
Converting

Copenhagen Dependency Treebank
into Treex

Zdeněk Žabokrtský
Institute of Formal and Applied Linguistics,

Charles University in Prague

Copenhagen, April 4, 2012

Outline of the talk

Part 1 - Introduction
Why do we want to convert CDT into Treex?

Part 2 - Conversion procedure
Four phases: (a) collecting data, (b) selecting data, (c) raw
conversion of the CDT formats into treex, (d) finilizing treex
files

Part 3 - Basic howto’s
Instructions for installing needed software. Examples of search
in the data.

Part 4 - Conclusion
What can be learnt from this endeavour? Possible directions of
future work.

Part 1 - Introduction

Unusual beginning

Disclaimer: Due to my limited knowledge about the CDT
design (especially in technical aspects), I might have been
fundamentally wrong with some of my expectations,
judgements or decisions presented below.

How it started

September 2011 - Michael Carl contacted me.

December 2011 - Proof of concept: I implemented a very
rough prototype of the converter.

January 2012 - I spent several days in Copenhagen to gather
more information.

March 2012 - three weeks of quite intensive work.

Motivation for the migration to Treex

From the technological viewpoint, the CDT project seems to
be unmaintained and not far from its clinical death.

CDT annotations are very hard to exploit, even if the data
repository is publicly available.

It seems to be much easier to completely migrate to the
Praguian technology than to try to fix the DTAG technology.

The cost of the conversion should not be high. We convert
other treebanks into Treex routinely (we have “treexed” 30+
treebanks).

Vocabulary

PDT - Prague Dependency Treebank
TrEd - a tree editor, the main tool for PDT annotations, used
as visualizer in Treex
PML - Prague Markup Language, XML-based markup
language for linguistic data resources
treex

full tree (“the whole thing”, the framework)
a file format (an application of PML)
a command line tool for applying Treex processing blocks on
Treex data

core - a collection of modules Treex::Core::*. The main
modules in Treex.
EasyTreex - extension for TrEd for displaying Treex files
TectoMT - the original name for Treex (2005-2011), now
used rather for MT based on deep-syntactic transfer
a-trees - surface syntactic trees: one tree per sentence, one
word per node,

Part 2 - the conversion procedure

Let’s make it modular

After implementating some prototypes, it became clear that
several hundred or perhaps thousand lines of code will be
needed - modular solution is obviously needed

I decomposed the conversion into four phases:
1 collect the CDT data
2 select files for conversion
3 raw conversion to treex
4 finilizing the conversion, already within treex

Phase 1 - Collecting the CDT data

Subproblem 1:

Optimist’s expectation: There’s an svn repository for CDT
at googlecode.com which was used for the project, so that
should be the ultimate source of all releted data.

Reality: Not true. I received some newer updates by an
email from Martin Haulrich for en, da, and en-da files. There
are probably several other sources of .tag files which I was not
aware of and whose status w.r.t CDT is unclear to me.

Conclusion: I used .tag and .atag files from Martin, and files
for other languages from the svn repository. I included no
other data into the conversion.

Time for an excursion into the data

Let’s browse the CDT svn repository a little bit.

First observations

What we can see easily:

in all data file names, one can easily distinguish at least a
4-digit code, 2-letter ISO language code, extension
(.tag,.atag,.conll,.sentences.txt,.info)

file names sometimes contain also names of annotators

Example for 0104 and es: 0104-es-auto.tag,
0104-es-henrik.conll, 0104-es-henrik.err, 0104-es-henrik.info,
0104-es-henrik.tag, 0104-es-jonas.conll, 0104-es-jonas.err,
0104-es-jonas.info, 0104-es-jonas.tag, 0104-es-lotte.conll,
0104-es-lotte.err, 0104-es-lotte.info, 0104-es-lotte.tag,
0104-es-sentences.txt, 0104-es-soren.err, 0104-es-soren.info,
0104-es-soren.tag, 0104-es-tagged.tag

Decoding file names

Subproblem 2:

Optimist’s expectation: The four-digit number specifies
uniquely document alignment.

Reality: True.

Conclusion: I rely on it.

Subproblem 3:

Optimist’s expectation: The extension specifies file format
and content.

Reality: Almost true. Actually *.txt and *.sentences.txt files
play different role.

Conclusion: I rely on the following: .tag files contain
syntactic trees, .atag files contain alignment, .sentences.txt
files contain line boundaries indicated by inserted line breaks.
I use no other data files.

