
Morphological Analysis
Unification Grammars
Daniel Zeman

December 12, 2024

NPFL094 Computational Morphology and Syntax

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics unless otherwise stated

Unification Grammars

• Based on
• context-free grammars
• feature structures
• their unifiability

• Feature structure
• Sort of database record, or a variable of a structured type: record in Pascal, struct in C.

Description of an object, list of features
• features (attributes) … names of fields
• values
• Examples of attribute-value pairs: [number: plural], [case: nominative]

1/38

Feature Structure

entity
NAME FF UK
PHONE 258562

entity

NAME Dan
PHONE 221914225

faculty
NAME MFF UK
DEAN Rokyta
PHONE 221911111

POS noun
GEN masculine
NUM singular
CASE dative

POS adjective
GEN masculine
NUM plural
CASE accusative
DEG comparative
NEG affirmative

2/38

Feature Structure

entity
NAME FF UK
PHONE 258562

entity

NAME Dan
PHONE 221914225

faculty
NAME MFF UK
DEAN Rokyta
PHONE 221911111

POS noun
GEN masculine
NUM singular
CASE dative

POS adjective
GEN masculine
NUM plural
CASE accusative
DEG comparative
NEG affirmative

2/38

Feature Structure

• Partial function mapping the set of features to the set of values

type
FEATURE1 VALUE1
FEATURE2 VALUE2
FEATURE3 VALUE3

3/38

Unifiability

• Two feature structures are unifiable if their values of the features they share are
identical

• Example: structures 1 and 2 are unifiable, so are 2 and 3, while 1 and 3 are not

1
GENDER masculine

NUMBER singular
CASE dative

 2
POS verb

NUMBER singular
TENSE present

3
GENDER masculine

NUMBER singular
CASE instrumental

4/38

Unifiability

• Two feature structures are unifiable if their values of the features they share are
identical

• Example: structures 1 and 2 are unifiable, so are 2 and 3, while 1 and 3 are not

1
GENDER masculine

NUMBER singular
CASE dative

 2
POS verb

NUMBER singular
TENSE present

3
GENDER masculine

NUMBER singular
CASE instrumental

4/38

Unifiability

• Two feature structures are unifiable if their values of the features they share are
identical

• Example: structures 1 and 2 are unifiable, so are 2 and 3, while 1 and 3 are not

1
GENDER masculine

NUMBER singular
CASE dative

 2
POS verb

NUMBER singular
TENSE present

3
GENDER masculine

NUMBER singular
CASE instrumental

4/38

Unification

• Unification is an operation over two unifiable feature structures. It results in a new
feature structure

1
GENDER masculine

NUMBER singular
CASE dative

+ 2
PERSON third

NUMBER singular
TENSE present

= 3

GENDER masculine
NUMBER singular
CASE dative
PERSON third
TENSE present

5/38

Unification as a Tool for Morphological Generation?

• Input: feature structures “lemma” and “tag”
• Search lexicon for all structures “entry” that are unifiable with “lemma”
• For each “entry” found, look up a “paradigm” structure that is unifiable with both the

“entry” and the “tag” structures
• Unify the corresponding structures “entry”, “paradigm”, and “tag”. The resulting

structure is “form”
• Output: for each “form”, concatenate its values of “paradigm” and “suffix”

6/38

Unification as a Tool for Morphological Generation?

• Input: feature structures “lemma” and “tag”[
lemma
LEMMA háček

]tag
NUMBER plural
CASE nominative

• Czech noun háček has two meanings and belongs to two inflection classes:

• “small hook” … masculine inanimate class hrad “castle”
• “bowman” … masculine animate class pán “gentleman”

• Search lexicon for “entry” structures unifiable with “lemma”entry
LEMMA háček
PARADIGM hrad

entry

LEMMA háček
PARADIGM pán

7/38

Unification as a Tool for Morphological Generation?

