Computational Morphology and Syntax of Natural Languages

Daniel Zeman

📅 October 5, 2022
- Presentations and talks will be in English
 - Unless all students present understand Czech
- Questions welcome in both English and Czech
 - Or write me at zeman@ufal.mff.cuni.cz any time
- And I have many examples from Czech 😊
Getting Credits

• 2–3 smaller tasks
 • homework style
 • less flexible deadlines

• Alternatively: one larger project
 • ask me if interested
 • can be combined with your mgr. (or bc.) thesis
An “Unbalanced” Course

• 1/3 linguistics, 2/3 tools
• 1/3 lab work, 2/3 lectures
• 3/4 morphology, 1/4 syntax
• Mostly rule-based
 • almost no machine learning
 • no neural networks
Outline: Morphology

• Morphemic segmentation
 • $un + beat + able$
• Phonology ("morphonology") and orthography
 • $baby + s = babies$
• Inflectional vs. derivational morphology
• Morphological analysis: word form \rightarrow lemma + morphosyntactic features (tag)
• Tagging (context-aware disambiguation)
• Unsupervised affix detection in corpus
• Mining of word forms from corpus
Morphological Analysis

• Input:
 • word form (token)

• Output:
 • set (possibly empty) of analyses
 • an analysis:
 • lemma (base form of the lexeme)
 • tag (morphological, POS)
 • ... part of speech
 • ... features and their values
MA Example

• Language: 🇨🇿 Czech
• Input: malými
• Output (only one selected analysis here):
 • lemma 1 = malý “small”
 • tag 1 = AAFP71A
 • part of speech = AA (adjective / přídavné jméno)
 • gender = F (feminine / ženský)
 • number = P (plural / množné)
 • case = 7 (instrumental / 7. pád)
 • degree of comparison = 1 (positive / 1. stupeň)
 • polarity = A (affirmative / kladné)
 • lemma 2 = ...

6/34
• Language: 🇬🇧 English
• Input: *flies*
• Output:
 • lemma 1 = *fly*-1 (to move in the air)
 • tag 1 = VBZ (verb, present tense 3rd person singular)
 • lemma 2 = *fly*-2 (an insect)
 • tag 2 = NNS (noun, plural)
• Output is not disambiguated with respect to context
By tagging we usually mean context-based disambiguation

Most taggers employ machine learning methods

Taggers may or may not work on top of MA
 - MA may provide readings not known from training
 - If a tagged corpus is available but MA is not, a tagger can still be trained on the corpus
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: *closed*
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: *closed*
 - identify the morphemes: close + d
• Morpheme is the smallest unit of language that conveys some meaning
• Morpheme segmentation = finding morpheme boundaries within words
• Typically part of MA:
 • input: closed
 • identify the morphemes: close + d
 • interpret them: verb (close) + past tense
Morphemic Segmentation

- **Morpheme** is the smallest unit of language that conveys some meaning
- Morpheme segmentation = finding morpheme boundaries within words
- Typically part of MA:
 - input: *closed*
 - identify the morphemes: *close + d*
 - interpret them: *verb (close) + past tense*
 - output: *close + VBD*
Morphemic Segmentation

• Sometimes it is useful to know the morphemes even if we cannot interpret them

• Data sparseness, e.g., in machine translation:
 • en: city
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them.

- Data sparseness, e.g., in machine translation:
 - en: city
 - cs alignments in parallel corpus: město (nom/acc/voc sing, 42×), města (gen sing, nom/acc/voc plur, 40×), městě (loc sing, 32×), měst (gen plur, 9×), městské (adj, 7×), městem (ins sing, 7×), městských (adj, 4×), městská (adj, 4×), městský (adj, 2×), městu (dat sing, 2×), městech (loc plur, 2×) ... total 11 forms seen
• Sometimes it is useful to know the morphemes even if we cannot interpret them

• Data sparseness, e.g., in machine translation:
 • en: city

 • cs alignments in parallel corpus: město (nom/acc/voc sing, 42×), města (gen sing, nom/acc/voc plur, 40×), městě (loc sing, 32×), měst (gen plur, 9×), městské (adj, 7×), městem (ins sing, 7×), městských (adj, 4×), městská (adj, 4×), městský (adj, 2×), městu (dat sing, 2×), městech (loc plur, 2×) … total 11 forms seen

 • missing cs: městům (dat plur), městy (ins plur), městského, městskému, městském, městským, městští, městskými, městskou (adj remaining forms) … total 9 forms missing
Morphemic Segmentation

- Sometimes it is useful to know the morphemes even if we cannot interpret them.
- Data sparseness, e.g., in machine translation.

