Syntactic Analysis

Daniel Zeman

December 16, 2021
1. Constituents vs. Dependencies

2. Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Core Arguments vs. Oblique Dependents
 - Ellipsis and Enhanced UD
Constituents vs. Dependencies
Syntactic Structure

• Different shapes in different theories
• Typically a tree
 • Constituents (phrase tree structure)
 • Dependencies (dependency tree structure)
Constituent Tree

(S (NP (N Paul)) (VP (V gave) (NP (N Peter)) (NP (C two) (N pears))))
Paul gave Peter two pears.
[#,0] ([gave,2] ([Paul,1], [Peter,3], [pears,5] ([two,4])), [,6])
Paul gave Peter two pears
Constituents vs. Dependencies

- The two models are interconnected

- Sentence divided to phrases (constituents)
 - Recursive: phrases divided to smaller phrases
 - The smallest phrases are words

- There are dependencies (relations) between words (constituents)
 - Head of phrase = governing node, parent node
 - The other nodes are dependent nodes, children of the head
Phrase vs. Dependency Trees

Constituents vs. Dependencies

Universal Dependencies
Phrase vs. Dependency Trees

- Phrase trees
 - Usually do not mark the head
 - May not mark the function of the constituent in the superordinate constituent

Constituents vs. Dependencies
Phrase vs. Dependency Trees

• Phrase trees
 • Usually do not mark the head
 • May not mark the function of the constituent in the superordinate constituent

• Dependency trees
 • Do not show nonterminals (phrase types)
 • Nor any other phrase-level features
 • Do not show “how the sentence is generated” (order, recursion, proximity of constituents)
Example

Constituents vs. Dependencies

Universal Dependencies
Discontinuous Phrases

- Classical context-free grammar cannot describe them!
- They cannot be represented by bracketing.
- English example: *I found the best example ever.*
- Czech example: *(Soubor (se nepodařilo) otevřít).* “File couldn’t be opened.”

![Dependency Diagram]

- \(VP(\text{nepodařilo}) \)
 - \(VR(\text{nepodařilo}) \)
 - \(T \)\(se \)\(\text{nepodařilo} \)
 - \(VP_{\text{inf}}(\text{otevřít}) \)
 - \(V_{\text{inf}} \)\(otevřít \)
 - \(N \)\(soubor \)
Nonprojectivity

- Dependency tree including word order (x-coordinate of nodes).
- Projection to the base: the vertical from the node crosses a dependency (nonprojective edge).
- Formally:
 - Dependency \([g, x_g], [d, x_d]\) where \(x_w\) is the order of the word \(w\) in the sentence.
 - There exists a node \([n, x_n]\) that \(x_g < x_n < x_d\) or \(x_d < x_n < x_g\) and \([n, x_n]\) is not in subtree rooted by \([g, x_g]\).
- Informally: The string spanned by the subtree of the governing node is discontinuous, it contains gaps.
Nonprojectivity Can Be Handled by a Dependency Tree!

```
    nepodařilo / Pred
     /  
    se / AuxT  otevřít / Sb
     
    soubor / Obj
```
Nonprojectivity Can Be Handled by a Dependency Tree!

```
root

Obj

AuxT

Sb

soubor file

se itself

nepodařilo did-not-succeed

otevřít to-open
```
Universal Dependencies
Outline

1. Constituents vs. Dependencies

2. Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Core Arguments vs. Oblique Dependents
 - Ellipsis and Enhanced UD
Constituents vs. Dependencies
Constituents vs. Dependencies
Constituents vs. Dependencies

Universal Dependencies

18/110
My daughter bought some bread and cheese

Min datter købte nogle brød og ost

Min dotter köpte några bröd och ost
Universal Dependencies

http://universaldependencies.org/

Milestones:

- 2008-05 Interset (morphological features)
- 2012-05 Google Universal POS tags
- 2012-05 HamleDT (harmonized Prague-style treebanks)
- 2013-08 Google Universal Dependency Treebank
- 2014-05 Universal Stanford Dependencies
- 2014-04 EACL Göteborg, kick-off meeting of UD
- 2014-10 UD guidelines version 1
- 2015-01 released first 10 treebanks
- every ~6 months new release
- 2016-12 UD guidelines version 2
- 2017-05 CoNLL Shared Task in parsing UD
- 2018-06 second Shared Task
- every ~6 months new release
Universal Dependencies

- Same things annotated same way across languages...
- ... while highlighting different coding strategies
Manning’s Law

The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.
2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
3. UD must be suitable for rapid, consistent annotation by a human annotator.
4. UD must be easily comprehended and used by a non-linguist, whether a language learner or an engineer with prosaic needs for language processing. It leads us to favor traditional grammar notions and terminology.
5. UD must be suitable for computer parsing with high accuracy.
6. UD must support well downstream language understanding tasks (relation extraction, reading comprehension, machine translation, …)

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
Manning’s Law

The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.

