NPFL094 Computational Morphology and Syntax

Morphological Analysis
Unification Grammars

Daniel Zeman

& December 12, 2024

’ - Charles University @ (DO
l I\L Faculty of Mathematics and Physics BY SA
EUROPEAN
gvmw:n il and " nd

"t
/ Institute of Formal and Applied Linguistics unless otherwise stated
A LANGTECH

® Based on
® context-free grammars
® feature structures
® their unifiability

® Feature structure

® Sort of database record, or a variable of a structured type: record in Pascal, struct in C.
Description of an object, list of features

® features (attributes) ... names of fields

® values

® Examples of attribute-value pairs: [number: plural], [case: nominative]

1/38

_entity
NAME FF UK
_PHONE 258562

_entity

NAME Dan
PHONE 221914225
[faculty]
NAME MFF UK
DEAN Rokyta
|[PHONE 221911111

2/38

_enthy
NAME
_PHONE

_enthy
NAME
_PHONE

[faculty
NAME
DEAN
| PHONE

FF UK
258562

Dan
221914225

MFF UK
Rokyta

221911111 |

POS
GEN

NUM
CASE

[POS

GEN
NUM
CASE
DEG
NEG

noun
masculine
singular
dative

adjective
masculine
plural
accusative
comparative
affirmative

2/38

® Partial function mapping the set of features to the set of values

type

FEATURE; VALUE,
FEATURE, VALUE,
FEATURE3; VALUE;

3/38

® Two feature structures are unifiable if their values of the features they share are
identical

® Example: structures 1 and 2 are unifiable, so are 2 and 3, while 1 and 3 are not

1 |GENDER masculine| 2 | POS verb
NUMBER singular NUMBER singular
CASE dative TENSE present

3 |GENDER masculine
NUMBER singular
CASE instrumental

4/38

® Two feature structures are unifiable if their values of the features they share are
identical

® Example: structures 1 and 2 are unifiable, so are 2 and 3, while 1 and 3 are not

1 |GENDER masculine| 2 | POS verb
NUMBER singular NUMBER singular
CASE dative TENSE present

3 |GENDER masculine
NUMBER singular
CASE instrumental

4/38

® Two feature structures are unifiable if their values of the features they share are
identical

® Example: structures 1 and 2 are unifiable, so are 2 and 3, while 1 and 3 are not

1 |GENDER masculine| 2 | POS verb
NUMBER singular NUMBER singular
CASE dative TENSE present

3 |GENDER masculine
NUMBER singular
CASE instrumental

4/38

¢ Unification is an operation over two unifiable feature structures. It results in a new

feature structure

1 [GENDER masculine| + 2 | PERSON
NUMBER singular NUMBER
CASE dative TENSE

— 3 [GENDER masculine]
NUMBER singular
CASE dative
PERSON third
TENSE present

third
singular
present

5/38

Input: feature structures “lemma” and “tag”
Search lexicon for all structures “entry” that are unifiable with “lemma”

For each “entry” found, look up a “paradigm” structure that is unifiable with both the
“entry” and the “tag"” structures

Unify the corresponding structures “entry”, “paradigm”, and “tag”. The resulting
structure is “form”

Output: for each “form”, concatenate its values of “paradigm” and “suffix"”

6/38

Unification as a Tool for Morphological Generation?

® Input: feature structures “lemma” and “tag”

lemma tag
LEMMA hacek| |NUMBER plural
CASE nominative

® (Czech noun hacek has two meanings and belongs to two inflection classes:

® “small hook” .. masculine inanimate class hrad “castle”
® “bowman” .. masculine animate class pan “gentleman”

7/38

Unification as a Tool for Morphological Generation?

® Input: feature structures “lemma” and “tag”

lemma tag
LEMMA hacek| |NUMBER plural
CASE nominative

® (Czech noun hacek has two meanings and belongs to two inflection classes:

® “small hook" .. masculine inanimate class hrad “castle”
® “bowman” .. masculine animate class pan “gentleman”

® Search lexicon for “entry” structures unifiable with “lemma”
entry entry
LEMMA hacek | [LEMMA hacek
PARADIGM hrad PARADIGM pan

7/38

® For each “entry”, find a “paradigm” structure unifiable with both “entry” and “tag”

[entry
LEMMA
| PARADIGM

paradigm
PARADIGM
NUMBER
CASE
SUFFIX

entry
hacek | [LEMMA
hrad PARADIGM pan
] _paradigm
hrad PARADIGM
plural NUMBER
nominative | | CASE
y SUFFIX

hacek

pan
plural
nominative

paradigm
PARADIGM
NUMBER
CASE
SUFFIX

pan
plural
nominative

ové

8/38

Unification as a Tool for Morphological Generation?

