Computational Morphology and Syntax of Natural Languages

Daniel Zeman

October 4, 2023
Presentations and talks will be in English

- Unless all students present understand Czech

Questions welcome in both English and Czech

- Or write me at zeman@ufal.mff.cuni.cz any time

- And I have many examples from Czech ☺
Getting Credits

- 2–3 smaller tasks
 - homework style
 - less flexible deadlines

- Alternatively: one larger project
 - ask me if interested
 - can be combined with your mgr. (or bc.) thesis
An “Unbalanced” Course

- 1/3 linguistics, 2/3 tools
- 1/3 lab work, 2/3 lectures
- 3/4 morphology, 1/4 syntax
- Mostly rule-based
 - almost no machine learning
 - no neural networks
Outline: Morphology

- Morphemic segmentation
 - $un + beat + able$
- Phonology ("morphonology") and orthography
 - $baby + s = babies$
- Inflectional vs. derivational morphology
- Morphological analysis: word form \rightarrow lemma + morphosyntactic features (tag)
- Tagging (context-aware disambiguation)
- Unsupervised affix detection in corpus
- Mining of word forms from corpus
Morphological Analysis

- **Input:**
 - word form *(token)*

- **Output:**
 - set (possibly empty) of analyses
 - an analysis:
 - lemma (base form of the lexeme)
 - tag (morphological, POS)
 - ... part of speech
 - ... features and their values
Language: Czech

Input: malými

Output (only one selected analysis here):

- lemma 1 = malý “small”
- tag 1 = AAFP71A
 - part of speech = AA (adjective / přídavné jméno)
 - gender = F (feminine / ženský)
 - number = P (plural / množné)
 - case = 7 (instrumental / 7. pád)
 - degree of comparison = 1 (positive / 1. stupeň)
 - polarity = A (affirmative / kladné)

- lemma 2 = ...
MA Example

- Language: 🇬🇧 English
- Input: flies
- Output:
 - lemma 1 = fly-1 (to move in the air)
 - tag 1 = VBZ (verb, present tense 3rd person singular)
 - lemma 2 = fly-2 (an insect)
 - tag 2 = NNS (noun, plural)
- Output is not disambiguated with respect to context
MA vs. Tagging

- By *tagging* we usually mean context-based disambiguation
- Most taggers employ machine learning methods
- Taggers may or may not work on top of MA
 - MA may provide readings not known from training
 - If a tagged corpus is available but MA is not, a tagger can still be trained on the corpus
Morpheme is the smallest unit of language that conveys some meaning

Morpheme segmentation = finding morpheme boundaries within words

Typically part of MA:
Morphemic Segmentation

- Morpheme is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: closed
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- **Morpheme segmentation** = finding morpheme boundaries within words
- Typically part of MA:
 - input: *closed*
 - identify the morphemes: *close + d*
Morphemic Segmentation

- Morpheme is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: closed
 - identify the morphemes: close + d
 - interpret them: verb (close) + past tense
- **Morpheme** is the smallest unit of language that conveys some meaning
- **Morpheme segmentation** = finding morpheme boundaries within words
- Typically part of MA:
 - input: *closed*
 - identify the morphemes: *close + d*
 - interpret them: *verb (close) + past tense*
 - output: *close + VBD*
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them.
- Data sparseness, e.g., in machine translation:
 - en: city
Sometimes it is useful to know the morphemes even if we cannot interpret them

Data sparseness, e.g., in machine translation:

- **en**: city

- **cs** alignments in parallel corpus:
 - město (nom/acc/voc sing, 42×), města (gen sing, nom/acc/voc plur, 40×), městě (loc sing, 32×), měst (gen plur, 9×), městské (adj, 7×), městem (ins sing, 7×), městských (adj, 4×), městská (adj, 4×), městský (adj, 2×), městu (dat sing, 2×), městech (loc plur, 2×) … total 11 forms seen
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them.

- Data sparseness, e.g., in machine translation:
 - **en**: city
 - **cs** alignments in parallel corpus: město (nom/acc/voc sing, 42×), města (gen sing, nom/acc/voc plur, 40×), městě (loc sing, 32×), měst (gen plur, 9×), městské (adj, 7×), městem (ins sing, 7×), městských (adj, 4×), městská (adj, 4×), městský (adj, 2×), městu (dat sing, 2×), městech (loc plur, 2×) … total 11 forms seen

- Missing cs: městům (dat plur), městy (ins plur), městského, městskému, městském, městským, městští, městskými, městskou (adj remaining forms) … total 9 forms missing
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them.
- Data sparseness, e.g., in machine translation.