2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
Manning’s Law

The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.
2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
3. UD must be suitable for rapid, consistent annotation by a human annotator.
4. UD must be easily comprehended and used by a non-linguist, whether a language learner or an engineer with prosaic needs for language processing. … it leads us to favor traditional grammar notions and terminology.
5. UD must be suitable for computer parsing with high accuracy.
6. UD must support well downstream language understanding tasks (relation extraction, reading comprehension, machine translation, …)

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
Manning’s Law

The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.
2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
3. UD must be suitable for rapid, consistent annotation by a human annotator.
4. UD must be easily comprehended and used by a non-linguist, whether a language learner or an engineer with prosaic needs for language processing. ... it leads us to favor traditional grammar notions and terminology.

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
Manning’s Law

The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.
2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
3. UD must be suitable for rapid, consistent annotation by a human annotator.
4. UD must be easily comprehended and used by a non-linguist, whether a language learner or an engineer with prosaic needs for language processing. ... it leads us to favor traditional grammar notions and terminology.
5. UD must be suitable for computer parsing with high accuracy.

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
Manning’s Law

The secret to understanding UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.

2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.

3. UD must be suitable for rapid, consistent annotation by a human annotator.

4. UD must be easily comprehended and used by a non-linguist, whether a language learner or an engineer with prosaic needs for language processing. ... it leads us to favor traditional grammar notions and terminology.

5. UD must be suitable for computer parsing with high accuracy.

6. UD must support well downstream language understanding tasks (relation extraction, reading comprehension, machine translation, ...)

It’s easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
Same Thing Same Way

George killed the dragon

PROPN VERB DET NOUN
Same Thing Same Way

Constituents vs. Dependencies
Same Thing Same Way

Constituents vs. Dependencies
Same Thing Same Way

George killed the dragon

Mharaigh Seoirse an dragan

Jorge mató a el dragón

Constituents vs. Dependencies
Same Thing Same Way

Constituents vs. Dependencies
Same Meaning ≠ Same Construction!

He killed the dragon

Constituents vs. Dependencies
Same Meaning ≠ Same Construction!

He killed the dragon

The dragon was killed by him

Constituents vs. Dependencies
Same Meaning ≠ Same Construction!

- He killed the dragon
 - He (PRON) → killed (VERB) → the (DET) → dragon (NOUN)

- The dragon was killed by him
 - The (DET) → dragon (NOUN) → was (AUX) → killed (VERB) → by (ADP) → him (PRON)

- His killing of the dragon
 - His (PRON) → killing (NOUN) → of (ADP) → the (DET) → dragon (NOUN)

Constituents vs. Dependencies

Universal Dependencies

24/110
Same Meaning ≠ Same Construction!

He killed the dragon

The dragon was killed by him

His killing of the dragon

The dragon that was killed
The king, Vishnusharma, having summoned, said:

राजा विष्णुशर्मान् आहूय प्रोवाच
rājā viṣṇuśarmāṇāṁ āhūya provāca
king Vishnusharma having-summoned said

Constituents vs. Dependencies

Universal Dependencies

25/110
राजा विष्णुशर्मानम् आहूया प्रोवाच
det the DET king NOUN summoned VERB Vishnusharma PROPN and CCONJ said VERB

VerbForm=Conv VerbForm=Fin

VerbForm=Fin VerbForm=Fin
Universal Dependencies
A Tour through UD Syntax
1. Constituents vs. Dependencies

2. Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Core Arguments vs. Oblique Dependents
 - Ellipsis and Enhanced UD
The cat could have chased all the dogs down the street.

```
DET NOUN AUX AUX VERB DET DET NOUN ADP DET NOUN PUNCT
```
The cat could have chased all the dogs down the street.

- Content words are related by dependency relations
• Content words are related by dependency relations
• Function words attach to closest content words
• Content words are related by dependency relations
• Function words attach to closest content words
• Punctuation attach to head of phrase or clause

The cat could have chased all the dogs down the street.
The cat could have chased all the dogs down the street.

Not "dependency" in the strictly syntactic sense!
The dog was chased by the cat.
The dog was chased by the cat.

Кучето се преследваше от котката.
The dog was chased by the cat.

Кучето беше преследвano от котката.
The dog was chased by the cat.

