Computational Morphology and Syntax of Natural Languages

Daniel Zeman

September 30, 2021
• Presentations and talks will be in English
 • Unless all students present understand Czech
• Questions welcome in both English and Czech
 • Or write me at zeman@ufal.mff.cuni.cz any time
• And I have many examples from Czech 😊
Getting Credits

• 2–3 smaller tasks
 • homework style
 • less flexible deadlines

• Alternatively: one larger project
 • ask me if interested
 • can be combined with your mgr. (or bc.) thesis
An “Unbalanced” Course

• 1/3 linguistics, 2/3 tools
• 1/3 lab work, 2/3 lectures
• 3/4 morphology, 1/4 syntax
• Mostly rule-based
 • almost no machine learning
 • no neural networks
Outline: Morphology

- Morphemic segmentation
 - un + beat + able
- Phonology ("morphonology") and orthography
 - baby + s = babies
- Inflectional vs. derivational morphology
- Morphological analysis: word form → lemma + morphosyntactic features (tag)
- Tagging (context-aware disambiguation)
- Unsupervised affix detection in corpus
- Mining of word forms from corpus
Morphological Analysis

• Input:
 • word form (token)

• Output:
 • set (possibly empty) of analyses
 • an analysis:
 • lemma (base form of the lexeme)
 • tag (morphological, POS)
 • … part of speech
 • … features and their values
MA Example

• Language: 🇨🇿 Czech
• Input: *malými*
• Output (only one selected analysis here):
 • lemma = *malý* “small”
 • tag = AAFP71A
 • part of speech = AA (adjective / přídavné jméno)
 • gender = F (feminine / ženský)
 • number = P (plural / množné)
 • case = 7 (instrumental / 7. pád)
 • degree of comparison = 1 (positive / 1. stupeň)
 • polarity = A (affirmative / kladné)
MA Example

- Language: 🇬🇧 English
- Input: *flies*
- Output:
 - lemma 1 = *fly-1* (to move in the air)
 - tag 1 = *VBZ* (verb, present tense 3rd person singular)
 - lemma 2 = *fly-2* (an insect)
 - tag 2 = *NNS* (noun, plural)
- Output is not disambiguated with respect to context
MA vs. Tagging

- By **tagging** we usually mean context-based disambiguation
- Most taggers employ machine learning methods
- Taggers may or may not work on top of MA
 - MA may provide readings not known from training
 - If a tagged corpus is available but MA is not, a tagger can still be trained on the corpus
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
Morphemic Segmentation

- Morpheme is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: closed

output: close + VBD
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: *closed*
 - identify the morphemes: *close + d*
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: *closed*
 - identify the morphemes: *close + d*
 - interpret them: *verb (close) + past tense*
• Morpheme is the smallest unit of language that conveys some meaning
• Morpheme segmentation = finding morpheme boundaries within words
• Typically part of MA:
 • input: closed
 • identify the morphemes: close + d
 • interpret them: verb (close) + past tense
 • output: close + VBD
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them.

- Data sparseness, e.g., in machine translation:
 - en: city
Morphemic Segmentation

• Sometimes it is useful to know the morphemes even if we cannot interpret them

• Data sparseness, e.g., in machine translation:
 • en: city
 • cs alignments in parallel corpus: město (nom/acc/voc sing, 42×), města (gen sing, nom/acc/voc plur, 40×), městě (loc sing, 32×), měst (gen plur, 9×), městské (adj, 7×), městem (ins sing, 7×), městských (adj, 4×), městská (adj, 4×), městský (adj, 2×), městu (dat sing, 2×), městech (loc plur, 2×) … total 11 forms seen

… total 11 forms seen
Morphemic Segmentation

• Sometimes it is useful to know the morphemes even if we cannot interpret them

• Data sparseness, e.g., in machine translation:
 • en: city
 • cs alignments in parallel corpus: město (nom/acc/voc sing, 42×), města (gen sing, nom/acc/voc plur, 40×), městě (loc sing, 32×), měst (gen plur, 9×), městské (adj, 7×), městem (ins sing, 7×), městských (adj, 4×), městská (adj, 4×), městský (adj, 2×), městu (dat sing, 2×), městech (loc plur, 2×) … total 11 forms seen

 • missing cs: městům (dat plur), městy (ins plur), městského, městskému, městském, městským, městští, městskými, městskou (adj remaining forms) … total 9 forms missing
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them.
- Data sparseness, e.g., in machine translation.