- **Stemming** = stripping all morphemes but the stem
 - IN: *The British players were unbeatable.*
 - OUT: *The Brit play were beat.*

- **Lemmatization** = replacing all words with their lemmas (as with tagging, disambiguation may be assumed)
 - IN: *The British players were unbeatable.*
 - OUT: *the British player be (un)beatable.*
Inflection vs. Derivation

- Derivational morphology:
 - New lemma!
 - Often (but not always) new part of speech

- Inflectional morphology:
 - Set of forms of one lemma (lexeme)
 - The set is called paradigm

- The borderline is sometimes quite fuzzy
Outline: Syntax

- Constituency vs. dependency
- Context-free grammars
- Transition network grammars
- Shallow parsing (chunking)
- Chart parsers
- Dependency parsers
 - Transition-based
 - Graph-based
- Clause boundaries
This is a dependency tree:

- **PML-1**
- **tree**
- **NOUN.root**
- **PRON.nsubj**
- **AUX.cop**
- **DET.det**
- **NOUN.compound**
- **PUNCT.punct**
This is a dependency tree.
The thrift holding company said it expects year-end transaction complete and approval to obtain. The company holding thrift expects it.
Applications of Morphology

First step before broader NLP applications:

- (Input for syntactic parsing)
- (Machine translation)
 - Rule-based MT: full-fledged analysis and generation
 - Statistical MT: fighting data sparseness
 - Neural MT: nothing (character embeddings instead)
- Finding word boundaries (Chinese, Japanese)
- Dictionaries
Applications of Morphology

- Text-to-speech systems (speech synthesis)
 - Morphology affects pronunciation
 - English *th* is normally pronounced θ or ð
 - However, not in *boathouse (boat + house)*
 - Czech *proudít* =
 - ... *proud* + *it* ("stream" + INF = "flow")
 - ... *pro* + *ud* + *it* ("through" + "smoke" + INF = "smoke thoroughly")
 - (Speech recognition)
 - Morphology allows for smaller dictionaries
Applications of Morphology

- Word processing
- Typing 日 Japanese text
 - Two kana syllabic scripts and kanji (Chinese characters)
 - Typically, people type in kana and system converts to kanji whenever necessary
 - Disambiguation needed!
 - Bound morphemes remain in kana (morphological rules)
Applications of Morphology

- Word processing: find & replace terms
 - Czech: *kniha* “book” → *dílo* “work”
 - *knihy* → *díla*
 - *knize* → *dílu*
 - *knihu* → *dílo*
 - *kniho* → *dílo*
 - *knihou* → *dílem*
 - *knih* → *děl*
 - *knihám* → *dílům*
 - *knihách* → *dílech*
 - *knihami* → *díly*

- Document retrieval
 - Keywords in query are typically base forms
 - The forms in documents are inflected
Morphology-Based Typology

- Isolating languages
 - Chinese: 狗不吃青菜 = “dog not like eat vegetable”

- Fusional (inflectional) languages
 - Romance and Slavic languages: Spanish:
 - Spanish:
 - poder + present indicative, 2nd person, singular

- Agglutinative languages
 - Turkish:
 - was it from those that were in our garbage cans?

- Polysynthetic languages
 - Eskimo-Aleut languages
Morphology-Based Typology

▶ Isolating languages
 ▶ 🇨🇳 Chinese: ｇǒu ｂú ài ｃhī ｑīngcài
 = “dog not like eat vegetable”

▶ Fusional (inflectional) languages
 ▶ Romance and Slavic languages: 🇪🇸 Spanish: ｐued＋ｅｓ ＝ ｐｏｄｅｒ ＋ present indicative, 2nd person, singular

▶ Agglutinative languages
 ▶ 🇹🇷 Turkish: ｃöplüklerimizdekiｌerdenmiｙdi ＝ ｃöｐ ＋ ｌük ＋ ler ＋ imiz ＋ de ＋ ki ＋ ler ＋ den ＋ mi ＋ y ＋ di ＝ “was it from those that were in our garbage cans?”
 ▶ garbage ＋ can ＋ Plur ＋ our ＋ in ＋ Nominalizer ＋ Plur ＋ from ＋ Question ＋ be ＋ Past