Pes byl honěn kočkou.
Dependents of Clauses (Verbal or Not)

<table>
<thead>
<tr>
<th>Core</th>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nsubj</td>
<td>csubj</td>
<td>advmod</td>
<td>aux</td>
</tr>
<tr>
<td></td>
<td>obl</td>
<td>advcl</td>
<td>discourse</td>
<td>cop</td>
</tr>
<tr>
<td></td>
<td>vocative</td>
<td></td>
<td></td>
<td>mark</td>
</tr>
<tr>
<td></td>
<td>dislocated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>expl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Non-Core | | | | |
| | expl | | | |

Dependents of Verbs, Adjectives and Adverbs

<table>
<thead>
<tr>
<th>Core</th>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>obj</td>
<td>ccomp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iobj</td>
<td>xcomp</td>
<td>advmod</td>
</tr>
<tr>
<td>Non-Core</td>
<td>obl</td>
<td>advcl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>expl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependents of Nominals

<table>
<thead>
<tr>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>nmod</td>
<td>acl</td>
<td>amod</td>
<td>det</td>
</tr>
<tr>
<td>appos</td>
<td></td>
<td>nummod</td>
<td>case</td>
</tr>
</tbody>
</table>
Dependents of Nominals

<table>
<thead>
<tr>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>nmod</td>
<td>acl</td>
<td>amod</td>
<td>det</td>
</tr>
<tr>
<td>appos</td>
<td></td>
<td>nummod</td>
<td>case</td>
</tr>
<tr>
<td>compound</td>
<td></td>
<td></td>
<td>clf</td>
</tr>
<tr>
<td>flat</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

```
the American singer Johnny Cash, an icon of country music
```

- **det**: Determiner
- **amod**: Adjective Modifier
- **flat**: Flat
- **appos**: Apposition
- **punct**: Punctuation
- **nmod**: Noun Modifier
Coordination

- Coordinate structures are headed by the first conjunct
 - Subsequent conjuncts depend on it via the `conj` relation
 - Conjunctions depend on the next conjunct via the `cc` relation
 - Punctuation marks depend on the next conjunct via the `punct` relation
But Some Languages Might Prefer the Opposite

- Coordinate structures would be headed by the last conjunct
 - Preceding conjuncts would depend on it via the `conj` relation
 - Conjunctions would depend on the preceding conjunct
 - Punctuation marks would depend on the preceding conjunct

Constituents vs. Dependencies
Multiword Expressions

Relation Examples

<table>
<thead>
<tr>
<th>Relation</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixed</td>
<td>in spite of, as well as, ad hoc</td>
</tr>
<tr>
<td>flat</td>
<td>president Havel, New York, four thousand</td>
</tr>
<tr>
<td>compound</td>
<td>phone book, dress up</td>
</tr>
<tr>
<td>goeswith</td>
<td>notwith standing, with out</td>
</tr>
</tbody>
</table>

- UD annotation **almost** does not permit “words with spaces”
 - Multiword expressions are analyzed using special relations
 - The **fixed**, **flat** and **goeswith** relations are always head-initial
 - The **compound** relation reflects the internal structure
- Words with spaces may be allowed in v2:
 - Vietnamese (spaces delimit syllables, not words)
 - Numbers (“1 000 000”)
 - Possibly other approved cases, e.g. multi-word abbreviations
Other Relations

<table>
<thead>
<tr>
<th>Relation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>parataxis</td>
<td>Loosely linked clauses of same rank</td>
</tr>
<tr>
<td>list</td>
<td>Lists without syntactic structure</td>
</tr>
<tr>
<td>orphan</td>
<td>Orphans in ellipsis linked together</td>
</tr>
<tr>
<td>reparandum</td>
<td>Disfluency linked to (speech) repair</td>
</tr>
<tr>
<td>foreign</td>
<td>Elements within opaque stretches of code switching</td>
</tr>
<tr>
<td>dep</td>
<td>Unspecified dependency</td>
</tr>
<tr>
<td>root</td>
<td>Syntactically independent element of clause/phrase</td>
</tr>
</tbody>
</table>
Language-specific Relation Subtypes

- Language-specific relations are subtypes of universal relations added to capture important phenomena.
- Subtyping permits us to “back off” to universal relations.

<table>
<thead>
<tr>
<th>Relation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl:relcl</td>
<td>Relative clause</td>
</tr>
<tr>
<td>compound:prt</td>
<td>Verb particle (dress up)</td>
</tr>
<tr>
<td>nmod:poss</td>
<td>Possessive nominal (Mary’s book)</td>
</tr>
<tr>
<td>obl:agent</td>
<td>Agent in passive (saved by the bell)</td>
</tr>
<tr>
<td>cc:preconj</td>
<td>Preconjuction (both ... and)</td>
</tr>
<tr>
<td>det:predet</td>
<td>Predetominator (all those ...)</td>
</tr>
</tbody>
</table>
Universal Dependencies
Nonverbal Predicate and Copula
Outline

1 Constituents vs. Dependencies

2 Universal Dependencies
 • A Tour through UD Syntax
 • Nonverbal Predicate and Copula
 • Core Arguments vs. Oblique Dependents
 • Ellipsis and Enhanced UD
Nonverbal Predicate and Copula

• Some languages use a copula verb:

 Ivan is the best dancer.