Stemming = stripping all morphemes but the stem

- IN: *The British players were unbeatable.*
- OUT: *The Brit play were beat.*

Lemmatization = replacing all words with their lemmas (as with tagging, disambiguation may be assumed)

- IN: *The British players were unbeatable.*
- OUT: *the British player be (un)beatable.*
Inflection vs. Derivation

• Derivational morphology:
 • New lemma!
 • Often (but not always) new part of speech

• Inflectional morphology:
 • Set of forms of one lemma (lexeme)
 • The set is called paradigm

• The borderline is sometimes quite fuzzy
Outline: Syntax

- Constituency vs. dependency
- Context-free grammars
- Transition network grammars
- Shallow parsing (chunking)
- Chart parsers
- Dependency parsers
 - Transition-based
 - Graph-based
- Clause boundaries
Dependency Tree

PML-1

tree

NOUN.root

This is a dependency
PRON.nsubj AUX.cop DET.det NOUN.compound PUNCT.punct
This is a dependency tree.

- **This** (PRON, PronType=Dem, Definite=Ind, Number=Sing, Person=3)
- **is** (AUX, Mood=Ind, Tense=Pres)
- **a** (DET, PronType=Art, Definite=Ind)
- **dependency** (NOUN, Number=Sing)
- **tree** (NOUN, Number=Sing)

Dependency Tree Structure:
- **nsubj** (This)
- **cop** (is)
- **det** (a)
- **compound** (dependency)
- **punct** (.)

Parsing Information:
- Pronoun: This
- Verb: is
- Determiner: a
- Dependency: dependency
- Tree: tree
- Period: .
The thrift holding company said that the transaction complete and approval obtain to it expects -NONE- year-end by.

NP-SBJ

DT NN VBG NN VBD

S

VP

SBAR

IN by

NP

NN

year-end

complete

VBZ

expects

NP-SBJ

PP-TMP

NP-SBJ-1

NN

transaction

the

DT

The

VBG

holding

company

said

0

-NONE-

S

PRP

it

NP-SBJ

VP

VBZ

expects

0

Applications of Morphology

• First step before broader NLP applications:
 • (Input for syntactic parsing)
 • (Machine translation)
 • Rule-based MT: full-fledged analysis and generation
 • Statistical MT: fighting data sparseness
 • Neural MT: nothing (character embeddings instead)
 • Finding word boundaries (Chinese, Japanese)
 • Dictionaries
Applications of Morphology

• Text-to-speech systems (speech synthesis)
 • Morphology affects pronunciation
 • English *th* is normally pronounced θ or ð
 • However, not in *boathouse* (*boat + house*)
 • Czech *proudít* =
 • ... *proud + it* ("stream" + INF = "flow")
 • ... *pro + uď + it* ("through" + "smoke" + INF = "smoke thoroughly")
 • (Speech recognition)
 • Morphology allows for smaller dictionaries
Applications of Morphology

- Word processing
- Typing Japanese text
 - Two kana syllabic scripts and kanji (Chinese characters)
 - Typically, people type in kana and system converts to kanji whenever necessary
 - Disambiguation needed!
 - Bound morphemes remain in kana (morphological rules)
Applications of Morphology

• Word processing: find & replace terms
 • 🇨🇿 Czech: *kniha* “book” → *dílo* “work”
 • *knihy* → *díla*
 • *kníze* → *dílu*
 • *knihu* → *dílo*
 • *kniho* → *dílo*
 • *knihou* → *dílem*
 • *knihem* → *děl*
 • *knihám* → *dílům*
 • *kniháč* → *dílech*
 • *knihami* → *díly*

• Document retrieval
 • Keywords in query are typically base forms
 • The forms in documents are inflected
Morphology-Based Typology

• Isolating languages
 • Chinese: ่ gǒu bú ài chī qīngcài
 = “dog not like eat vegetable”

• Fusional (inflectional) languages
 • Romance and Slavic languages: Spanish: pued+es = poder + present indicative, 2nd person, singular

• Agglutinative languages
 • Turkish: çöplüklerimizdeki̇lerdenmi̇ydi = çöp + lük + ler + imiz + de + ki + ler + den + mi + y + di = “was it from those that were in our garbage cans?”

• Polysynthetic languages
 • Eskimo-Aleut languages
Morphology-Based Typology

• Isolating languages
 • Chinese: ʂʊ̀ bù ài chī qīngcài
 = “dog not like eat vegetable”

• Fusional (inflectional) languages
 • Romance and Slavic languages: Spain: puéd+es = poder + present indicative, 2nd person, singular

• Agglutinative languages
 • Turkish: çöplüklerimizdeki lerden miydı = çöp + lük + ler + imiz + de + ki + ler + den + mi + y + di = “was it from those that were in our garbage cans?”
 • garbage + can + Plur + our + in + Nominalizer + Plur + from + Question + be + Past