® Unify the corresponding structures “entry”, “
structure “form”

form
LEMMA
PARADIGM
NUMBER
CASE
SUFFIX

hacek
hrad | pan
plural
nominative

y|ilové |

paradigm”, and “tag”. Call the resulting

9/38

Unification as a Tool for Morphological Generation?

Unification resembles database operations

It does not tell how the “form™ structure is to be interpreted

Rule: output = form.lemma + form.suffix

The rule does not solve phonological changes (and unification cannot help us with this):

® We get: *hdceky, *haceki, *hicekové
® We want: hicky, haéci, hackové

Possible workaround: shorter stem, longer suffix
® hac+ky, hac+ci, hac+kové

10/38

Unification as a Tool for Morphological Analysis???

® Non-unification part: find all possible affixes recognizable in the word = set of “form”
structures

® The “paradigm” structures tell us what is the set of known suffixes

11/38

Unification as a Tool for Morphological Analysis???

® Non-unification part: find all possible affixes recognizable in the word = set of “form’
structures
® The “paradigm” structures tell us what is the set of known suffixes

® Somehow solve phonological changes (stem-final palatalization, stem-internal ablaut
etc.)

11/38

Non-unification part: find all possible affixes recognizable in the word = set of “form’

structures

The

Somehow solve phonological changes (stem-final palatalization, stem-internal ablaut

etc.)

“paradigm” structures tell us what is the set of known suffixes

Then take the dual procedure to the generation:

Unify form with paradigm
Unify the result with lexicon
Entries found in lexicon are the possible analyses

Eg. cs: bézim "l am running” = béZet (verb:trpét) + person (1st)
= béZi (noun:staveni) + case (7)

11/38

Unification as a Tool for Morphological Analysis???

Non-unification part: find all possible affixes recognizable in the word = set of “form’
structures
The “paradigm” structures tell us what is the set of known suffixes

Somehow solve phonological changes (stem-final palatalization, stem-internal ablaut
etc.)
Then use unification...

® |n fact, this is what PC Kimmo v.2 does:
® |t combines two-level morphology with a unification grammar

12/38

Jan Haji¢: Unification Morphology Grammar (PhD thesis). Univerzita Karlova, Praha,
1994

Stuart Shieber: An Introduction to Unification-based Approaches to Grammar. CSLI
Lecture Notes No. 4, Stanford, California, USA, 1986

Based on a context-free grammar
A feature structure is attached to each constituent (label + span)

Rule: left-hand side (LHS) — right-hand side (RHS) := operation over feature
structures

Operations can block a rule by requiring unifiability
Unification-based chart parser, PATR-II (Shieber)

Similarly to CFGs, unification grammars were originally designed for sentence syntax
analysis and subsequently applied to word analysis as well

13/38

LHS — RHS := operation over feature structures

® grammar rule

<X>
°

non-terminal symbol X. Terminals are written without angle brackets
unification operator (it also places requirement on unifiability)

reference operator (it delimits non-terminals / parts of paths to the feature structure we
are referencing)

concatenation operator

disjunction operator. A disjunction of feature structures contains all structures that fulfill
the constraints (are unifiable). A disjunction can represent alternate analyses of the same
thing

14/38

Example of UMG Rule

<N> —==> <L> := [1 = <L>"1, umlaut = <L>"umlaut # no]

® [nterpretation:
° If:

® we recognized constituent <L> and
® value of the umlaut attribute in the feature structure attached to this constituent is “no”

15/38

<N> —-=> <L> := [1 = <L>"1, umlaut = <L>"umlaut # no]

® [nterpretation:
° If:

® we recognized constituent <L> and
® value of the umlaut attribute in the feature structure attached to this constituent is “no”

® Then:

® we also recognized constituent <N> with the same span
® we must copy the attributes 1 and umlaut from the feature structure of <L> to the feature
structure of <N>

15/38

® A rule that generates the empty string but it provides a gigantic feature structure with
the entire lexicon in it