• Some languages use a copula pronoun:

 Ivan – to najlepszy tancerz.
 Ivan – it best dancer.
Nonverbal Predicate and Copula

- Some languages use a copula verb:

 ![Diagram](image)

 Ivan is the best dancer.

- Some languages omit the copula:

 ![Diagram](image)

 Иван лучший танцор.
 Ivan lučšij tancor.
 Ivan best dancer.
Nonverbal Predicate and Copula

• Some languages use a copula verb:

\[
\text{Ivan was the best dancer.}
\]

• Some languages use it only in some tenses:

\[
\text{Ivan был лучшим танцором.}
\]
Copula Verbs: We Are Restrictive!

- *To be* is copula:

 ![Diagram of "Ivan is the best dancer."]

- *To become* is not copula:

 ![Diagram of "Ivan became the best dancer."]
Once Copula, Always Copula!

• This is parallel with Russian:

Ivan is the best dancer.

• This is also parallel with Russian:

Ivan is today in Moscow.

Constituents vs. Dependencies
• This is parallel with Russian:

Ivan is today in Moscow.

• But not with this in English:

There is a dancer in Moscow.
Clauses and Copula

- A clause can be the subject:
 - The problem is that he is missing.

- But it cannot be annotated as the nonverbal predicate:
 - The problem is that he is missing.
Universal Dependencies

Core Arguments vs. Oblique Dependents
1. Constituents vs. Dependencies

2. Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Core Arguments vs. Oblique Dependents
 - Ellipsis and Enhanced UD
Dependents of Clauses (Verbal or Not)

<table>
<thead>
<tr>
<th>Core</th>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nsubj</td>
<td>csubj</td>
<td>advmod</td>
<td>aux</td>
</tr>
<tr>
<td></td>
<td>obi</td>
<td>advcl</td>
<td>discours</td>
<td>cop</td>
</tr>
<tr>
<td></td>
<td>vocative</td>
<td>expl</td>
<td>mark</td>
<td></td>
</tr>
<tr>
<td>Non-Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependents of Verbs, Adjectives and Adverbs

<table>
<thead>
<tr>
<th>Core</th>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>obj</td>
<td>ccomp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iobj</td>
<td>xcomp</td>
<td></td>
</tr>
<tr>
<td>Non-Core</td>
<td></td>
<td>advcl</td>
<td>advmod</td>
</tr>
<tr>
<td></td>
<td>obi</td>
<td>expl</td>
<td></td>
</tr>
</tbody>
</table>

Dependents of Nominals

<table>
<thead>
<tr>
<th>Nominal</th>
<th>Clausal</th>
<th>Modifier</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>nmod</td>
<td>acl</td>
<td>amod</td>
<td>det</td>
</tr>
<tr>
<td>appos</td>
<td></td>
<td>nummod</td>
<td>case</td>
</tr>
</tbody>
</table>
Information Packaging

Constituents vs. Dependencies
Information Packaging

I gave her a book.

Constituents vs. Dependencies

Universal Dependencies
He loaded the wagon with hay
He loaded the wagon with hay.

He loaded hay on the wagon.
UD is NOT about Semantic Roles!

Constituents vs. Dependencies
The secret to understanding the design and current success of UD is to realize that the design is a very subtle compromise between approximately 6 things:

1. UD must be satisfactory on linguistic analysis grounds for individual languages.
2. UD must be good for linguistic typology, i.e., providing a suitable basis for bringing out cross-linguistic parallelism across languages and language families.
3. UD must be suitable for rapid, consistent annotation by a human annotator.
4. UD must be easily comprehended and used by a non-linguist, whether a language learner or an engineer with prosaic needs for language processing. ... it leads us to favor traditional grammar notions and terminology.
5. UD must be suitable for computer parsing with high accuracy.
6. UD must support well downstream language understanding tasks (relation extraction, reading comprehension, machine translation, ...)

It's easy to come up with a proposal that improves UD on one of these dimensions. The interesting and difficult part is to improve UD while remaining sensitive to all these dimensions.
UD Avoids Argument-Adjunct Distinction!

Constituents vs. Dependencies
Avoiding an Argument-Adjunct Distinction

• From the guidelines:
 • Subtle, unclear, and frequently argued over
 • Questionable as a categorical distinction
 • Best practical solution is to eliminate it

• BUT:
 • Cannot be eliminated completely
 • Some people/data have it and want to keep it
 • It aligns well with traditional grammars

⇒ there is now a relation subtype obl:arg

• AND
 • I will argue that
 • Core-oblique distinction is unclear and argued over too
 • (Though I will not propose to discard it.)
Avoiding an Argument-Adjunct Distinction

- From the guidelines:
 - Subtle, unclear, and frequently argued over
 - Questionable as a categorical distinction
 - Best practical solution is to eliminate it