• Input: feature structures “lemma” and “tag”[
lemma
LEMMA háček

]tag
NUMBER plural
CASE nominative

• Czech noun háček has two meanings and belongs to two inflection classes:

• “small hook” … masculine inanimate class hrad “castle”
• “bowman” … masculine animate class pán “gentleman”

• Search lexicon for “entry” structures unifiable with “lemma”entry
LEMMA háček
PARADIGM hrad

entry

LEMMA háček
PARADIGM pán

7/38

Unification as a Tool for Morphological Generation?

• For each “entry”, find a “paradigm” structure unifiable with both “entry” and “tag”entry
LEMMA háček
PARADIGM hrad

entry

LEMMA háček
PARADIGM pán

paradigm
PARADIGM hrad
NUMBER plural
CASE nominative
SUFFIX y

paradigm
PARADIGM pán
NUMBER plural
CASE nominative
SUFFIX i

paradigm
PARADIGM pán
NUMBER plural
CASE nominative
SUFFIX ové

8/38

Unification as a Tool for Morphological Generation?

• Unify the corresponding structures “entry”, “paradigm”, and “tag”. Call the resulting
structure “form”

form
LEMMA háček
PARADIGM hrad | pán
NUMBER plural
CASE nominative
SUFFIX y | i | ové

9/38

Unification as a Tool for Morphological Generation?

• Unification resembles database operations
• It does not tell how the “form” structure is to be interpreted
• Rule: output = form.lemma + form.suffix
• The rule does not solve phonological changes (and unification cannot help us with this):

• We get: *háčeky, *háčeki, *háčekové
• We want: háčky, háčci, háčkové

• Possible workaround: shorter stem, longer suffix
• háč+ky, háč+ci, háč+kové

10/38

Unification as a Tool for Morphological Analysis???

• Non-unification part: find all possible affixes recognizable in the word ⇒ set of “form”
structures

• The “paradigm” structures tell us what is the set of known suffixes

• Somehow solve phonological changes (stem-final palatalization, stem-internal ablaut
etc.)

• Then take the dual procedure to the generation:
• Unify form with paradigm
• Unify the result with lexicon
• Entries found in lexicon are the possible analyses

• E.g. cs: běžím “I am running” = běžet (verb:trpět) + person (1st)
̸= běží (noun:stavení) + case (7)

11/38

Unification as a Tool for Morphological Analysis???

• Non-unification part: find all possible affixes recognizable in the word ⇒ set of “form”
structures

• The “paradigm” structures tell us what is the set of known suffixes
• Somehow solve phonological changes (stem-final palatalization, stem-internal ablaut

etc.)

• Then take the dual procedure to the generation:
• Unify form with paradigm
• Unify the result with lexicon
• Entries found in lexicon are the possible analyses

• E.g. cs: běžím “I am running” = běžet (verb:trpět) + person (1st)
̸= běží (noun:stavení) + case (7)

11/38

Unification as a Tool for Morphological Analysis???

• Non-unification part: find all possible affixes recognizable in the word ⇒ set of “form”
structures

• The “paradigm” structures tell us what is the set of known suffixes
• Somehow solve phonological changes (stem-final palatalization, stem-internal ablaut

etc.)
• Then take the dual procedure to the generation:

• Unify form with paradigm
• Unify the result with lexicon
• Entries found in lexicon are the possible analyses

• E.g. cs: běžím “I am running” = běžet (verb:trpět) + person (1st)
̸= běží (noun:stavení) + case (7)

11/38

Unification as a Tool for Morphological Analysis???