<LEX> --> "" :=
[stem=mat, hw=matka, pos=N, x=zn6e] |
[stem=atom, hw=atom, pos=N, x=hd1] |
[stem=nov, hw=novy, pos=A, x=reg] |

[stem=prac, hw=pracovat, pos=V, x=ovatn] |

. 3

16,38

>

® How the lexicon is bound to the rest of the grammar:

<R> --> <S>u <LEX> := <LEX> #
[x=hd1l, stem=<S>, case=gen|dat|loc, num=sg]

® The rule describes formation of singular noun genitive, dative and locative according to
the Czech masculine paradigm hd1 (hrad “castle”)

® <R> represents a word unified with the lexicon

® <S> is the part of the input that corresponds to the stem of the word. The suffix is
shown literally, the <LEX> that follows corresponds to empty string

® QOperation after := says we are interested in those structures from <LEX> whose stem
corresponds to <S> and which inflect according to paradigm hd1

® | exicon entries that pass this filter will form the set of feature structures bound to the

non-terminal <R>. Additionally, they will bear information on number and case
17/38

UMG Example

<L> -—> a := [1=a]l;
<L> --> b := [1=b];

e Copy input letters to the feature structure

18/38

<L> --> a :
<L> --> b :

[1=a];
[1=b];

<N> --> <L> := [1=<L>"1];
<N> —-> <L> <N> := [1=<L>"1+<N>"1];

® Copy input letters to the feature structure
® Define string <N> as a sequence of letters <L>

18/38

<L> --> a :
<L> --> b :

[1=a];
[1=b];

<N> --> <L> := [1=<L>"1];
<N> —-> <L> <N> := [1=<L>"1+<N>"1];
<S> --> <N> := <N>;

® Copy input letters to the feature structure
® Define string <N> as a sequence of letters <L>

® <S> is a potential word stem

18/38

<L> --> a :
<L> --> b :

[1=a];
[1=b];

<N> --> <L> := [1=<L>"1];
<N> —-> <L> <N> := [1=<L>"1+<N>"1];

<S> -=> <N> := <N>;

<R> --> <S> <LEX> := <LEX> # [stem=<S>"1, x=hdl, num=sg, case=
<R> --> <S>u <LEX> := <LEX> # [stem=<S>"1, x=hdl, num=sg, case=
<LEX> --> "" := .. | [stem=hrad, x=hdi, ..] | ..

® Copy input letters to the feature structure

Define string <N> as a sequence of letters <L>
® <S> is a potential word stem
® <R> is a recognized word form checked against lexicon

18/38

® |t is not efficient to treat the lexicon as part of grammar
® Real implementation looks different:

® Store the lexicon in a separate data structure with fast search access
® Cover rules containing <LEX> by the algorithm accessing the data structure
® Use the unifying chart parser to process the rest of the grammar

19/38

® | exicon
mat zn6e =matka
® mat .. stem
® zn6e .. paradigm
® =matka .. lemma

® Typical system with many paradigms
® School paradigm Zena “woman” corresponds to 44 distinct paradigms in the system

® Even so, the paradigms do not solve shortening of stem-internal vowel

20/38

>

7o

® Paradigm = staveni “building”, neuter gender; omitting LHS, always the same

<_><i>$:= [key=<_>i, x=(stl|rz), cat=[pos=n],
morf=[infl=[pf=([gnd=n, num=sg, case=(nom|gen|dat|acc|voc|loc)] |
[gnd=n, num=pl, case=(nom|gen|accl|voc)])]1]];
<_><i><m>$:= [key=<_>i, x=(stl|rz), cat=[pos=n],
morf=[infl=[pf=([gnd=n, num=sg, case=ins] |
[gnd=n, num=pl, case=dat])]]];

<_><i><c><h>$ = [key=<_>i, x=(stl|rz), cat=[pos=n],
morf=[infl=[pf=[gnd=n, num=pl, case=loc]l]l]];
<_><i><m><i>$:= [key=<_>i, x=(stl|rz), cat=[pos=n],

morf=[infl=[pf=[gnd=n, num=pl, case=ins]]]];