▶ Polysynthetic languages
 ▶ Eskimo-Aleut languages
Polysynthetic Languages

- Found in Siberia and the Americas
- Intricately compose words of many lexical morphemes that are not easily told apart
 - Typically include both subject- and object-verb agreement
- That is why linguists decided not to separate them orthographically
- Nevertheless, words usually are separated. They are just long
- One long word may cover a whole sentence in other languages
- Chukchi example (Skorik 1961: 102):
 - Təmeyŋəlevtəŋtərkən.
 - Tə-meyŋə-levt-pəŋtə-rkən.
 - 1.SG.SUBJ-great-head-hurt-PRES.1
 - “I have a fierce headache.”
Morphological Devices (Overview)

- Affixes (prefixes and suffixes): concatenative morphology
- Infixation
- Circumfixation
- Root and pattern (templatic) morphology
- Reduplication
- Subsegmental morphology
- Zero morphology
- Subtractive morphology
- Compounding
- Incorporation
Affixation

- Most common way of inflection and derivation
- Three morpheme types: prefix + radix (stem) + suffix
 - en: *dog + s = dogs*
 - plural suffix -s
 - de: *mach + st = machst*
 - suffix -st denotes present indicative 2^{nd} person singular
 - en: *un + beat + able*
 - prefix *un-* negates the meaning
 - suffix -*able* converts verb to adjective, expressing applicability of the action of the verb to something
Infixation

- Philippine languages, e.g., 🇵🇭 Bontoc:
 - *fikas* “strong” → \(f+um+ikas \) “be strong”
 - *kilad* “red” → \(k+um+ilad \) “be red”

- Could be analyzed as prefix to (stem minus initial consonant)
Circumfixation

- Prefix + suffix act together as one morpheme
 - German: *legen* “lay down” → *ge+leg+t* “laid down”
 - Indonesian: *besar* “big” → *ke+besar+an* “greatness”

- Similar but not the same as Czech superlatives
 - *nej+mlad+š+í* “youngest”
 - superlative + stem + comparative + singular nominative
Semitic languages (Arabic, Hebrew, Amharic…)

Arabic:

- root (usually 3 consonants): *ktb* “write”
- vowel pattern: *aa* = active, *ui* = passive
- template: CVCVC = first derivational class of verbs (binyan)
- result: *katab* “write”, *kutib* “be written”
Reduplication

- Copy whole stem or part of it
- Indonesian plural:
 - *orang* “man” → *orang-orang* “men”
- Javanese habitual-repetitive:
 - *adus* → *odas+adus* “take a bath”
 - *bali* → *bola+bali* “return”
- Yidiny (Australian language)
 - *gindalba* “lizard” → *gindal+gindalba* “lizards”

- Reduplication cannot be modeled by finite-state automata!
Irish:

- *cat* /kat/ = “cat” (singular)
- *cait* /katʲ/ = “cats” (plural)

The plural morpheme consists just of one phonological feature ("high"), resulting in palatalization.
Zero Morphology

- Zero (empty) morpheme, marked sometimes as 0, Ø, λ or ε
- Czech feminine plural case endings for žena “woman”:
 - nom: žen+y = ženy
 - gen: žen+λ = žen
 - dat: žen+ám = ženám
 - acc: žen+y = ženy
 - voc: žen+y = ženy
 - loc: žen+ách = ženách
 - ins: žen+ami = ženami
Subtractive Morphology

- 🇺🇸 Koasati (Muskogean language):
 - singular verb: pitaf+fi+n
 - plural verb: pit+li+n
 - singular verb: lasap+li+n
 - plural verb: las+li+n

- Such examples are rare
- Moreover, one might argue that plural is the base form here
Compounding

- English: maximally two stems written together
- Germanic languages in general favor compounds
- German: *Hotentotenpotentatentantenatentäter*
 - *Hotentot + en + Potentat + en + Tante + n + Atentäter*
 - “Hottentot potentate aunt assassin”
 - “assassin of aunt of potentate of Hottentots”
Incorporation

▶ Chukchi (Tyers and Mishchenkova 2020):

▶ Қонпы нывичвэтчықиңетъым ныманэванлясқэвқэнат.
▶ Qонпə нəwiswetsəqiwqinetʔəм нəманewантасqewqenat.
▶ always ST-play-VB-MCP-ST.3SG-PL ST-money-ask-MCP-ST.3SG-PL
▶ always they-came-to-play they-came-to-ask-for-money
▶ “They (children) constantly went to play, constantly asked for money.”

▶ MCP “goal” is derivation
▶ The first and the last morphemes are inflection (ST is stative verbal paradigm)
▶ The verb inflects intransitively. If the object were not incorporated, the verb would inflect transitively: МАНЭ НЫВАНЛЯСҚЭВҚЭН
▶ Vowel harmony across the whole word (some vowels have to be changed because of others).
Further Reading