Text Summarization of Czech News Articles Using Named Entities

Petr Marek, Štěpán Müller, Jakub Konrád, Petr Lorenc, Jan Pichl, Jan Šedivý


  1. Seth Weidman. Language Translation with TorchText, 2019.
  2. Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd. spaCy: Industrial-strength Natural Language Processing in Python, Zenodo, 2020. (http://doi.org/10.5281/zenodo.1212303)
  3. Michal Konkol, Miloslav Konopík, Magda Ševčíková, Zdeněk Žabokrtský, Jana Straková, and Milan Straka. CoNLL-based Extended Czech Named Entity Corpus 2.0, {LINDAT}/{CLARIAH}-{CZ} digital library at the Institute of Formal and Applied Linguistics ({{Ú}FAL}), Faculty of Mathematics and Physics, Charles University, 2014.
  4. Petr Marek and Štěpán Müller. SumeCzech-NER, {LINDAT}/{CLARIAH}-{CZ} digital library at the Institute of Formal and Applied Linguistics ({{Ú}FAL}), Faculty of Mathematics and Physics, Charles University, 2021.
  5. Magda Ševčíková, Zdeněk Žabokrtský, Jana Straková, and Milan Straka. Czech Named Entity Corpus 2.0, {LINDAT}/{CLARIAH}-{CZ} digital library at the Institute of Formal and Applied Linguistics ({{Ú}FAL}), Faculty of Mathematics and Physics, Charles University, 2014.
  6. Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D Trippe, Juan B Gutierrez, and Krys Kochut. Text summarization techniques: a brief survey arXiv preprint arXiv:1707.02268, 2017. (http://doi.org/10.14569/IJACSA.2017.081052)
  7. Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation arXiv preprint arXiv:1406.1078, 2014. (http://doi.org/10.3115/v1/D14-1179)
  8. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding arXiv preprint arXiv:1810.04805, 2018.
  9. Elena Filatova and Vasileios Hatzivassiloglou. Event-based extractive summarization, 2004.
  10. Sarah E Finch, James D Finch, Ali Ahmadvand, Xiangjue Dong, Ruixiang Qi, Harshita Sahijwani, Sergey Volokhin, Zihan Wang, Zihao Wang, Jinho D Choi, and others. Emora: An inquisitive social chatbot who cares for you arXiv preprint arXiv:2009.04617, 2020.
  11. Martin Hassel. Exploitation of named entities in automatic text summarization for swedish In NODALIDA’03–14th Nordic Conference on Computational Linguistics, Reykjavik, Iceland, May 30–31 2003, pages 9, 2003.
  12. Vasileios Hatzivassiloglou and Elena Filatova. Domain-independent detection, extraction, and labeling of atomic events, 2003.
  13. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory Neural computation 9, pages 1735–1780, MIT Press, 1997. (http://doi.org/10.1162/neco.1997.9.8.1735)
  14. Saima Jabeen, Sajid Shah, and Asma Latif. Named entity recognition and normalization in tweets towards text summarization In Eighth International Conference on Digital Information Management (ICDIM 2013), pages 223–227, 2013. (http://doi.org/10.1109/ICDIM.2013.6694007)
  15. Mikael Kågebäck, Olof Mogren, Nina Tahmasebi, and Devdatt Dubhashi. Extractive summarization using continuous vector space models In Proceedings of the 2nd Workshop on Continuous Vector Space Models and their Compositionality (CVSC), pages 31–39, 2014.
  16. Mohammad Ebrahim Khademi and Mohammad Fakhredanesh. Persian automatic text summarization based on Named Entity Recognition Iranian Journal of Science and Technology, Transactions of Electrical Engineering, pages 1–12, Springer, 2020. (http://doi.org/10.1007/s40998-020-00352-2)
  17. Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries In Text summarization branches out, pages 74–81, 2004.
  18. Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu, and Hongyan Li. Generative adversarial network for abstractive text summarization arXiv preprint arXiv:1711.09357, 2017.
  19. Yang Liu. Fine-tune BERT for extractive summarization arXiv preprint arXiv:1903.10318, 2019.
  20. Yang Liu and Mirella Lapata. Text summarization with pretrained encoders arXiv preprint arXiv:1908.08345, 2019. (http://doi.org/10.18653/v1/D19-1387)
  21. Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based neural machine translation arXiv preprint arXiv:1508.04025, 2015. (http://doi.org/10.18653/v1/D15-1166)
  22. Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text In Proceedings of the 2004 conference on empirical methods in natural language processing, pages 404–411, 2004.
  23. Štěpán Müller. Named Entity Recognition, 2020.
  24. Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, and others. Abstractive text summarization using sequence-to-sequence rnns and beyond arXiv preprint arXiv:1602.06023, 2016. (http://doi.org/10.18653/v1/K16-1028)
  25. Ani Nenkova. Automatic text summarization of newswire: Lessons learned from the document understanding conference, 2005.
  26. Chikashi Nobata, Satoshi Sekine, Hitoshi Isahara, and Ralph Grishman. Summarization System Integrated with Named Entity Tagging and IE pattern Discovery. In LREC, 2002.
  27. Alok Ranjan Pal and Diganta Saha. An approach to automatic text summarization using WordNet In 2014 IEEE International Advance Computing Conference (IACC), pages 1169–1173, 2014. (http://doi.org/10.1109/IAdCC.2014.6779492)
  28. Jan Pichl, Petr Marek, Jakub Konrád, Petr Lorenc, Van Duy Ta, and Jan Šedivý. Alquist 3.0: Alexa Prize Bot Using Conversational Knowledge Graph arXiv preprint arXiv:2011.03261, 2020.
  29. David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error propagation, 1985. (http://doi.org/10.1016/B978-1-4832-1446-7.50035-2)
  30. Frederik Schulze and Mariana Neves. Entity-supported summarization of biomedical abstracts In Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM2016), pages 40–49, 2016.
  31. Shengli Song, Haitao Huang, and Tongxiao Ruan. Abstractive text summarization using LSTM-CNN based deep learning Multimedia Tools and Applications 78, pages 857–875, Springer, 2019. (http://doi.org/10.1007/s11042-018-5749-3)
  32. Milan Straka, Nikita Mediankin, Tom Kocmi, Zdeněk Žabokrtský, Vojtěch Hudeček, and Jan Hajič. Sumeczech: Large Czech news-based summarization dataset In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 2018.
  33. Jana Straková, Milan Straka, and Jan Hajič. Neural Architectures for Nested NER through Linearization In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5326–5331, Association for Computational Linguistics, Florence, Italy, 2019. (http://doi.org/10.18653/v1/P19-1527)
  34. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need In Advances in neural information processing systems, pages 5998–6008, 2017.
  35. Štěpán Müller. Text Summarization Using Named Entity Recognition, 2020.
  36. Kaichun Yao, Libo Zhang, Dawei Du, Tiejian Luo, Lili Tao, and Yanjun Wu. Dual encoding for abstractive text summarization IEEE transactions on cybernetics, IEEE, 2018. (http://doi.org/10.1109/TCYB.2018.2876317)
  37. Yong Zhang, Joo Er Meng, and Mahardhika Pratama. Extractive document summarization based on convolutional neural networks In IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pages 918–922, 2016. (http://doi.org/10.1109/IECON.2016.7793761)