian Mixture Model (𝑘 = 3)
• Choose 𝑍 ∈ {1, 2, 3} ∼ Multi(1

3 , 1
3 , 1

3).
• Choose 𝑋|𝑍 ∼ 𝒩(𝑋|𝜇𝑧, 𝛴𝑧)
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Gaussian distribution and its multivariate generalization

Gaussian distribution with mean 𝜇 and variance 𝜎2: 𝑓(𝑥) = 1
𝜎

√
2𝜋𝑒− 1

2
𝑥−𝜇

𝜎

Multivariate Gaussian distribution with mean ⃗𝜇 and covariance matrix 𝛴:

𝑓( ⃗𝑥) = 1
√det(𝛴) ⋅ √(2𝜋)𝑘 𝑒− 1

2 (𝑥⃗−𝜇⃗)⊤𝛴−1(𝑥⃗−𝜇⃗)
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Covariance matrix

• generalizes the notion of variance to
multiple dimensions

• must be symmetric

𝛴𝑋𝑖,𝑋𝑗
= 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗)
= 𝐸((𝑋𝑖 − 𝐸(𝑋𝑖))(𝑋𝑗 − 𝐸(𝑋𝑗)))

𝛴𝑋𝑖,𝑋𝑖
= 𝑣𝑎𝑟(𝑋𝑖) = 𝐸((𝑋𝑖 − 𝐸(𝑋𝑖))2)
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Gaussian Mixture Model: Generative view

• We are generating each point together with its cluster using the joint distribution:

𝑝(𝑥, 𝑧) = 𝑝(𝑧)𝑝(𝑥|𝑧) = 𝜋𝑧𝒩(𝑥|𝜇𝑧, 𝛴𝑧)

• 𝜋𝑧 is probability of choosing cluster 𝑧.
• 𝑥|𝑧 (a point 𝑥 assigned to cluster 𝑧) has a multivariate normal distribution 𝒩(𝜇𝑧, 𝛴𝑧).
• a cluster 𝑧 corresponding to the point 𝑥 is the true cluster assignment.
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Latent Variable Model

• Back in the reality, we observe 𝑋, not (𝑋, 𝑍).
• Cluster assignment 𝑍 is called a hidden variable.
• Gausssian mixture model is a Latent Variable Model, i.e. a probability model for

which certain variables are never observed.
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Model-Based Clustering

• We observe 𝑋 = 𝑥.
• The conditional distribution of the cluster 𝑧 given (assigned to) the point 𝑥 is

𝑝(𝑧|𝑥) = 𝑝(𝑥, 𝑧)/𝑝(𝑥)

• The conditional distribution is a soft assignment to clusters.
• A hard assignment is

𝑧∗ = argmax
𝑧∈{1,…,𝑘}

𝑃(𝑍 = 𝑧|𝑋 = 𝑥)
.

• So if we have the model, clustering is trivial.
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Estimating/Learning the Gaussian Mixture Model

• We’ll use the common acronym GMM.
• What does it mean to “have” or “know” the GMM?
• It means knowing the parameters:

Cluster probabilities: 𝜋 = (𝜋1, … , 𝜋𝑘)
Cluster means: 𝜇 = (𝜇1, … , 𝜇𝑘)

Cluster covariance matrices 𝛴 = (𝛴1, … , 𝛴𝑘)

• We have a probability model: let’s find the MLE.
• Suppose we have data 𝐷 = {𝑥1, … , 𝑥𝑛}.
• We need the model likelihood for 𝐷.
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Gaussian Mixture Model: Marginal Distribution

• Since we only observe 𝑋, we need the marginal distribution:

𝑝(𝑥) =
𝑘

∑
𝑧=1

𝑝(𝑥, 𝑧) =
𝑘

∑
𝑧=1

𝜋𝑧𝒩(𝑥|𝜇𝑧, 𝛴𝑧)

• Note that 𝑝(𝑥) is a convex combination of probability densities.
• This is a common form for a probability model...
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Mixture Distributions (or Mixture Models)

Definition:
A probability density 𝑝(𝑥) represents a mixture distribution or mixture model, if we can
write it as a convex combination of probability densities. That is,

𝑝(𝑥) =
𝑘

∑
𝑖=1

𝑤𝑖𝑝𝑖(𝑥),

where 𝑤𝑖 ≥ 0, ∑𝑘
𝑖=1 𝑤𝑖 = 1, and each 𝑝𝑖 is a probability density.

• In our Gaussian mixture model, 𝑋 has a mixture distribution.
• More constructively, let 𝑆 be a set of probability distributions:

• Choose a distribution randomly from 𝑆.
• Sample 𝑋 from the chosen distribution.

• Then 𝑋 has a mixture distribution.
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Estimating/Learning the Gaussian Mixture Model

• The model likelihood for 𝐷 = {𝑥1, … , 𝑥𝑛} is

𝐿(𝜋, 𝜇, 𝛴) =
𝑛

∏
𝑖=1

𝑝(𝑥𝑖) =
𝑛

∏
𝑖=1

𝑘
∑
𝑧=1

𝜋𝑧𝒩(𝑥𝑖|𝜇𝑧, 𝛴𝑧).

