Projection of Trees across Parallel Texts

Daniel Zeman, Rudolf Rosa

April 23, 2021
Projection of Trees across Parallel Texts

- Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara Cabezas, Okan Kolak (2004). Bootstrapping Parsers via Syntactic Projection across Parallel Texts

- Source: English
- Target: Spanish, Chinese
- Dependency trees (not phrase structure)
Projection System Architecture

- Bilingual corpus
- English Dependency Parser
- Non-Eng Dependency Parser
- Word Alignment Model
- Projected Non-Eng Dependency Treebank
- Train
- Dependency Parser
- Projection
- Transformation
- Filtering
- New Non-Eng sentences
- Dependency trees for new sentences
Given sentence pair \((E, F)\) and a set of syntactic relations for \(E\), where \(E = e_1, ..., e_n\) is an English sentence and \(F = f_1, ..., f_m\) is its non-English parallel, syntactic relations \(R(x, y)\) are projected from English as follows:

- **one-to-one** – \(e_i\) aligned with a unique \(f_x\) and \(e_j\) aligned with a unique \(f_y\) – then \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\)

- **one-to-many** – \(e_i\) aligned with \(f_x, ..., f_y\) – then create new empty \(f_z\), parent of \(f_x, ..., f_y\), and set \(e_i\) to align to \(f_z\)

- **many-to-one** – \(e_i, ..., e_j\) uniquely aligned to \(f_x\) – then keep the head of \(e_i, ..., e_j\) aligned to \(f_x\), and delete other alignments

- **many-to-many** – decompose: first one-to-many, then many-to-one

- **unaligned foreign** – leave them out of the projected tree
Direct Projection

Given sentence pair \((E, F)\) and a set of syntactic relations for \(E\), where \(E = e_1, \ldots, e_n\) is an English sentence and \(F = f_1, \ldots, f_m\) is its non-English parallel, syntactic relations \(R(x, y)\) are projected from English as follows:

- **one-to-one** – \(e_i\) aligned with a unique \(f_x\) and \(e_j\) aligned with a unique \(f_y\) – then
 \[
 R(e_i, e_j) \Rightarrow R(f_x, f_y)
 \]

- **unaligned English** – \(e_j\) not aligned with any word in \(F\) – create new empty word \(f_y\) so that for any \(e_i\) aligned with a unique \(f_x\), \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\) and \(R(e_j, e_i) \Rightarrow R(f_y, f_x)\)

- **one-to-many** – \(e_i\) aligned with \(f_x; \ldots; f_y\) – then create new empty \(f_z\), parent of \(f_x; \ldots; f_y\), and set \(e_i\) to align to \(f_z\) instead

- **many-to-one** – \(e_i; \ldots; e_j\) uniquely aligned to \(f_x\) – then keep the head of \(e_i; \ldots; e_j\) aligned to \(f_x\), and delete other alignments

- **many-to-many** – decompose: first one-to-many, then many-to-one

- **unaligned foreign** – leave them out of the projected tree
Direct Projection

Given sentence pair \((E, F)\) and a set of syntactic relations for \(E\), where \(E = e_1, \ldots, e_n\) is an English sentence and \(F = f_1, \ldots, f_m\) is its non-English parallel, syntactic relations \(R(x, y)\) are projected from English as follows:

- **one-to-one** – \(e_i\) aligned with a unique \(f_x\) and \(e_j\) aligned with a unique \(f_y\) – then \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\)

- **unaligned English** – \(e_j\) not aligned with any word in \(F\) – create new empty word \(f_y\) so that for any \(e_i\) aligned with a unique \(f_x\), \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\) and \(R(e_j, e_i) \Rightarrow R(f_y, f_x)\)

- **one-to-many** – \(e_i\) aligned with \(f_x, \ldots, f_y\) – then create new empty \(f_z\), parent of \(f_x, \ldots, f_y\), and set \(e_i\) to align to \(f_z\) instead