Stemming = stripping all morphemes but the stem

- IN: *The British players were unbeatable.*
- OUT: *The Brit play were beat.*

Lemmatization = replacing all words with their lemmas (as with tagging, disambiguation may be assumed).
- IN: *The British players were unbeatable.*
- OUT: *the British player be (un)beatable.*
Inflection vs. Derivation

• Derivational morphology:
 • New lemma!
 • Often (but not always) new part of speech

• Inflectional morphology:
 • Set of forms of one lemma (lexeme)
 • The set is called paradigm

• The borderline is sometimes quite fuzzy
Outline: Syntax

- Constituency vs. dependency
- Context-free grammars
- Transition network grammars
- Shallow parsing (chunking)
- Chart parsers
- Dependency parsers
 - Transition-based
 - Graph-based
- Clause boundaries
Dependency Tree

PML-1

This.

is.

a
dependency

tree

NOUN.root

PRON.nsubj

AUX.cop

DET.det

NOUN.compound

PUNCT.punct
Dependency Tree

This is a dependency tree.

- **PRO**: Pronoun, Type=Dem
 - Mood=Ind, Tense=Pres, Number=Sing, Person=3
 - VerbForm=Fin

- **AUX**: Verb
 - Mood=Ind

- **DET**: Determiner
 - Definite=Ind
 - Number=Sing

- **NOUN**: Noun
 - Number=Sing

- **PUNCT**: Punctuation

Diagram:

- **nsubj**: This
- **cop**: is
- **det**: a
- **compound**: dependency
tree
- **punct**: .
The thrift holding company said it expects year-end transaction complete and approval to obtain.

NP-SBJ

S

NP-SBJ

S

VP

SBAR

S

VP

NP

NN

year-end

IN

by

VP

NP

NN

transaction

DT

the

VB

complete

CC

and

VP

NP

NN

approval

JJ

regulatory

VB

obtain

TO

to

VPZ

expects

NP-SBJ-1

0

PRP

it

VBZ

expects

NP-SBJ
Applications of Morphology

- First step before broader NLP applications:
 - (Input for syntactic parsing)
 - (Machine translation)
 - Rule-based MT: full-fledged analysis and generation
 - Statistical MT: fighting data sparseness
 - Neural MT: nothing (character embeddings instead)
- Finding word boundaries (Chinese, Japanese)
- Dictionaries
Applications of Morphology

- Text-to-speech systems (speech synthesis)
 - Morphology affects pronunciation
 - English *th* is normally pronounced θ or ð
 - However, not in *boathouse (boat + house)*
 - Czech *proudit* =
 - ... *proud* + *it* ("stream" + INF = "flow")
 - ... *pro* + *ud* + *it* ("through" + "smoke" + INF = "smoke thoroughly")
 - (Speech recognition)
 - Morphology allows for smaller dictionaries
Applications of Morphology

• Word processing
• Typing Japanese text
 • Two kana syllabic scripts and kanji (Chinese characters)
 • Typically, people type in kana and system converts to kanji whenever necessary
 • Disambiguation needed!
 • Bound morphemes remain in kana (morphological rules)
Applications of Morphology

• Word processing: find & replace terms
 • 🇨🇿 Czech: *kniha* “book” → *dílo* “work”
 • *knihy* → *díla*
 • *kníze* → *dílu*
 • *knihu* → *dílo*
 • *kniho* → *dílo*
 • *knihou* → *dílem*
 • *knih* → *děl*
 • *knihám* → *dílům*
 • *kniháč* → *dílech*
 • *knihami* → *díly*

• Document retrieval
 • Keywords in query are typically base forms
 • The forms in documents are inflected
Morphology-Based Typology

- Isolating languages
 - Chinese:
 \[gǒu bú ài chī qīngcài = \text{“dog not like eat vegetable”} \]

- Fusional (inflectional) languages
 - Romance and Slavic languages:
 - Spanish:
 \[\text{pued+es} = \text{poder + present indicative, 2^{nd} person, singular} \]

- Agglutinative languages
 - Turkish:
 \[\text{çöplüklerimizdekilerdenmiydi} = \text{çöp + lük + ler + imiz + de + ki + ler + den + mi + y + di} = \text{“was it from those that were in our garbage cans?”} \]

- Polysynthetic languages
 - Eskimo-Aleut languages
Morphology-Based Typology

• Isolating languages
 • Chinese: ご覧不如吃青菜
 = “dog not like eat vegetable”

• Fusional (inflectional) languages
 • Romance and Slavic languages: 说法
 = poder + present indicative, 2nd person, singular

• Agglutinative languages
 • Turkish: 窅NullPointerException
 = çöp + lük + ler + imiz + de + ki + ler +
 den + mi + y + di = “was it from those that were in our garbage cans?”
 • garbage + can + Plur + our + in + Nominalizer + Plur + from + Question + be + Past