• As usual, we’ll take our objective function to be the log of this:

𝐽(𝜋, 𝜇, 𝛴) =
𝑛

∑
𝑖=1

log{
𝑘

∑
𝑧=1

𝜋𝑧𝒩(𝑥𝑖|𝜇𝑧, 𝛴𝑧)}

31/ 41



Properties of the GMM Log-Likelihood

• GMM log-likelihood:

𝐽(𝜋, 𝜇, 𝛴) =
𝑛

∑
𝑖=1

log{
𝑘

∑
𝑧=1

𝜋𝑧𝒩(𝑥𝑖|𝜇𝑧, 𝛴𝑧)}

• Let’s compare to the log-likelihood for a single Gaussian:
𝑛

∑
𝑖=1

log𝒩(𝑥𝑖|𝜇, 𝛴) = −𝑛𝑑
2 log(2𝜋) − 𝑛

2 log |𝛴| − 1
2

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)′𝛴−1(𝑥𝑖 − 𝜇)

• For a single Gaussian, the log cancels the exp in the Gaussian density.
• For the GMM, the sum inside the log prevents this cancellation ⟹ No closed form

expression for MLE.
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MLE for Gaussian Model

• Let’s start by the MLE for the Gaussian model.
• For data 𝐷 = {𝑥1, … , 𝑥𝑛}, the log likelihood is given by

𝑛
∑
𝑖=1

log𝒩(𝑥𝑖|𝜇, 𝛴) = −𝑛𝑑
2 log(2𝜋) − 𝑛

2 log |𝛴| − 1
2

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)′𝛴−1(𝑥𝑖 − 𝜇)

• With some calculus, we find that the MLE parameters are

𝜇𝑀𝐿𝐸 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

𝛴𝑀𝐿𝐸 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇𝑀𝐿𝐸)(𝑥𝑖 − 𝜇𝑀𝐿𝐸)𝑇

• For GMM, if we knew the cluster assignment 𝑧𝑖 for each 𝑥𝑖, we could compute the
MLEs for each cluster.
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Cluster Responsibilities: Some New Notation

• Denote the probability that observed value 𝑥𝑖 comes from cluster 𝑗 by

𝛾𝑗
𝑖 = 𝑃(𝑍 = 𝑗|𝑋 = 𝑥𝑖).

• The responsibility that cluster 𝑗 takes for observation 𝑥𝑖.
• Computationally,

𝛾𝑗
𝑖 = 𝑃(𝑍 = 𝑗|𝑋 = 𝑥𝑖) = 𝑝(𝑍 = 𝑗, 𝑋 = 𝑥𝑖)

𝑝(𝑥) = 𝜋𝑗𝒩(𝑥𝑖|𝜇𝑗, 𝛴𝑗)
∑𝑘

𝑐=1 𝜋𝑐𝑁(𝑥𝑖|𝜇𝑐, 𝛴𝑐)

• The vector (𝛾1
𝑖 , … , 𝛾𝑘

𝑖 ) is exactly the soft assignment for 𝑥𝑖.
• Let 𝑛𝑐 = ∑𝑛

𝑖=1 𝛾𝑐
𝑖 be the number of points “soft assigned” to cluster 𝑐.
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EM Algorithm for GMM: Overview

1. Initialize parameters 𝜇, 𝛴, 𝜋
2. “E step”. Evaluate the responsibilities using current parameters:

𝛾𝑗
𝑖 = 𝜋𝑗𝑁(𝑥𝑖|𝜇𝑗, 𝛴𝑗)

∑𝑘
𝑐=1 𝜋𝑐𝑁(𝑥𝑖|𝜇𝑐, 𝛴𝑐)

,

for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑘.
3. “M step”. Re-estimate the parameters using responsibilities:

𝜇𝑛𝑒𝑤
𝑐 = 1

𝑛𝑐

𝑛
∑
𝑖=1

𝛾𝑐
𝑖 𝑥𝑖

𝛴𝑛𝑒𝑤
𝑐 = 1

𝑛𝑐

𝑛
∑
𝑖=1

𝛾𝑐
𝑖 (𝑥𝑖 − 𝜇𝑀𝐿𝐸)(𝑥𝑖 − 𝜇𝑀𝐿𝐸)𝑇

𝜋𝑛𝑒𝑤
𝑐 = 𝑛𝑐

𝑛 ,
4. Repeat from Step 2, until log-likelihood converges.
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EM for GMM

• Initialization:
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EM for GMM

• First soft assignment:
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EM for GMM

• First soft assignment:
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EM for GMM

• After 5 rounds of EM:
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EM for GMM

• After 20 rounds of EM:
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Relation to K-Means

• EM for GMM seems a little like k-means
• In fact, there is a precise correspondence.
• First, fix each cluster covariance matrix to be 𝜎2𝐼
• As we take 𝜎2 ← 0, the update equations converge to doing 𝑘-means.
• If you do a quick experiment yourself, you’ll find

• Soft assignments converge to hard assignments.
• We can use k-means to initialize parameters of the GMM EM algorithm
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