• Non-unification part: find all possible affixes recognizable in the word ⇒ set of “form”
structures

• The “paradigm” structures tell us what is the set of known suffixes
• Somehow solve phonological changes (stem-final palatalization, stem-internal ablaut

etc.)
• Then use unification…

• In fact, this is what PC Kimmo v.2 does:
• It combines two-level morphology with a unification grammar

12/38

Unification Morphology Grammar (UMG)

• Jan Hajič: Unification Morphology Grammar (PhD thesis). Univerzita Karlova, Praha,
1994

• Stuart Shieber: An Introduction to Unification-based Approaches to Grammar. CSLI
Lecture Notes No. 4, Stanford, California, USA, 1986

• Based on a context-free grammar
• A feature structure is attached to each constituent (label + span)
• Rule: left-hand side (LHS) → right-hand side (RHS) := operation over feature

structures
• Operations can block a rule by requiring unifiability
• Unification-based chart parser, PATR-II (Shieber)
• Similarly to CFGs, unification grammars were originally designed for sentence syntax

analysis and subsequently applied to word analysis as well

13/38

UMG Syntax

• LHS → RHS := operation over feature structures
• grammar rule

• <X>
• non-terminal symbol X. Terminals are written without angle brackets

• #
• unification operator (it also places requirement on unifiability)

• ^
• reference operator (it delimits non-terminals / parts of paths to the feature structure we

are referencing)
• +

• concatenation operator
• |

• disjunction operator. A disjunction of feature structures contains all structures that fulfill
the constraints (are unifiable). A disjunction can represent alternate analyses of the same
thing

14/38

Example of UMG Rule

<N> --> <L> := [l = <L>^l, umlaut = <L>^umlaut # no]

• Interpretation:
• If:

• we recognized constituent <L> and
• value of the umlaut attribute in the feature structure attached to this constituent is “no”

• Then:
• we also recognized constituent <N> with the same span
• we must copy the attributes l and umlaut from the feature structure of <L> to the feature

structure of <N>

15/38

Example of UMG Rule

<N> --> <L> := [l = <L>^l, umlaut = <L>^umlaut # no]

• Interpretation:
• If:

• we recognized constituent <L> and
• value of the umlaut attribute in the feature structure attached to this constituent is “no”

• Then:
• we also recognized constituent <N> with the same span
• we must copy the attributes l and umlaut from the feature structure of <L> to the feature

structure of <N>

15/38

Theoretical View of the Lexicon

• A rule that generates the empty string but it provides a gigantic feature structure with
the entire lexicon in it

<LEX> --> "" :=
[stem=mat, hw=matka, pos=N, x=zn6e] |
[stem=atom, hw=atom, pos=N, x=hd1] |
[stem=nov, hw=nový, pos=A, x=reg] |
[stem=prac, hw=pracovat, pos=V, x=ovatn] |
… ;

16/38

Theoretical View of the Lexicon
• How the lexicon is bound to the rest of the grammar:

<R> --> <S>u <LEX> := <LEX> #
[x=hd1, stem=<S>, case=gen|dat|loc, num=sg]

• The rule describes formation of singular noun genitive, dative and locative according to
the Czech masculine paradigm hd1 (hrad “castle”)

• <R> represents a word unified with the lexicon
• <S> is the part of the input that corresponds to the stem of the word. The suffix is

shown literally, the <LEX> that follows corresponds to empty string
• Operation after := says we are interested in those structures from <LEX> whose stem

corresponds to <S> and which inflect according to paradigm hd1
• Lexicon entries that pass this filter will form the set of feature structures bound to the

non-terminal <R>. Additionally, they will bear information on number and case
17/38

UMG Example

<L> --> a := [l=a];
<L> --> b := [l=b];
…

<N> --> <L> := [l=<L>^l];
<N> --> <L> <N> := [l=<L>^l+<N>^l];
<S> --> <N> := <N>;
<R> --> <S> <LEX> := <LEX> # [stem=<S>^l, x=hd1, num=sg, case=nom|acc, …];
<R> --> <S>u <LEX> := <LEX> # [stem=<S>^l, x=hd1, num=sg, case=gen|dat|loc, …];
<LEX> --> "" := … | [stem=hrad, x=hd1, …] | …

• Copy input letters to the feature structure

• Define string <N> as a sequence of letters <L>
• <S> is a potential word stem
• <R> is a recognized word form checked against lexicon

18/38

UMG Example

<L> --> a := [l=a];
<L> --> b := [l=b];
…
<N> --> <L> := [l=<L>^l];
<N> --> <L> <N> := [l=<L>^l+<N>^l];