- BUT:
 - Cannot be eliminated completely
 - Some people/data have it and want to keep it
 - It aligns well with traditional grammars
 - ⇒ there is now a relation subtype obl:arg

Constituents vs. Dependencies
Avoiding an Argument-Adjunct Distinction

• From the guidelines:
 • Subtle, unclear, and frequently argued over
 • Questionable as a categorical distinction
 • Best practical solution is to eliminate it

• BUT:
 • Cannot be eliminated completely
 • Some people/data have it and want to keep it
 • It aligns well with traditional grammars
 • ⇒ there is now a relation subtype obl:arg

• AND I will argue that
 • Core-oblique distinction is unclear and argued over too
 • (Though I will not propose to discard it.)
So What Is Core and Why?
Community Confusion

- UD v1 guidelines took core-oblique for granted

- English (simplified):
 - Bare noun phrase \Rightarrow core argument ($nsubj$, obj, $iobj$)
 - Prepositional phrase \Rightarrow oblique argument or adjunct (obl)

- Other languages: not necessarily! (Spanish, Japanese)

- But some people simply took the English rule…

- Manning’s law: non-linguists!

- Clash with traditional terminology

- Grammars of German, Czech etc. define prepositional objects

- But these are not necessarily core…

- Yet some people took their national definition of object…
Community Confusion

- UD v1 guidelines took core-oblique for granted

- English (simplified):
 - Bare noun phrase \Rightarrow core argument (nsubj, obj, iobj)
 - Prepositional phrase \Rightarrow oblique argument or adjunct (obl)

- Other languages: not necessarily! (Spanish, Japanese)
 - But some people simply took the English rule...
 - Manning’s law: non-linguists!
Community Confusion

• UD v1 guidelines took core-oblique for granted

• English (simplified):
 • Bare noun phrase ⇒ core argument (nsubj, obj, iobj)
 • Prepositional phrase ⇒ oblique argument or adjunct (obl)

• Other languages: not necessarily! (Spanish, Japanese)
 • But some people simply took the English rule...
 • Manning’s law: non-linguists!

• Clash with traditional terminology
 • Grammars of German, Czech etc. define prepositional objects
 • But these are not necessarily core...
 • Yet some people took their national definition of object...
Language-specific Coding Strategy

- Idea:
 - Oblique arguments are marked similarly to adjuncts (prepositions, certain morphological cases...)
 - Core arguments are marked differently
 - ⇒ easy for annotators and non-linguists!

- Why are core arguments special?
 - They tend to be targeted by grammatical rules
 - Passivization
 - Control verbs
 - Reflexives
 - ...

Constituents vs. Dependencies
Language-specific Coding Strategy

- Core vs. oblique is not defined in traditional grammar
- How shall we define it?

Andrews, 2007 (In Shopen: Language Typology)

- Identify primary transitive predicates
- We need semantic roles for this! (One-time only)

 - Actor/agent = function A
 - Undergoer/patient = function P

- Note the way they are coded
- Note other grammatical rules that target them
- Generalize to other predicates with same coding and rules
- Then define:

 - function $A \Rightarrow nsubj$
 - function $P \Rightarrow obj$
Language-specific Coding Strategy

• Core vs. oblique is not defined in traditional grammar
• How shall we define it?

• Andrews, 2007 (In Shopen: Language Typology)
 • Identify primary transitive predicates
 • We need semantic roles for this! (One-time only.)
Language-specific Coding Strategy

• Core vs. oblique is not defined in traditional grammar
• How shall we define it?

• Andrews, 2007 (In Shopen: Language Typology)
 • Identify primary transitive predicates
 • We need semantic roles for this! (One-time only.)
 • Actor/agent = function A
 • Undergoer/patient = function P

Constituents vs. Dependencies
Language-specific Coding Strategy

- Core vs. oblique is not defined in traditional grammar
- How shall we define it?

Andrews, 2007 (In Shopen: Language Typology)
- Identify **primary transitive predicates**
 - We need semantic roles for this! (One-time only.)
- Actor/agent = function A
- Undergoer/patient = function P
- Note the way they are coded
- Note other grammatical rules that target them
- Generalize to other predicates with same coding and rules
Language-specific Coding Strategy

• Core vs. oblique is not defined in traditional grammar
• How shall we define it?