- **many-to-one** – \(e_i; \ldots; e_j\) uniquely aligned to \(f_x\) – then keep the head of \(e_i; \ldots; e_j\) aligned to \(f_x\), and delete other alignments

- **many-to-many** – decompose: first one-to-many, then many-to-one

- **unaligned foreign** – leave them out of the projected tree
Direct Projection

Given sentence pair \((E, F)\) and a set of syntactic relations for \(E\), where \(E = e_1, \ldots, e_n\) is an English sentence and \(F = f_1, \ldots, f_m\) is its non-English parallel, syntactic relations \(R(x, y)\) are projected from English as follows:

- **one-to-one** – \(e_i\) aligned with a unique \(f_x\) and \(e_j\) aligned with a unique \(f_y\) – then
 \[R(e_i, e_j) \Rightarrow R(f_x, f_y) \]

- **unaligned English** – \(e_j\) not aligned with any word in \(F\) – create new empty word \(f_y\) so that for any \(e_i\) aligned with a unique \(f_x\), \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\) and
 \[R(e_j, e_i) \Rightarrow R(f_y, f_x) \]

- **one-to-many** – \(e_i\) aligned with \(f_x, \ldots, f_y\) – then create new empty \(f_z\), parent of \(f_x, \ldots, f_y\), and set \(e_i\) to align to \(f_z\) instead

- **many-to-one** – \(e_i, \ldots, e_j\) uniquely aligned to \(f_x\) – then keep the head of \(e_i, \ldots, e_j\) aligned to \(f_x\), and delete other alignments
Direct Projection

Given sentence pair \((E, F)\) and a set of syntactic relations for \(E\), where \(E = e_1, ..., e_n\) is an English sentence and \(F = f_1, ..., f_m\) is its non-English parallel, syntactic relations \(R(x, y)\) are projected from English as follows:

- **one-to-one** – \(e_i\) aligned with a unique \(f_x\) and \(e_j\) aligned with a unique \(f_y\) – then
 \[R(e_i, e_j) \Rightarrow R(f_x, f_y) \]

- **unaligned English** – \(e_j\) not aligned with any word in \(F\) – create new empty word \(f_y\) so that for any \(e_i\) aligned with a unique \(f_x\), \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\) and \(R(e_j, e_i) \Rightarrow R(f_y, f_x)\)

- **one-to-many** – \(e_i\) aligned with \(f_x, ..., f_y\) – then create new empty \(f_z\), parent of \(f_x, ..., f_y\), and set \(e_i\) to align to \(f_z\) instead

- **many-to-one** – \(e_i, ..., e_j\) uniquely aligned to \(f_x\) – then keep the head of \(e_i, ..., e_j\) aligned to \(f_x\), and delete other alignments

- **many-to-many** – decompose: first one-to-many, then many-to-one
Given sentence pair \((E, F)\) and a set of syntactic relations for \(E\), where \(E = e_1, \ldots, e_n\) is an English sentence and \(F = f_1, \ldots, f_m\) is its non-English parallel, syntactic relations \(R(x, y)\) are projected from English as follows:

- **one-to-one** – \(e_i\) aligned with a unique \(f_x\) and \(e_j\) aligned with a unique \(f_y\) – then
 \[R(e_i, e_j) \Rightarrow R(f_x, f_y) \]
- **unaligned English** – \(e_j\) not aligned with any word in \(F\) – create new empty word \(f_y\) so that for any \(e_i\) aligned with a unique \(f_x\), \(R(e_i, e_j) \Rightarrow R(f_x, f_y)\) and \(R(e_j, e_i) \Rightarrow R(f_y, f_x)\)
- **one-to-many** – \(e_i\) aligned with \(f_x, \ldots, f_y\) – then create new empty \(f_z\), parent of \(f_x, \ldots, f_y\), and set \(e_i\) to align to \(f_z\) instead
- **many-to-one** – \(e_i, \ldots, e_j\) uniquely aligned to \(f_x\) – then keep the head of \(e_i, \ldots, e_j\) aligned to \(f_x\), and delete other alignments
- **many-to-many** – decompose: first one-to-many, then many-to-one
- **unaligned foreign** – leave them out of the projected tree
Direct Projection Example