<S> --> <N> := <N>;
<R> --> <S> <LEX> := <LEX> # [stem=<S>^l, x=hd1, num=sg, case=nom|acc, …];
<R> --> <S>u <LEX> := <LEX> # [stem=<S>^l, x=hd1, num=sg, case=gen|dat|loc, …];
<LEX> --> "" := … | [stem=hrad, x=hd1, …] | …

• Copy input letters to the feature structure
• Define string <N> as a sequence of letters <L>

• <S> is a potential word stem
• <R> is a recognized word form checked against lexicon

18/38

UMG Example

<L> --> a := [l=a];
<L> --> b := [l=b];
…
<N> --> <L> := [l=<L>^l];
<N> --> <L> <N> := [l=<L>^l+<N>^l];
<S> --> <N> := <N>;

<R> --> <S> <LEX> := <LEX> # [stem=<S>^l, x=hd1, num=sg, case=nom|acc, …];
<R> --> <S>u <LEX> := <LEX> # [stem=<S>^l, x=hd1, num=sg, case=gen|dat|loc, …];
<LEX> --> "" := … | [stem=hrad, x=hd1, …] | …

• Copy input letters to the feature structure
• Define string <N> as a sequence of letters <L>
• <S> is a potential word stem

• <R> is a recognized word form checked against lexicon

18/38

UMG Example

<L> --> a := [l=a];
<L> --> b := [l=b];
…
<N> --> <L> := [l=<L>^l];
<N> --> <L> <N> := [l=<L>^l+<N>^l];
<S> --> <N> := <N>;
<R> --> <S> <LEX> := <LEX> # [stem=<S>^l, x=hd1, num=sg, case=nom|acc, …];
<R> --> <S>u <LEX> := <LEX> # [stem=<S>^l, x=hd1, num=sg, case=gen|dat|loc, …];
<LEX> --> "" := … | [stem=hrad, x=hd1, …] | …

• Copy input letters to the feature structure
• Define string <N> as a sequence of letters <L>
• <S> is a potential word stem
• <R> is a recognized word form checked against lexicon

18/38

The Lexicon in Practice

• It is not efficient to treat the lexicon as part of grammar
• Real implementation looks different:

• Store the lexicon in a separate data structure with fast search access
• Cover rules containing <LEX> by the algorithm accessing the data structure
• Use the unifying chart parser to process the rest of the grammar

19/38

UMG Example

• Lexicon
mat zn6e =matka

• mat … stem
• zn6e … paradigm
• =matka … lemma

• Typical system with many paradigms
• School paradigm žena “woman” corresponds to 44 distinct paradigms in the system
• Even so, the paradigms do not solve shortening of stem-internal vowel

20/38

UMG Example

• Paradigm = stavení “building”, neuter gender; omitting LHS, always the same

<_><í>$:= [key=<_>í, x=(st|rž), cat=[pos=n],
morf=[infl=[pf=([gnd=n, num=sg, case=(nom|gen|dat|acc|voc|loc)] |

[gnd=n, num=pl, case=(nom|gen|acc|voc)])]]];
<_><í><m>$:= [key=<_>í, x=(st|rž), cat=[pos=n],

morf=[infl=[pf=([gnd=n, num=sg, case=ins] |
[gnd=n, num=pl, case=dat])]]];

<_><í><c><h>$:= [key=<_>í, x=(st|rž), cat=[pos=n],
morf=[infl=[pf=[gnd=n, num=pl, case=loc]]]];

<_><í><m><i>$:= [key=<_>í, x=(st|rž), cat=[pos=n],
morf=[infl=[pf=[gnd=n, num=pl, case=ins]]]];