• Andrews, 2007 (In Shopen: Language Typology)
 • Identify primary transitive predicates
 • We need semantic roles for this! (One-time only.)
 • Actor/agent = function A
 • Undergoer/patient = function P
 • Note the way they are coded
 • Note other grammatical rules that target them
 • Generalize to other predicates with same coding and rules

• Then define:
 • function A ⇒ nsubj
 • function P ⇒ obj
Transitive Predicates in English

John kills Mary (primary transitive)

PROPN VERB PROPN

Constituents vs. Dependencies
Transitive Predicates in English

John kills Mary (primary transitive)

PROPN VERB PROPN

John loves Mary (generalized transitive)

PROPN VERB PROPN
Transitive Predicates in English

Primary Transitive

John \(\text{nsubj}\) kills \(\text{obj}\) Mary

Generalized Transitive

John \(\text{nsubj}\) loves \(\text{obj}\) Mary

Constituents vs. Dependencies
Transitive Predicates in English

Nominal
- Case=Nom
- bare NP
- pre-verb
- cross-ref on verb

Verb
- Voice=Act, Pass
- declarative clause
- agreement

Nominal
- Case=Acc
- bare NP
- post-verb

Constituents vs. Dependencies

Universal Dependencies

59/110
Passivization in English

Constituents vs. Dependencies
Subject Control in English

Constituents vs. Dependencies
Object Control in English

Constituents vs. Dependencies
Some Problems

- Some temporal adjuncts are bare noun phrases
 - *I work the whole week.*
 - *I work every Friday.*

- At least it cannot passivize:
 - *The whole week is worked by me.*
 - *Every Friday is worked by me.*

- But...
Some Problems

- Some transitive verbs cannot passivize
 - John *has a new car.*
 - *A new car is had by John.*
 - Friday does not *suit me.*
 - *I am not suited by Friday.*

Constituents vs. Dependencies
Some Problems

• Some transitive verbs cannot passivize
 • *A new car is had by John.
 • *I am not suited by Friday.

• Some prepositional verbs can passivize
 • Ben can be relied on.
 • Your children will be taken care of.
Tentative Summary?

- The borderline is inherently fuzzy
- No universally applicable and exact algorithm
- Better described in terms of probability
Tentative Summary?

• The borderline is inherently fuzzy
• No universally applicable and exact algorithm
• Better described in terms of probability

• Core coding not favored by adjuncts
• Oblique coding similar to most adjuncts
• Passivization etc. may help…
• … but does not work as strict criterion

Constituents vs. Dependencies
Tentative Summary?

- The borderline is inherently fuzzy
- No universally applicable and exact algorithm
- Better described in terms of probability

- Core coding not favored by adjuncts
- Oblique coding similar to most adjuncts
- Passivization etc. may help...
- ... but does not work as strict criterion

- Semantic roles needed when starting a new language
- Argument-adjunct needed to describe exceptions (*the whole week*)
Intransitive Predicates

• Just one core argument
 • We already “know” how to find out if there are two

• \(\Rightarrow \) function \(S \)
 • Regardless of semantic role:
 • \(John \ runs. \)
 • \(John \ sleeps. \)
 • \(John \ falls. \)

• Then define:
 • function \(S \) \(\Rightarrow \) \text{nsubj}
Ditransitive Predicates

• Three core arguments
• Is one of them “least core”? ⇒ iobj
• (Alternatively, we could look at the semantic roles once again.)

\[
\text{I gave her a book}
\]

PRON VERB PRON DET NOUN

• Passivization:
 • \text{She was given a book by me.}
 • \text{?A book was given her by me.}
Ditransitive Predicates

- Three core arguments
- Is one of them “least core”? ⇒ iobj
- (Alternatively, we could look at the semantic roles once again.)

Andrews (2007): the status of the notion of ‘indirect object’ is problematic and difficult to sort out. The top priority is to work out what properties recipients and themes do and do not share with P arguments of primary transitive verbs.
Jorge mató al dragón.

El dragón fue matado por Jorge.
Spanish Transitive Clauses

- Nominal (Case=Nom)
- Bare NP
- Pre-verb
- Cross-ref on verb

- VERB (Voice=Act, Pass)
- Declarative clause
- Agreement

- Nominal (Case=Acc)
- (or bare NP)
- Post-verb

Constituents vs. Dependencies
Spanish Adjunct Exceptions

El trabaja toda la semana.
He works whole the week.

Subiremos a el tren a las cinco.
We will board to the train at the five.
Spanish Ditransitive Clauses

Pedro le dio un libro a Isabel
Pedro her gave a book to Isabel

PROPN PRON VERB DET NOUN ADP PROPN

Constituents vs. Dependencies

Pedro le dio un libro a Isabel
Pedro her gave a book to Isabel

PROPN PRON VERB DET NOUN
Spanish Ditransitive Clauses

Constituents vs. Dependencies
Jiří zabil draka

PROPN Jiří
VERB zabil
NOUN draka

Case=Nom
Case=Acc

Drak byl zabit Jiřím

NOUN Drak
AUX byl
VERB zabit
PROPN Jiřím

Case=Nom
aux:pass
verb:pass
obl:agent

Constituents vs. Dependencies
Czech Transitive Clauses

nominal
Case=Nom
bare NP
pre-verb
cross-ref on verb

VERB
Voice=Act(,Pass)
dependent clause

nominal
Case=Acc
bare NP
post-verb

root

nsubj

obj

agreement
Czech Adjunct Exceptions

Pracuje celý týden
He-work whole week
Czech Ditransitive Clauses

Constituents vs. Dependencies

Universal Dependencies

75/110
Dative: Recipient vs. Beneficiary

Constituents vs. Dependencies
Monotransitive with Dative?