He took a picture of my daughter

Vyfotil si moji dceru
Direct Projection Example

He took a picture of my daughter

Vyfotil si moji dceru
He took a picture of my daughter.
He took a picture of my daughter Vyfotil si moji dceru
He took a picture of my daughter.
He took a picture of my daughter Vyfotil si moji dceru.
He took a picture of my daughter.

Direct Projection Example 3
He took a picture of my daughter.
Many-to-One Assumption:
\(e_i, \ldots, e_j \) Is a Phrase with One Head
Many-to-One Assumption:
e_i, \ldots, e_j is a phrase with one head. What if not?
Experiments with Direct Projection

- 100 gold trees projected from English to Spanish
- 88 gold trees projected from English to Chinese
- Word alignments are gold-standard too!
 - The goal is just to check the direct correspondence assumption.

Compared with target gold-standard trees
- Spanish unlabeled F-score = 37%
- Chinese unlabeled F-score = 38%
Experiments with Direct Projection

- 100 gold trees projected from English to Spanish
- 88 gold trees projected from English to Chinese

- Word alignments are gold-standard too!
 - The goal is just to check the direct correspondence assumption.

- Compared with target gold-standard trees
 - Spanish unlabeled F-score = 37%
 - Chinese unlabeled F-score = 38%
Problems

- Many-to-one deletes alignments \(\Rightarrow \) tree is not connected
 - Possible solution: transitive closure?

```
He took a picture of my daughter
```

![Diagram of tree structure]

- Unaligned foreign words remain unattached
 - Possible solution: postprocessing with target language knowledge
Problems

- Many-to-one deletes alignments \Rightarrow tree is not connected
 - Possible solution: transitive closure?

He took a picture of my daughter

[f_1] Vyfotil

[f_6] si moji dceru

Projection of Trees across Parallel Texts
Problems

- Many-to-one deletes alignments ⇒ tree is not connected
 - Possible solution: transitive closure?

- Unaligned foreign words remain unattached
 - Possible solution: postprocessing with target language knowledge

He took a picture of my daughter

Projection of Trees across Parallel Texts
Postprocessing Rules

- A few dozen rules, less than a month work
- Spanish example
 - A reflexive clitic should modify the verb to its left.
- Chinese example
 - An aspectual marker should modify the verb to its left.
Experiments with Postprocessing on Gold Data

- 100 gold trees projected from English to Spanish
- 88 gold trees projected from English to Chinese

- Word alignments are gold-standard too!

- Compared with target gold-standard trees
 - Spanish unlabeled F-score = 70%
 - Chinese unlabeled F-score = 67%
Real-World Setting

- Collins Model2 (1997) English parser trained on Penn Treebank / WSJ
- Converted to dependencies (Magerman 1994, Xia and Palmer 2001)
- Word alignments computed with GIZA++ (Och and Ney 2003)
 - 100K en-es sentence pairs (Bible, Federal Broadcasting Information Service, United Nations Parallel Corpus)
 - 240K en-zh sentence pairs (Federal Broadcasting Information Service)
- Project trees using direct correspondence + postprocessing
Real-World Setting

- Collins Model2 (1997) English parser trained on Penn Treebank / WSJ
- Converted to dependencies (Magerman 1994, Xia and Palmer 2001)

- Word alignments computed with GIZA++ (Och and Ney 2003)
 - 100K en-es sentence pairs (Bible, Federal Broadcasting Information Service, United Nations Parallel Corpus)
 - 240K en-zh sentence pairs (Federal Broadcasting Information Service)