21/38

UMG Example
• Paradigm = stavení “building”, neuter gender; omitting LHS, always the same
<_><í>$:= [key=<_>í, x=(st|rž), cat=[pos=n],

morf=[infl=[pf=([gnd=n, num=sg, case=(nom|gen|dat|acc|voc|loc)] |
[gnd=n, num=pl, case=(nom|gen|acc|voc)])]]];

key <_>í
x st | rž
cat

[
pos n

]

morf

infl

pf

gnd n
num sg
case nom | gen | dat

| acc | voc | loc

|

gnd n
num pl
case nom | gen

| acc | voc

22/38

UMG Example

• Paradigm = stavení “building”, neuter gender; omitting LHS, always the same

<_><í>$:= [key=<_>í, x=(st|rž), cat=[pos=n],
morf=[infl=[pf=([gnd=n, num=sg, case=(nom|gen|dat|acc|voc|loc)] |

[gnd=n, num=pl, case=(nom|gen|acc|voc)])]]];

key <_>í
x st
cat

[
pos n

]

morf

infl

pf

gnd n
num sg
case nom

22/38

Comparison of UMG and CFG

• ☺ The feature structure contains the required output (tag) ⇒ no need for
supplementary non-terminal naming convention

• ☺ The features and their unifiability constrain rule application ⇒ no need to split
non-terminals

• ☺ Disjunction of structures represents homonymous analyses
• ☹ Phonology is still an issue. Either combinatorial explosion of paradigms (UMG) or

use in tandem with two-level rules (see below)

23/38

Comparison of UMG and CFG

• ☺ The feature structure contains the required output (tag) ⇒ no need for
supplementary non-terminal naming convention

• ☺ The features and their unifiability constrain rule application ⇒ no need to split
non-terminals

• ☺ Disjunction of structures represents homonymous analyses
• ☹ Phonology is still an issue. Either combinatorial explosion of paradigms (UMG) or

use in tandem with two-level rules (see below)

23/38

Comparison of UMG and CFG

• ☺ The feature structure contains the required output (tag) ⇒ no need for
supplementary non-terminal naming convention

• ☺ The features and their unifiability constrain rule application ⇒ no need to split
non-terminals

• ☺ Disjunction of structures represents homonymous analyses

• ☹ Phonology is still an issue. Either combinatorial explosion of paradigms (UMG) or
use in tandem with two-level rules (see below)

23/38

Comparison of UMG and CFG

• ☺ The feature structure contains the required output (tag) ⇒ no need for
supplementary non-terminal naming convention

• ☺ The features and their unifiability constrain rule application ⇒ no need to split
non-terminals

• ☺ Disjunction of structures represents homonymous analyses
• ☹ Phonology is still an issue. Either combinatorial explosion of paradigms (UMG) or

use in tandem with two-level rules (see below)

23/38

PC-Kimmo Word Grammar

• Unification grammar by Stuart Shieber
• Rule syntax somewhat different from UMG, application is similar
• Lexicon

• Recognize possible morphemes in the word
• Rules

• Phonological changes, especially on morpheme boundary
• Grammar

• Analysis of inter-morpheme relations
• Derivation of word features from morpheme features
• Constraints on morphotactics (what morphemes can combine and in what order)

24/38

PC-Kimmo Word Grammar
Analyze enlargements:

en +‘large +ment +s
VR1a +‘large +NR25 +PL

Word

INFL

+s

Stem

SUFFIX

+ment

Stem

Stem

ROOT

‘large

PREFIX

en+

Word:

cat Word

head

agr
[
3sg –

]
number PL
pos N

root ‘large
root_pos AJ
clitic –
drvstem –

25/38

PC-Kimmo Word Grammar
Analyze enlargements:

en +‘large +ment +s
VR1a +‘large +NR25 +PL

Word

INFL

+s

Stem

SUFFIX

+ment

Stem

Stem

ROOT

‘large

PREFIX

en+

Word:

cat Word

head

agr
[
3sg –

]
number PL
pos N

root ‘large
root_pos AJ
clitic –
drvstem –

25/38

PC-Kimmo Word Grammar
Analyze enlargements:

en +‘large +ment +s
VR1a +‘large +NR25 +PL

Word

INFL

+s

Stem

SUFFIX

+ment

Stem

Stem

ROOT

‘large

PREFIX

en+

Word:

cat Word

head

agr
[
3sg –

]
number PL
pos N

root ‘large
root_pos AJ
clitic –
drvstem –

25/38

PC-Kimmo Word Grammar

• First the old part of PC-Kimmo segments the word into morphemes
• Then the new part parses the sequence of morphemes using the grammar