Zuzka helped Martinovi with úkolom

Martinovi bylo pomůženo s úkolom homework

Constituents vs. Dependencies
Monotransitive with Genitive?

Novináři musí dbát zásad objektivity.

Journalists must observe principles of objectivity.

Musí být dbáno zásad objektivity.

Must be observed principles of objectivity.
Karel nábytkem hýbal

- Karel
- hýbal
- nábytkem

Case=Nom

PROPN

VERB

NOUN

obj?

root

nsubj

Furniture

bylo

moved

hýbáno

NOUN

AUX

ADJ

Case=Ins

Gender=Neut

Number=Sing
Spoléhali na ředitelovo rozhodnutí
They-relied on director's decision

On ředitelovo rozhodnutí bylo spoléháno
On director's decision was relied
• There is a core-oblique scale:
 - Nom > Acc > Gen,Dat > Ins > preposition

• Where is the borderline?
• There is a core-oblique scale:
 • Nom > Acc > Gen, Dat > Ins > preposition

• Where is the borderline?

• UD Czech 1.0: object = argument
 • Nom, Acc, Gen, Dat, Ins, ADP > “adverbial”

⇒ No ditransitives in Czech!

(Exception: učit “to teach” takes two Acc.)
• There is a core-oblique scale:
 - $\text{Nom} > \text{Acc} > \text{Gen,Dat} > \text{Ins} > \text{preposition}$

• Where is the borderline?

• UD Czech 1.0: object $=$ argument
 - Nom, Acc, Gen, Dat, Ins, ADP $>$ "adverbial"

• UD Czech 2.1–2.5: bare NP $>$ PP
 - Nom, Acc, Gen, Dat, Ins $>$ ADP + adjuncts

⇒ No ditransitives in Czech!
(Exception: učit "to teach" takes two Acc.)
There is a core-oblique scale:
- **Nom** > **Acc** > **Gen, Dat** > **Ins** > preposition

Where is the borderline?

UD Czech 1.0: object = argument
- Nom, Acc, Gen, Dat, Ins, ADP > “adverbial”

UD Czech 2.1–2.5: bare NP > PP
- Nom, Acc, Gen, Dat, Ins > ADP + adjuncts

UD Czech 2.6 (May 2020):
- Nom, Acc > Gen, Dat, Ins, ADP + adjuncts
• There is a core-oblique scale:
 • Nom > Acc > Gen, Dat > Ins > preposition

• Where is the borderline?

• UD Czech 1.0: object = argument
 • Nom, Acc, Gen, Dat, Ins, ADP > “adverbial”

• UD Czech 2.1–2.5: bare NP > PP
 • Nom, Acc, Gen, Dat, Ins > ADP + adjuncts

• UD Czech 2.6 (May 2020):
 • Nom, Acc > Gen, Dat, Ins, ADP + adjuncts
 • ⇒ No ditransitives in Czech!
 • (Exception: učit “to teach” takes two Acc.)
Basque Transitive Clauses

Constituents vs. Dependencies

Nominal
Case=Erg
Case=Erg
Case=Dat
bare NP

Pre-verb
cross-ref on verb

Declarative Clause
agreement

Post-verb
cross-ref on verb

Basque Transitive Clauses

Constituents vs. Dependencies
Basque Intransitive Clauses

Constituents vs. Dependencies

Gizona hil da
The-man died it-has
NOUN VERB AUX
Case=Abs

Urak irakin du
Water boiled it-has-it
NOUN VERB AUX
Case=Erg
Basque Ditransitive Clauses

Constituents vs. Dependencies

Zezenak saihetsa pitzatu zidan
Bull rib cracked it-has-me-it
NOUN NOUN VERB AUX
Case=Erg Case=Abs
Basque Ditransitive Clauses

Constituents vs. Dependencies
Basque Causative Applied to Dative Subject

Constituents vs. Dependencies
Yidiŋ Transitive Clauses

Constituents vs. Dependencies
“I, (who) was slapped by the woman, laughed”

Constituents vs. Dependencies
Yidiɲ “Dative” Adnominal Clauses

“İ, (who) was slapped by the woman, laughed”

The coreferential (and elidable) NP must have S or P function.
“I, (who) was lauging, was slapped by the woman”

The coreferential (and elidable) NP must have S or P function.
Yidiɲ Antipassive

“\(I, (\text{who}) \) was slapping the woman, laughed”

Original P is now oblique and original A is now S.
Tagalog Transitive Clauses

Constituents vs. Dependencies

Universal Dependencies

92/110
Magaalis ang babae ang bigas sa sako

Will-take the woman rice from sack

Voice=Act? Case=Nom

Aalisin ng babae ang bigas sa sako

Will-take the woman rice from sack

Voice=Pass? Case=Acc
Tagalog Locative Voice ⇒ Ditransitive!