Decoding file names, cont.

Subproblem 4:

Optimist’s expectation: *auto* and *tagged* files contain
no manual annotation.

Reality: True.

Conclusion: I use only *tagged* files, only if no manually
annotated files are available.

Subproblem 5:

Optimist’s expectation: A file named after an annotator
always contains some manual annotation.

Reality: Not true.

Conclusion: Presence of manual annotation in a file must be
checked independently (to prefer files that really contain some
annotation).

Decoding file names, cont.

Subproblem 6:

Optimist’s expectation: Once a file named after an
annotator contains some annotation, the annotation is
finished.

Reality: Not true. Files exist with only a partial annotation
(e.g. just the first sentence).

Conclusion: Extent of manual annotation in a file must be
checked (to prefer files with more annotated units).

Subproblem 7:

Optimist’s expectation: There is at most one file per file
type, document number, language and annotator.

Reality: Counterexamples such as 1014-es-lotte.tag and
1014-es-disc-lotte.tag exist.

Conclusion: According to Lotte’s recomendation, *disc* files
are disregarded.

Selecting files

Important design decision: I would like to include always only one
version of annotation per document number, language and
annotation type, into the conversion. I suppose parallel
annotations were performed more or less only for evaluation of the
annotation scheme.
Subproblem 8:

Optimist’s expectation: Once a given language is present
for a given document number, then the annotation reaches
certain guaranteed level.

Reality: Not true. At least three levels exist: (0) only
translated text is available, no annotations, (1) syntactic
annotation is available, (2) syntactic and alignment
annotation is available

Conclusion: Pity.

Selecting files

Subproblem 9:

Optimist’s expectation: Files were annotated in a the same
order for all languages, so that the multilingual dimension of
CDT is exploited as much as possible.

Reality: Not true. All files are annotated with Danish and
English, but annotation of the remaining languages is
scattered. Document numbers for which full annotation of all
languages are available are extremely rare.

Conclusion: Pity.

Selecting files

Subproblem 10:

Optimist’s expectation: If there are more variants of
annotation files for the same document number and language
(by more annotators), it is clear which one is to be chosen.

Reality: I found no source of such information in the data.

Conclusion: I use a preference rules provided by Lotte,
which e.g. says that Lisa’s annotations should be always
preferred to Lotte’s annotations.

Selecting files

Subproblem 11:

Optimist’s expectation: *.atag files always refer to two
*.tag files. So once I select an .atag file, the selection of .tag
files is already determined.

Reality: No. Surprisingly, the referred file names do not refer
to the actually aligned files.

Conclusion: I have to choose the aligned files myself.

Selecting files

Subproblem 12:

Optimist’s expectation: I can optimize the selection of
*.tag independently of *.atag files, just according to the
preference rules.

Reality: No! Different *.tag files contain different number of
tokens, which makes them incompatible with some *.atag
files.

Conclusion: Compatibility of .atag and .tag files is a hard
constraint and must have the highest priority. Only then I can
optimize the selection w.r.t. the preference rules.

Time for an excursion into the data

Let’s look at the list of selected files.

Phase 3 - raw conversion to treex

After this phase, for each document number (i.e., the 4-digit
code), exactly one treex file is created, in which all
annotations are merged.

For each token, a node is created in the treex file.

Tokens attributes (as well as information on dependency,
alignment and coreference links) are stored in the temporary
wild attribute (i.e., not properly “treexified”).

The treex file contains all languages.

For each language, there is one flat wide tree. Sentence
boundaries are not represented yet.

Raw treex - reading *.tag and *.atag files

the CDT files look like XML ...

... so we should use standard tools for parsing XML files

side remark: parsing XML files by regular expression is a BAD
practice (it is extremely errorprone, brittle and very hard to
maintain).

my choice: XML::Twig

Reading *.tag and *.atag files

Subproblem 13:

Optimist’s expectation: *.tag and *.atag files are
well-formed XML files.

Reality: Ups, more than 40,000 violations of XML syntactic
rules are reported by a standard XML validation tool! Many
different types of errors.

Conclusion: I have to fix it all, otherwise I cannot load the
data in a reliable way.

A possible reason (only for some types of errors): the tag file
format might have been originally based on SGML, which was the
antecedent of XML and which is an outdated technology for about
ten years.