21/38

>

® Paradigm = staveni "building”, neuter gender; omitting LHS, always the same

<_><i>$:= [key=<_>i, x=(stl|rz), cat=[pos=n],
morf=[infl=[pf=([gnd=n, num=sg, case=(nom|genl|datl|acc|voc|loc)] |
[gnd=n, num=pl, case=(nom|genl|acc|voc)])]1]];

key < _>i

X st | rz

cat [pos n}
gnd n gnd n
num sg num pl

morf |infl |pf |
case nom | gen | dat| [case nom | gen

| acc | voc | loc | acc | voc

22/38

>

® Paradigm = staveni “building”, neuter gender; omitting LHS, always the same

<_><i>$:= [key=<_>i, x=(stlrz), cat=[pos=n],
morf=[infl=[pf=([gnd=n, num=sg, case=(nom|gen|dat|acc|voc|loc)] |
[gnd=n, num=pl, case=(nom|gen|acc|voc)])]1]];

key < _>i
X st

cat {pos n}
gnd n

morf |infl [pf |num sg
case nom

22/38

Comparison of UMG and CFG

® © The feature structure contains the required output (tag) = no need for
supplementary non-terminal naming convention

23/38

e © The feature structure contains the required output (tag) = no need for
supplementary non-terminal naming convention

e © The features and their unifiability constrain rule application = no need to split
non-terminals

23/38

e © The feature structure contains the required output (tag) = no need for
supplementary non-terminal naming convention

e © The features and their unifiability constrain rule application = no need to split
non-terminals

e © Disjunction of structures represents homonymous analyses

23/38

© The feature structure contains the required output (tag) = no need for
supplementary non-terminal naming convention

© The features and their unifiability constrain rule application = no need to split
non-terminals

© Disjunction of structures represents homonymous analyses

® Phonology is still an issue. Either combinatorial explosion of paradigms (UMG) or
use in tandem with two-level rules (see below)

23/38

Unification grammar by Stuart Shieber

Rule syntax somewhat different from UMG, application is similar
Lexicon

® Recognize possible morphemes in the word
Rules

® Phonological changes, especially on morpheme boundary
Grammar

® Analysis of inter-morpheme relations
® Derivation of word features from morpheme features
® Constraints on morphotactics (what morphemes can combine and in what order)

24/38

PC-Kimmo Word Grammar

Analyze enlargements:

en +'large +ment +s
VR1la +'large +NR25 +PL

25/38

PC-Kimmo Word Grammar

Analyze enlargements:

en +'large +ment +s
VR1la +'large +NR25 +PL

Word

‘/’///////ﬁ*

Stem INFL

/\ l

Stem SUFFIX +s

N |

PREFIX Stem +ment

l |

en-+ ROOT

|

‘large

25/38

N LA
Z1N]

Analyze enlargements:

en +'large +ment +s
VR1la +'large +NR25 +PL

Word
Stem INFL
Stem SUFFIX +s

N |

PREFIX Stem +ment

l |

en-+ ROOT

|

‘large

Word:
cat

head

root
root__pos
clitic
drvstem

Word

agr

number

pos
‘large

Al

25/38

® First the old part of PC-Kimmo segments the word into morphemes
® Then the new part parses the sequence of morphemes using the grammar

® Grammar can reject some morpheme sequences
® Grammar assigns interpretation (feature structure) to accepted sequences

® The old PC-Kimmo could gloss morphemes
® But it could not tell how to combine morpheme glosses into interpretation of the whole word
(e.g. that the suffix -able changes a verb to an adjective)

® A grammar rule looks like this:
Word -> Stem INFL

<Stem head pos>
<Word head>

<INFL from_pos>
<INFL head>

26/38

Word -> Stem INFL
<Stem head pos>
<Word head>

<INFL from_pos>
<INFL head>

® The morpheme symbols Stem, INFL are pre-terminals and they correspond to the names
of sublexicons where the morphemes were found

27/38

Word -> Stem INFL
<Stem head pos>
<Word head>

<INFL from_pos>
<INFL head>

® The morpheme symbols Stem, INFL are pre-terminals and they correspond to the names
of sublexicons where the morphemes were found

® The rule cannot be used if the feature pos of the substructure head of the morpheme
Stem is not equal to the feature from_pos of the morpheme INFL

27/38

Word -> Stem INFL
<Stem head pos> = <INFL from_pos>
<Word head> <INFL head>

® The morpheme symbols Stem, INFL are pre-terminals and they correspond to the names
of sublexicons where the morphemes were found

® The rule cannot be used if the feature pos of the substructure head of the morpheme
Stem is not equal to the feature from_pos of the morpheme INFL