• Grammar can reject some morpheme sequences
• Grammar assigns interpretation (feature structure) to accepted sequences

• The old PC-Kimmo could gloss morphemes
• But it could not tell how to combine morpheme glosses into interpretation of the whole word

(e.g. that the suffix -able changes a verb to an adjective)
• A grammar rule looks like this:

Word -> Stem INFL
<Stem head pos> = <INFL from_pos>
<Word head> = <INFL head>

26/38

Grammar Rule

Word -> Stem INFL
<Stem head pos> = <INFL from_pos>
<Word head> = <INFL head>

• The morpheme symbols Stem, INFL are pre-terminals and they correspond to the names
of sublexicons where the morphemes were found

• The rule cannot be used if the feature pos of the substructure head of the morpheme
Stem is not equal to the feature from_pos of the morpheme INFL

• If the rule is used it shall copy the value of the head feature from the INFL constituent
to the head feature of the Word constituent

27/38

Grammar Rule

Word -> Stem INFL
<Stem head pos> = <INFL from_pos>
<Word head> = <INFL head>

• The morpheme symbols Stem, INFL are pre-terminals and they correspond to the names
of sublexicons where the morphemes were found

• The rule cannot be used if the feature pos of the substructure head of the morpheme
Stem is not equal to the feature from_pos of the morpheme INFL

• If the rule is used it shall copy the value of the head feature from the INFL constituent
to the head feature of the Word constituent

27/38

Grammar Rule

Word -> Stem INFL
<Stem head pos> = <INFL from_pos>
<Word head> = <INFL head>

• The morpheme symbols Stem, INFL are pre-terminals and they correspond to the names
of sublexicons where the morphemes were found

• The rule cannot be used if the feature pos of the substructure head of the morpheme
Stem is not equal to the feature from_pos of the morpheme INFL

• If the rule is used it shall copy the value of the head feature from the INFL constituent
to the head feature of the Word constituent

27/38

Grammar Rule

RULE <rule>
<rule constraints>

• Left-hand side is separated from right-hand side by -> or =

RULE Stem_1 = Stem_2 SUFFIX

• X represents any terminal or non-terminal
• Characters ()[]{}<>=:/ are special

• Underscore is used only to append an index to a symbol
• Left-hand side of the first rule is the start symbol of the grammar

N = Nstem {Sing / Plur}

28/38

Advantages of the Grammar

• Czech examples:
• Grammar blocks combination of incompatible stem and suffix

• E.g., stem belongs to the žena “woman” paradigm, suffix belongs to the růže “rose”
paradigm

• It can check long-distance dependencies such as
• nejchytřejší “smartest”

• Take feminine noun žena “woman”. Derive possessive adjective ženin “woman’s”
• Change gender from feminine to masculine (the suffix says that the possessed object is

masculine)
• Store the original gender as lexical possessor’s gender

29/38

Advantages of the Grammar

• Czech examples:
• Grammar blocks combination of incompatible stem and suffix

• E.g., stem belongs to the žena “woman” paradigm, suffix belongs to the růže “rose”
paradigm

• It can check long-distance dependencies such as
• nejchytřejší “smartest”

• Take feminine noun žena “woman”. Derive possessive adjective ženin “woman’s”
• Change gender from feminine to masculine (the suffix says that the possessed object is

masculine)
• Store the original gender as lexical possessor’s gender

29/38

Advantages of the Grammar

• Czech examples:
• Grammar blocks combination of incompatible stem and suffix

• E.g., stem belongs to the žena “woman” paradigm, suffix belongs to the růže “rose”
paradigm

• It can check long-distance dependencies such as
• nejchytřejší “smartest”