Examples of XML errors in *.tag and *.atag files

incorrect XML entities (e.g. double escaping &quot;,
extra spaces & amp ;)

unquoted attributes

unescaped special characters

missing root elements

missing closing tags

mismatching opening and closing tags

locally damaged text encoding (byte sequences that are now
allowed in utf-8)

Structures in the input data

Subproblem 14:

Optimist’s expectation: If the XML markup tags are used
for representing the data structures, one would expect that
text content of attributes and elements is not further
structured.

Reality: Not true. E.g. the ’in’ and ’out’ attributes contains
sequences of label:offset pairs, while the label value has a
further internal structure.

Conclusion: No escape from using regular expression for
parsing such values.

A new convention for naming output files

the content several tag and atag files is now merged into a
single file; old naming convention is not applicable

introduced convention captures document number, cover
languages, information on their monolingual annotation (0 -
not available, 1 - only translated text, 1 - tree analysis) and
alignment to Danish (0 - not available, 1 - available)

example: 1250-de10-es21-it21.treex.gz

advantages: one can search for files with certain annotation
directly on the command line (using wildcards),

e.g. *de21*es21* lists all files with syntax and alignment for
German and Spanish

Combinations of available annotation

In total, 536 files. Only 7 files with full annotation in all languages,
72 files with at least four languages, 74 files with at least three
languages.

218 de10-es10-it10

123 de00-es00-it00

34 de20-es21-it21

33 de10-es10-it11

28 de10-es10-it20

14 de21-es10-it21

13 de10-es10-it21

10 de20-es20-it21

10 de10-es21-it21

7 de21-es21-it21

7 de21-es11-it21

5 de21-es10-it11

5 de10-es11-it10

4 de20-es21-it11

4 de10-es20-it21

3 de21-es11-it11

3 de11-es10-it11

3 de10-es11-it21

2 de11-es11-it21

2 de11-es11-it11

2 de11-es10-it21

2 de10-es11-it11

1 de20-es21-it10

1 de20-es20-it11

1 de20-es11-it11

1 de10-es21-it11

Storing metadata

the raw conversion preserves names of the source files

this need was not anticipated by the schema, so again, it is
stored in the wild zone

Time for an excursion into the data

Let’s look at sample data after the raw-treex phase.

Phase 4 - finilizing the converted data inside treex

Once the data are accessible by the treex interface, the standard
treex functionality can be employed.
Tasks to be done in this phase:

fill node’s attributes

create dependency edges

create non-dependency edges (e.g. for coreference)

create alignment links

separate and align sentences (1 treex bundle per 1 sentence
tuple)

Creating dependency and non-dependency edges

Subproblem 15:

Optimist’s expectation: The dependency tree skeleton is
something very central in any dependency treebank, so
dependency edges should be easily distinguishable from other
types of links.

Reality: Not true. All edges coming into a node are mixed in
a single list. The ordering of the list nor labelling of the edges
are sufficient for distinguishing the two types.

Conclusion: A heuristic procedure (based on many
trial-failure attempts) was developed for distinguishing the
two types. Perhaps only an approximative solution.

Creating edges

An edge in CDT is represented as follows: the first node contains
an attribute composed of an edge label and file-line offset value
(positive or negative integer) with respect the line containing the
second node.
Remark: referring to line numbers in the original form of an XML
file is a very BAD practice! It goes against the nature of XML!

Creating edges

Subproblem 16:

Optimist’s expectation: Every edge connects two nodes.

Reality: There are a few edges that do not point to any other
node (contain some string instead of an integer offset).

Conclusion: I don’t know how to interpret it. Such edges are
disregarded now.

Creating edges

Subproblem 17:

Optimist’s expectation: If a node points to some other node
by a non-zero integer offset, then the second node should exist

Reality: Some offsets cannot be dereferenced because the
referred line does not contain a node’s representation.

Conclusion: Such edges are disregarded.

Creating edges

Subproblem 18:

Optimist’s expectation: One sentence is expected to be
represented by one dependency tree. Dependency tree is a
tree, hence all nodes should be connected.

Reality: Not true. Some non-root nodes remain unattached
(no edge touches them).

Conclusion: These nodes are attached below the artificial
root node.

Creating edges

Subproblem 19:

Optimist’s expectation: Dependency tree is a tree, hence it
should not contain a cycle.

Reality: Not true. Cycles exist in the data.

Conclusion: Each cycle is interrupted and its root node is
attached below the nearest left node outside the cycle group.