• Polysynthetic languages
 • Eskimo-Aleut languages
Polysynthetic Languages

• Found in Siberia and the Americas
• Intricately compose words of many lexical morphemes that are not easily told apart
 • Typically include both subject- and object-verb agreement
• That is why linguists decided not to separate them orthographically
• Nevertheless, words usually are separated. They are just long
• One long word may cover a whole sentence in other languages
• Chukchi example (Skorik 1961: 102):

 • Таmєnъalevtptəɣtərkən.
 • Tə-meynə-levt-pəɣtə-ʁkən.
 • 1.SG.SUBJ-great-head-hurt-PRES.1
 • “I have a fierce headache.”
Morphological Devices (Overview)

• Affixes (prefixes and suffixes): concatenative morphology
• Infixation
• Circumfixation
• Root and pattern (templatic) morphology
• Reduplication
• Subsegmental morphology
• Zero morphology
• Subtractive morphology
• Compounding
• Incorporation
Affixation

- Most common way of inflection and derivation
- Three morpheme types: prefix + radix (stem) + suffix
 - English: \(dog + s = dogs \)
 - plural suffix \(-s\)
 - German: \(mach + st = machst \)
 - suffix \(-st\) denotes present indicative 2\(^{nd}\) person singular
 - English: \(un + beat + able \)
 - prefix \(un\) negates the meaning
 - suffix \(-able\) converts verb to adjective, expressing applicability of the action of the verb to something
• Philippine languages, e.g., Bontoc:
 • fikas “strong” → f+um+ikas “be strong”
 • kilad “red” → k+um+ilad “be red”

• Could be analyzed as prefix to (stem minus initial consonant)
Circumfixation

• Prefix + suffix act together as one morpheme
 • 🇩🇪 German: *legen* “lay down” → *ge+leg+t* “laid down”
 • 🇮🇩 Indonesian: *besar* “big” → *ke+besar+an* “greatness”

• Similar but not the same as 🇨🇿 Czech superlatives
 • *nej+mlad+š+í* “youngest”
 • superlative + stem + comparative + singular nominative
Templatic Morphology

- Semitic languages (Arabic, Hebrew, Amharic...)
- Arabic:
 - root (usually 3 consonants): \(ktb\) “write”
 - vowel pattern: \(aa\) = active, \(ui\) = passive
 - template: \(CVCVC\) = first derivational class of verbs (binyan)
 - result: \(katab\) “write”, \(kutib\) “be written”
Reduplication

- Copy whole stem or part of it
- Indonesian plural:
 - *orang* “man” → *orang-orang* “men”
- Javanese habitual-repetitive:
 - *adus* → *odas+adus* “take a bath”
 - *bali* → *bola+bali* “return”
- Yidiny (Australian language)
 - *gindalba* “lizard” → *gindal+gindalba* “lizards”

- Reduplication cannot be modeled by finite-state automata!
Subsegmental Morphology

- **Irish:**
 - *cat /kat/* = “cat” (singular)
 - *cait /katʲ/* = “cats” (plural)

- The plural morpheme consists just of one phonological feature (“high”), resulting in palatalization
Zero Morphology

- Zero (empty) morpheme, marked sometimes as 0, Ø, λ or ε
- Czech feminine plural case endings for žena “woman”:
 - nom: žen+y = ženy
 - gen: žen+λ = žen
 - dat: žen+ám = ženám
 - acc: žen+y = ženy
 - voc: žen+y = ženy
 - loc: žen+áčh = ženách
 - ins: žen+ami = ženami
Subtractive Morphology

- **Koasati (Muskogean language):**
 - singular verb: *pitaf+fi+n*
 - plural verb: *pit+li+n*
 - singular verb: *lasap+li+n*
 - plural verb: *las+li+n*

- Such examples are rare
- Moreover, one might argue that plural is the base form here
• English: maximally two stems written together
• Germanic languages in general favor compounds
• German: *Hotentotenpotentatentantenatentäter*
 • *Hotentot + en + Potentat + en + Tante + n + Atentäter*
 • “Hottentot potentate aunt assassin”
 • “assassin of aunt of potentate of Hottentots”
Incorporation

• Chukchi (Tyers and Mishchenkova 2020):
 • Қонпы нывичэтчык议论етъым ныманэванлясқэвқэнат.
 • Qонпə нəвисwətseqiwqinetʔəm нəманewantəsqewqenat.
 • always ST-play-VB-MCP-ST.3SG-PL ST-money-ask-MCP-ST.3SG-PL
 • always they-came-to-play they-came-to-ask-for-money
 • “They (children) constantly went to play, constantly asked for money.”
 • MCP “goal” is derivation
 • The first and the last morphemes are inflection (ST is stative verbal paradigm)
 • The verb inflects intransitively. If the object were not incorporated, the verb would inflect transitively: แมนэ ныманлясқэвқэн
 • Vowel harmony across the whole word (some vowels have to be changed because of others).
Further Reading

• James Allen (1995). *Natural Language Understanding*. Benjamin/Cummings, USA