• Polysynthetic languages
 • Eskimo-Aleut languages
Polysynthetic Languages

- Found in Siberia and the Americas
- Intricately compose words of many lexical morphemes that are not easily told apart
 - Typically include both subject- and object-verb agreement
- That is why linguists decided not to separate them orthographically
- Nevertheless, words usually are separated. They are just long
- One long word may cover a whole sentence in other languages
- Chukchi example (Skorik 1961: 102):
 - Təmeyŋəlevtəʁtəʁkən.
 - Tə-meyeŋ-lev-tər-ʁkən.
 - 1.SG.SUBJ-great-head-hurt-PRES.1
 - “I have a fierce headache.”
Morphological Devices (Overview)

• Affixes (prefixes and suffixes): concatenative morphology
• Infixation
• Circumfixation
• Root and pattern (templatic) morphology
• Reduplication
• Subsegmental morphology
• Zero morphology
• Subtractive morphology
• Compounding
• Incorporation
Affixation

• Most common way of inflection and derivation

• Three morpheme types:
 prefix + radix (stem) + suffix
 • en: *dog + s = dogs*
 • plural suffix -s
 • de: *mach + st = machst*
 • suffix -st denotes present indicative 2nd person singular
 • en: *un + beat + able*
 • prefix *un-* negates the meaning
 • suffix *-able* converts verb to adjective, expressing applicability of the action of the verb to something
Infixation

- Philippine languages, e.g., [flag]
 - Bontoc:
 - fikas "strong" \(\rightarrow f+um+ikas\) "be strong"
 - kilad "red" \(\rightarrow k+um+ilad\) "be red"

- Could be analyzed as prefix to (stem minus initial consonant)
Circumfixation

• Prefix + suffix act together as one morpheme
 • 🇩🇪 German: *legen* "lay down" → *ge+leg+t* "laid down"
 • 🇮🇩 Indonesian: *besar* "big" → *ke+besar+an* "greatness"

• Similar but not the same as 🇨🇿 Czech superlatives
 • *nej+mlad+š+í* “youngest”
 • superlative + stem + comparative + singular nominative
• Semitic languages (Arabic, Hebrew, Amharic…)
• Arabic:
 • root (usually 3 consonants): *ktb* “write”
 • vowel pattern: *aa* = active, *ui* = passive
 • template: *CVCVC* = first derivational class of verbs (binyan)
 • result: *katab* “write”, *kutib* “be written”
Reduplication

- Copy whole stem or part of it
- Indonesian plural:
 - *orang* “man” → *orang-orang* “men”
- Javanese habitual-repetitive:
 - *adus* → *odas+adus* “take a bath”
 - *bali* → *bola+bali* “return”
- Yidiny (Australian language)
 - *gindalba* “lizard” → *gindal+gindalba* “lizards”

- Reduplication cannot be modeled by finite-state automata!
Irish:
- *cat* /kat/ = “cat” (singular)
- *cait* /katʃ/ = “cats” (plural)

The plural morpheme consists just of one phonological feature (“high”), resulting in palatalization.
Zero Morphology

- Zero (empty) morpheme, marked sometimes as 0, Ø, λ or ε
- Czech feminine plural case endings for žena “woman”:
 - nom: žen+y = ženy
 - gen: žen+λ = žen
 - dat: žen+ám = ženám
 - acc: žen+y = ženy
 - voc: žen+y = ženy
 - loc: žen+ách = ženách
 - ins: žen+ami = ženami
Subtractive Morphology

• Koasati (Muskogean language):
 • singular verb: pitaf+fi+n
 • plural verb: pit+li+n
 • singular verb: lasap+li+n
 • plural verb: las+li+n

• Such examples are rare
• Moreover, one might argue that plural is the base form here
Compounding

• English: maximally two stems written together
• Germanic languages in general favor compounds
• German: *Hotentotenpotentatentantenatentäter*
 • *Hotentot + en + Potentat + en + Tante + n + Atentäter*
 • “Hottentot potentate aunt assassin”
 • “assassin of aunt of potentate of Hottentots”
Incorporation

• Chukchi (Tyers and Mishchenkova 2020):
 • Қонпы нывичэтчьiquement ныманэванлясқэвқэнат.
 • Qонпə нəвисвестəʔиəкиəмəтəм нəмəнэванлясəʔиəкəмəт.
 • always ST-play-VB-MCP-ST.3SG-PL ST-money-ask-MCP-ST.3SG-PL
 • always they-came-to-play they-came-to-ask-for-money
 • “They (children) constantly went to play, constantly asked for money.”
 • MCP “goal” is derivation
 • The first and the last morphemes are inflection (ST is stative verbal paradigm)
 • The verb inflects intransitively. If the object were not incorporated, the verb would inflect transitively: 信念 ныванлясқэвқэн
 • Vowel harmony across the whole word (some vowels have to be changed because of others).
Further Reading

• James Allen (1995). *Natural Language Understanding*. Benjamin/Cummings, USA