Creating edges

Subproblem 20:

Optimist’s expectation: The repertory of edge labels should
be reasonably small.

Reality: Not true. Some values occur only once or twice and
look rather like typos.

Conclusion: Left unchanged.

Sentence segmentation

This is a huge topic. In Treex, sentence segmentation is crucial
part of text representation.
Treex document consists of a sequence of bundles, while each
bundle corresponds to one sentence and all its representations (in
monolingual data), or to a tuple of parallel sentences and all their
representations. Each bundle is divided into language zones, which
are typically crossed by alignment links.

Sentence segmentation in XML markup

Subproblem 21:

Optimist’s expectation: One can see < s > tags in the
input data. They perhaps correspond to sentences.

Reality: Not reliable. Sometimes they do, but sometimes
they are not present and sometimes they obviously contain
more sentences.

Conclusion: These tags cannot be used as the only source of
information.

Sentence segmentation by connected trees

Subproblem 22:

Optimist’s expectation: One dependency tree should
correspond to one sentence.

Reality: Not reliable. As mentioned above, some nodes are
unattached. Moreover, syntactic annotation is not available
for many files.

Conclusion: This source of information cannot be used alone.

Sentence segmentation by .sentences.txt files

Subproblem 23:

Optimist’s expectation: There are .sentences.txt files, in
which inserted line breaks seem to represent sentence
segmentation.

Reality: Not reliable. Sometimes the .sentences.txt files
contains a sligthly different text compared to what was really
annotated.

Conclusion: This source of information cannot be used alone.

Sentence segmentation

All three above mentioned sources of information on sentence
boundaries are combined by heuristic rules to achieve as reliable
sentence segmentation as possible. However, the result is still not
perfect.

Sentence alignment

Parallel sentences are supposed to be located in the same bundles
in Treex. Thus sentence alignment is needed (ideally 1:1, but not
necessarily).

Sentence alignment

Subproblem 24:

Optimist’s expectation: The CDT texts were translated
exclusively for the needs of CDT. Perhaps the sentence
correspondence was preserved somewhere in the data.

Reality: Not true. Sentence alignment can be realiably
computed only in files containing word alignment.

Conclusion: I created a simple sentence aligner based on a
recursive search for closest relative positions of sentence
boundaries within parallel texts. It works surprisingly well for
the short CDT texts, but is not perfect.

Time for excursion into the data

Let us have a look at the data after the last conversion phase.

Basic statistics

Danish - 536 files (100,197 tokens), syntax in all files

English - 536 files (111,814 tokens), syntax and alignment in
all files

Italian - 413 files (86,230 tokens), 134 with syntax, 106 with
alignment

Spanish - 413 files (84,531 tokens), 72 with syntax, 57 with
alignment

German - 413 files (80,703 tokens), 87 with syntax, 36 with
alignment

Part 3 - very basic ’howto’ instructions

Where is the new stuff stored?

The new code and data are distributed in two repositories

the CDT repository: https://copenhagen-dependency-
treebank.googlecode.com/svn

CDT2012/treex/conversion from tag/
CDT2012/treex/data/

the Treex repository, see more on http://ufal.mff.cuni.cz, the
repository itself is available at
https://svn.ms.mff.cuni.cz/svn/tectomt devel

several blocks in treex/lib/Treex/Block/Misc/CopenhagenDT/
two readers (CdtTag and CdtPack) in
treex/lib/Treex/Block/Read/

What do you need to access the data?

Make a checkout of the CDT svn repository on your computer.

What do you need to work with the data?

There are two possible situations:

Either you only want to browse or annotate the treex data in
TrEd. Then you need ’EasyTreex’.

Or you are a programmer and you want to do something more
sophisticated, such as writing a search block, or extract some
statistic from the data, or convert new .tag files into treex.
Then you need full installation of Treex.

In any case, you need to install the tree editor TrEd first. See
http://ufal.mff.cuni.cz/tred

How to install and use the EasyTreex Tred extension?

After installing TrEd, choose the option option ’Manage
extensions’, or choose ’Setup/Manage extensions’ from the
menu.

Click on ’Get new extensions’.

Select ’EasyTreex’ (close to the end of the list)

Press ’Install selected’

Press ’Close’.

Go to menu ’File/Open’, change File type to ’All *.*’, and
open the desired treex file.

It might be useful to switch on the side panel for displaying
node attributes (menu View/Side panel).