® |f the rule is used it shall copy the value of the head feature from the INFL constituent
to the head feature of the Word constituent

27/38

RULE <rule>
<rule constraints>

® | eft-hand side is separated from right-hand side by -> or =

RULE Stem_1 = Stem_2 SUFFIX

® X represents any terminal or non-terminal
® Characters () [1{}<>=:/ are special
® Underscore is used only to append an index to a symbol

® | eft-hand side of the first rule is the start symbol of the grammar

N = Nstem {Sing / Plur}

28/38

Advantages of the Grammar

® (Czech examples:
® Grammar blocks combination of incompatible stem and suffix

® E.g., stem belongs to the Zena “woman" paradigm, suffix belongs to the riZe “rose”
paradigm

29/38

Advantages of the Grammar

® (Czech examples:
® Grammar blocks combination of incompatible stem and suffix
® E.g., stem belongs to the Zena “woman" paradigm, suffix belongs to the riZe “rose”
paradigm
® |t can check long-distance dependencies such as

® nejchytrejsi “smartest”

29/38

® (Czech examples:
® Grammar blocks combination of incompatible stem and suffix
® E.g., stem belongs to the Zena “woman" paradigm, suffix belongs to the riZe “rose”
paradigm
® |t can check long-distance dependencies such as
® nejchytrejsi “smartest”
® Take feminine noun Zena "woman". Derive possessive adjective Zenin "woman's”
® Change gender from feminine to masculine (the suffix says that the possessed object is
masculine)
® Store the original gender as lexical possessor’'s gender

29/38

+0, +a, +ovi, +a, +e, +ovi, +em

+0, +u, +u, +0, +e, +u, +em,

+0, +e, +i, e, +i, +i, +em, 4

+0, +e, +i, +0, +i, +i, +em, +

+a, +y, +ovi, +u, +o, +ovi, +ou,

+e, +e, +i, +e, +e, +i, +em, |

30/38

[paradigm:

x]

+0, +a, 4ovi, +a, +e, +ovi, +em

+0, +u, +u, +0, +e, +u, +em,

+0, +e, +i, e, +i, +i, +em, 4

+0, +e, +i, +0, +i, +i, +em, +4

+a, +y, +ovi, +u, +o, +ovi, +ou,

+e, +e, +i, +e, +e, +i, +em, |

31/38

'!
@ AdjHardInfl

snadnéjs
jarnéjs

32/38

Czech Adjectives with Grammar

"
snadn

AdjStem

33/38

Phonological rule of consonant softening in hwi Czech imperative:

® metes “you sweep” — met(-me, -te) “sweep!”

® t:t & _ +:0 A:Oorm:m e:eort:t e:e
The rule must not apply in genitive plural form of feminine nouns:

® kéta “spot elevation” — *két
Phonological rules cannot read the feature structures to constrain their application
There have been extensions other than PC-Kimmo that combined phonological rules
with feature structures, e.g., Trost (1990)

34/38

® Every lexicon entry automatically receives the following features:

® cat = name of sublexicon (\Ix)
® lex = morpheme, lexical string (\If)
® gloss = gloss from the lexicon entry (\gl)

35/38

® Abbreviations of feature assignments
® |f we are going to assign a value to thousands of lexicon entries we want it to be as short
as possible
LET <shortcut | category> be <definition>
e.g.
Let pl be [number: PL]
Let pl be <number> = PL
Let 3sg be [tense: PRES
agr: 3SG]
® Disjunction:
® Let sg/pl be {[number:SG] [number:PL]}
® Let sg/pl be <number> = {SG PL}
® Default values:

® Let N be <number> = !SG
® Unless someone explicitly assigns the value of number to a noun, the noun is assumed to

be in singular

36/38

Not shortcuts but systematic transformation of features for groups of lexicon entries.
They transform a feature structure to another one

DEFINE <lexical rule name> as <mapping>
The example in the on-line documentation is invalid

When the analysis is done and the feature structure for the whole word is ready, we can
apply a lexical rule that will modify the structure

37/38

PARAMETER <name> is <value>

® Parameter Start symbol is Word
® Parameter Attribute order is cat head root

® |n which order shall PC-Kimmo display the features?
® Category feature (default: cat)

® Lexical feature (default: lex)
® Gloss feature (default: gloss)

® What are the names of important features with special meaning?

38/38