Aalisan ng babae ng sako
Will-take woman from-the sack

Voice=Locf Case=Acc Case=Acc Case=Nom

Constituents vs. Dependencies
Tagalog Benefactive Voice ⇒ Ditransitive!

Ipagaaalis ng babae ng bigas ang bata
Will-take woman rice for-the child

VERB DET NOUN DET NOUN DET NOUN
Voice=Benf Case=Acc Case=Acc Case=Nom
Plains Cree Transitive Clauses

Constituents vs. Dependencies
Direct-Inverse Voice in Plains Cree

Animacy hierarchy: 1st person > 3rd person
Direct-Inverse Voice in Plains Cree

Animacy hierarchy: 1st person > 3rd person
Should we set nsubj > obj?
Constituents vs. Dependencies
Plains Cree Ditransitive Clauses

The **theme** (not the recipient) is indirect object because it is not cross-referenced on the verb (it is *inanimate*, while the verb references an animate object).
Universal Dependencies
Ellipsis and Enhanced UD
Outline

1. Constituents vs. Dependencies

2. Universal Dependencies
 - A Tour through UD Syntax
 - Nonverbal Predicate and Copula
 - Core Arguments vs. Oblique Dependents
 - Ellipsis and Enhanced UD
Some treebanks would use an empty node to represent the second *went*. UD enhanced representation now allows empty nodes! But the basic representation sticks with the overt words.
Kate went to Florida and Jane (went) to Europe
Kate went to Florida and Jane (went) to Europe
Kate went to Florida and Jane (went) to Europe
UD V2: The orphan Relation

Kate went to Florida and Jane (went) to Europe
Kate wants to go to Florida and Jane (wants) (go) to Europe.
Enhanced Dependencies: Gapping and Control

Kate wants to go to Florida and Jane (wants) (go) to Europe

Constituents vs. Dependencies
Enhanced Dependencies: Coordination

Jane eats sweet apples and oranges

Constituents vs. Dependencies
A gdzie szukać szamponu, który myje?
And where to-look for-shampoo, that washes?
Basic Universal Dependencies: 104 (102) Languages and Growing

- **I.-E.**:
 - Armenian, Ancient Greek, Greek, Albanian, Breton, Irish, Manx, Scottish, Welsh, Afrikaans, Danish, Dutch, English, Faroese, German, Gothic, Icelandic, Norwegian, Swedish, Swiss German, Catalan, French, Galician, Italian, Latin, Old French, Portuguese, Romanian, Spanish, Belarusan, Bulgarian, Church Slavonic, Croatian, Czech, Old Russian, Polish, Russian, Serbian, Slovak, Slovenian, Ukrainian, Upper Sorbian, Latvian, Lithuanian, Kurmanji, Persian, Khunsari, Nayini, Soi, Urdu, Hindi, Bhojpuri, Marathi, Sanskrit
- **Dravidian**:
 - Tamil, Telugu
- **Uralic**:
 - Erzya, Estonian, Finnish, Hungarian, Karelian, Livvi, Komi Permyak+Zyrian, Moksha, Sámi North+Skolt
- **Turkic**:
 - Kazakh, Old Turkish, Turkish, Uyghur
- **Sino-Tibetan**:
 - Cantonese, Classical Chinese, Chinese
- **Tai-Kadai**:
 - Thai
- **Aus.-As.**:
 - Vietnamese
- **Austronesian**:
 - Indonesian, Tagalog
- **Pama-Nyungan**:
 - Warlpiri
- **Chukotko-Kamchatkan**:
 - Chukchi
- **Arawakan**:
 - Apurinã
- **Tupian**:
 - Akuntsu, Mundurukú, Tupinambá, Mbyá Guaraní
- **Af.-As.**:
 - Akkadian, Amharic, Arabic Standard+Levantine, Assyrian, Coptic, Hebrew, Maltese
- **Niger-Congo**:
 - Bambara, Wolof, Yoruba
- **Other**:
 - Basque, Sw. Sign, Naija

Constituents vs. Dependencies
Syntactic Analysis

Summary

• Constituent (phrase) trees ... context-free grammar
• Dependency trees (or graphs)
 • Nonprojective dependencies
• Universal Dependencies
 • Unified annotation for all languages
 • Language-specific extensions
 • Content words higher than function words ... better parallelism
• Clauses – nominals – modifier words
• Core arguments vs. oblique dependents

https://ufal.cz/courses/npfl094