• Take feminine noun žena “woman”. Derive possessive adjective ženin “woman’s”
• Change gender from feminine to masculine (the suffix says that the possessed object is

masculine)
• Store the original gender as lexical possessor’s gender

29/38

Czech Nouns without Grammar

NounStem

pán

hrad

muž

stroj

předsed

soudc

NInflPan

NInflHra

NInflMuz

NInflStr

NInflPre

NInflSou

+0, +a, +ovi, +a, +e, +ovi, +em, +i, …

+0, +u, +u, +0, +e, +u, +em, +y, …

+0, +e, +i, +e, +i, +i, +em, +i, …

+0, +e, +i, +0, +i, +i, +em, +e, …

+a, +y, +ovi, +u, +o, +ovi, +ou, +ové, …

+e, +e, +i, +e, +e, +i, +em, +i, …

30/38

Czech Nouns with Grammar

NounStem

[paradigm: x]

pán

hrad

muž

stroj

předsed

soudc

NInfl

+0, +a, +ovi, +a, +e, +ovi, +em, +i, …

+0, +u, +u, +0, +e, +u, +em, +y, …

+0, +e, +i, +e, +i, +i, +em, +i, …

+0, +e, +i, +0, +i, +i, +em, +e, …

+a, +y, +ovi, +u, +o, +ovi, +ou, +ové, …

+e, +e, +i, +e, +e, +i, +em, +i, …

31/38

Czech Adjectives without Grammar

AdjSup nej+

AdjStem

AdjStemComp

mlad

snadn

jarn

mladš

snazš

snadnějš

jarnějš

AdjHardInfl

+ý

+ého

+ému

AdjSoftInfl

+í

+ího

+ímu

32/38

Czech Adjectives with Grammar

AdjSup nej+

AdjStem

mlad

snadn

mladš

snazš

jarn

AdjHardInfl

+ý

+ého

+ému

AdjSoftInfl

+í

+ího

+ímu

AdjComp +ejš

33/38

Grammar Cannot Interact with Phonology

• Phonological rule of consonant softening in Czech imperative:
• meteš “you sweep” → meť(-me, -te) “sweep!”
• t:ť ⇔ _ +:0 λ:0 or m:m e:e or t:t e:e

• The rule must not apply in genitive plural form of feminine nouns:
• kóta “spot elevation” → *kóť

• Phonological rules cannot read the feature structures to constrain their application
• There have been extensions other than PC-Kimmo that combined phonological rules

with feature structures, e.g., Trost (1990)

34/38

Automatic Features

• Every lexicon entry automatically receives the following features:
• cat = name of sublexicon (\lx)
• lex = morpheme, lexical string (\lf)
• gloss = gloss from the lexicon entry (\gl)

35/38

Assigning Values to Features

• Abbreviations of feature assignments
• If we are going to assign a value to thousands of lexicon entries we want it to be as short

as possible
• LET <shortcut | category> be <definition>
• e.g.
• Let pl be [number: PL]
• Let pl be <number> = PL
• Let 3sg be [tense: PRES

agr: 3SG]
• Disjunction:

• Let sg/pl be {[number:SG][number:PL]}
• Let sg/pl be <number> = {SG PL}

• Default values:
• Let N be <number> = !SG
• Unless someone explicitly assigns the value of number to a noun, the noun is assumed to

be in singular
36/38

Lexical Rules

• Not shortcuts but systematic transformation of features for groups of lexicon entries.
They transform a feature structure to another one

• DEFINE <lexical rule name> as <mapping>
• The example in the on-line documentation is invalid
• When the analysis is done and the feature structure for the whole word is ready, we can

apply a lexical rule that will modify the structure

37/38

Parameter Setting

• PARAMETER <name> is <value>
• Parameter Start symbol is Word
• Parameter Attribute order is cat head root

• In which order shall PC-Kimmo display the features?
• Category feature (default: cat)
• Lexical feature (default: lex)
• Gloss feature (default: gloss)

• What are the names of important features with special meaning?

38/38