How to use EasyTreex for annotating treex files

you can easily change node’s parent by dragging the node to
its new parent

you can easily change node’s attributes in the side panel

more complex annotation actions (such as adding an
alignment or coreference link) could be in theory supported
too, but it requires some programming work.

How to install the full Treex?

follow the installation guide at http://ufal.mff.cuni.cz/treex

Very simple search in treex files

only if you search for a specific value of a specific attribute
(impossible to condition e.g. parent’s atributes)

open a treex file (or a set of them) in TrEd with EasyTrees

press F3 and fill the searched value

(you need EasyTreex installation for this)
WARNING: currently not working, hopefully will be fixed soon.

PML-TQ query engine

extremely powerful visual query tool

accessible via web

needs some programming effort to load the data into the
searched database

CDT no yet available in it

Simple search directly from the bash command line

Example: print all verb forms that appear in the German sections
of the data:

treex Util::Eval language=de \

anode=’print \$anode->form."\n" if \$anode->tag =~/\^V/’ \

-- path_to_data/*de*.treex.gz

(You need the full treex installation for this.)

More complex search in treex files

If the searching code is not a oneliner, you can create a new block
in treex/lib/Treex/Misc/CopenhagenDT/, see SearchDemo.pm.
You can run the block as follows:

treex -q Misc::CopenhagenDT::SearchDemo -- \

fine_treex/*es21* | sort | uniq -c

2723 Aligned edge

8490 Unaligned

(You need full treex installation for this.)

XML is nice, but you want a line-oriented format?

You can use a writer block for converting treex trees into the
CoNLL format (this format was used for several shared tasks on
dependency parsing).

treex Write::CoNLLX language=it -- fine_treex/*it2*

1 Due due _ ADJ _ 13 subj

2 famosi famoso _ ADJ _ 3 attr

3 storici storico _ ADJ _ 1 nobj

4 russi russo _ NOM _ 3 attr

5 , , _ PON _ 3 pnct

How to run the whole CDT-Treex conversion once again

Go into CDT2012/treex/conversion from tag and type ‘make all’.
The whole conversion takes around 10 minutes.
(You need full treex installation for this.)

How to convert some other data from tag to treex?

In bash, type

treex Read::CdtTag from=test-en.tag --save

The resulting file is named test-en.treex.gz.
Note that the language code must be present in the file name.
(You need full treex installation for this.)

Part 4 - Conclusions

What was done

the whole conversion is fully automatic and can be modified
and re-run easily (it takes about 10 minutes)

most of the information stored in the original tag and atag
files was transferred to the Treex representation

things that did not fit to our schema (such as metadata) are
stored in wild attributes

comfortable browsing as well as basic annotation in TrEd is
possible now

Treex Perl libraries can be used for processing the data

What was not done

No attempt was made at improving the linguistic content of
the annotations.

No annotation macros were prepared for more complex
annotations.

There is still some bug in TrEd which make it impossible to
use F3 search for treex files under EasyTreex.

Inevitably, I made produced some bugs during the conversion
which I am not aware of. Further test should be written. Be
critical.

Possible directions of future work

In the nearest future:

for Prague: fix the search-related bug in TrEd

for Copenhagen: learn to work with Treex, revise the
converted data

In a long term perspective:

try to exploit the data for research!

if any manpower for further development of CDT is available,
I would recommend to invest the energy rather to cleaning the
data, not to new manual annotations

What can we learn from the CDT story?

Eventually, the format conversion itself was only around 20
percent of my work.

Almost all the remaining work was needed for struggling with
the CDT pecularities, which had nothing to do with Treex and
which would have to be solved if the resource is to be used.

Can we generalize the experience?

Undoubtely, creating CDT was a huge endeavor and required large
intellectual efforts, and CDT contains interesting annotations. But
...

Any annotation project runs into deep troubles without
continuous development of the underlying technology. Its
design quality is more important than it seems!

My experience is that if you have less than one programmer
per one or two annotators, you create a debt for the future.
The internal debt was (and still is) quite high in CDT.

It is a very risky situation if the main developer of the
underlying technology leaves the department and his
know-how is not conveyed to anyone.

There are three simple things that could have made it all much
easier long time ago: tests, tests, and tests. Without careful
testing, any software or data breaks surprisingly quickly.

Last word

In spite of all the tiny little problems along the way, CDT is a
unique data resource and Treex will hopefully make it easier to use
it. But this is still just the beginning.