- Project trees using direct correspondence + postprocessing
- Aggressive filtering: discard projected trees of poor quality
Real-World Setting

- Collins Model2 (1997) English parser trained on Penn Treebank / WSJ
- Converted to dependencies (Magerman 1994, Xia and Palmer 2001)

- Word alignments computed with GIZA++ (Och and Ney 2003)
 - 100K en-es sentence pairs (Bible, Federal Broadcasting Information Service, United Nations Parallel Corpus)
 - 240K en-zh sentence pairs (Federal Broadcasting Information Service)

- Project trees using direct correspondence + postprocessing
- Aggressive filtering: discard projected trees of poor quality
- Train Collins dependency parser (1999) on remaining trees
- Apply the parser to unseen target-language sentences
Pruning Criteria

- Based on tuning on development set, discard if...
 - $> 20\%$ of the English words have no Spanish counterpart
Pruning Criteria

- Based on tuning on development set, discard if...
 - > 20% of the English words have no Spanish counterpart
 - > 30% of the Spanish words have no English counterpart
Pruning Criteria

- Based on tuning on development set, discard if…
 - > 20% of the English words have no Spanish counterpart
 - > 30% of the Spanish words have no English counterpart
 - > 4 Spanish words were aligned to the same English word

Additional criteria for English-Chinese:
- Crossing dependencies
- Number of unattached nodes after postprocessing
- Number of words with unknown POS category
- 20K projected Spanish trees after filtering
- 50K projected Chinese trees after filtering
Pruning Criteria

- Based on tuning on development set, discard if...
 - > 20% of the English words have no Spanish counterpart
 - > 30% of the Spanish words have no English counterpart
 - > 4 Spanish words were aligned to the same English word
 - Additional criteria for English-Chinese:
 - Crossing dependencies
 - Number of unattached nodes after postprocessing
 - Number of words with unknown POS category
Pruning Criteria

- Based on tuning on development set, discard if...
 - > 20% of the English words have no Spanish counterpart
 - > 30% of the Spanish words have no English counterpart
 - > 4 Spanish words were aligned to the same English word
 - Additional criteria for English-Chinese:
 - Crossing dependencies
 - Number of unattached nodes after postprocessing
 - Number of words with unknown POS category

- 20K projected Spanish trees after filtering
- 50K projected Chinese trees after filtering
Experiments

- Spanish
 - Baseline (left-to-right) unl F-score = 33.8%
 - Parser on unfiltered data (98K) F = 67.3%
 - Parser on filtered data (20K) F = 72.1%
 - Commercial parser F = 69.2%

- Chinese
 - Baseline (left-to-right) F = 35.1%
 - Baseline + postprocessing F = 44.3%
 - Parser on filtered data (50K) F = 53.9%
 - Parser on PennChineseTB (10K) F = 64.3%

- Learning curve: projected parser = about 2K manual sentences
Experiments

- **Spanish**
 - Baseline (left-to-right) unl F-score = 33.8%
 - Parser on unfiltered data (98K) $F = 67.3\%$
 - Parser on filtered data (20K) $F = 72.1\%$
 - Commercial parser $F = 69.2\%$

- **Chinese**
 - Baseline (left-to-right) $F = 35.1\%$
 - Baseline + postprocessing $F = 44.3\%$
 - Parser on filtered data (50K) $F = 53.9\%$
 - Parser on PennChineseTB (10K) $F = 64.3\%$
Experiments

- **Spanish**
 - Baseline (left-to-right) unl F-score = 33.8%
 - Parser on unfiltered data (98K) F = 67.3%
 - Parser on filtered data (20K) F = 72.1%
 - Commercial parser F = 69.2%

- **Chinese**
 - Baseline (left-to-right) F = 35.1%
 - Baseline + postprocessing F = 44.3%
 - Parser on filtered data (50K) F = 53.9%
 - Parser on PennChineseTB (10K) F = 64.3%

 - Learning curve: projected parser = about 2K manual sentences