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Abstract

The performance of natural language gener-
ation (NLG) systems varies across domains.
This work aims to develop NLG systems that
can perform well in the domains with the lack
of available training data. We base our work
on recent advances in transfer learning, using
large pretrained neural language models to fa-
cilitate domain adaptation of NLG systems. In
the thesis proposal, we first introduce the land-
scape of current approaches to NLG and the
background for our work. Next, we report the
results of our experiments, focusing on two
challenges: (1) data-to-text generation with
limited in-domain training data and (2) evalu-
ating semantic accuracy of generated texts. Re-
garding future work, we outline our plans for
improving the performance of neural NLG sys-
tems in more advanced scenarios by applying
symbolic operations on an intermediate text
plan.

1 Introduction

The information stored in structured data is com-
monly formulated in natural language to make the
data easier for people to digest. Writing news ar-
ticles or sports reports, generating weather fore-
casts, summarizing business statistics, or interpret-
ing medical data—in all these tasks, structured data
is transformed into text. Since this process gener-
ally requires language proficiency and in-domain
knowledge, most texts are created manually by do-
main experts. However, given the present need for
real-time user interactions with ever-growing data,
this approach is not scalable enough.

The need can be solved by automatic approaches,
which—if available—could take care of the rou-
tine tasks and provide valuable insights while be-
ing efficient both in terms of time and resources.
Automatic text generation, better known as nat-
ural language generation (NLG), is one of the

key tasks in natural language processing (NLP).
Originally, NLG was used as a term for generating
texts from structured data (Reiter and Dale, 1997).
More opportunities for generating language have
emerged over the years, including text summariza-
tion, question answering, or image captioning (Gatt
and Krahmer, 2018), recently also accompanied by
free-form text generation of stories and narratives
(Radford et al., 2019; Rosa et al., 2021). Although
these tasks may also be considered as a part of
NLG, we will limit ourselves to the original inter-
pretation NLG = generating text from structured
data, now also referred to as data-to-text (D2T)
generation.

Until the rise of neural models, a typical NLG
system had to rely on several modules connected
in a pipeline. As described in Section 2.1, these
systems are still used nowadays in the majority of
applications despite their narrow focus and high de-
velopment costs since they can guarantee accurate
outputs.

Neural models (Section 2.2) offer a new, data-
centric alternative to the traditional approach. Mod-
els pretrained on large amounts of data can quickly
adapt to various domains and generate texts with
fluency comparable to human-written texts. How-
ever, other issues regarding semantic accuracy and
controllability—a decisive factor in NLG—still
constrain the models to experimental settings and
prevents their practical deployment (Dale, 2020).

We aim to improve the performance of NLG
systems in domains in which the current systems
either perform poorly or require a considerable
amount of human expertise. Towards that end, we
address the following research questions:

(i) How to generate texts which are fluent across
domains (i.e., grammatically correct and cap-
turing domain-specific sentence style) having
only a few in-domain training examples.

(ii) How to ensure that the text generated by neu-



ral models is semantically accurate (i.e., the
semantics of the text corresponds to the input
data).

(iii) How evaluate the performance of NLG sys-
tems in terms of semantic accuracy.

(iv) How to unify the input data format across
domains to facilitate both the generation and
the evaluation process.

(v) How to perform symbolic operations in NLG
to allow more complex applications such
as logical reasoning and integrating external
knowledge.

(vi) How to link the text and the data to allow
targeted improvements and ensure better inter-
pretability of the generated text.

We have already conducted experiments regard-
ing the research questions (i)-(iii) and we plan to
address the questions (iv)-(vi) in our future work.

The thesis proposal is structured as follows: in
Section 2, we start by summarizing the histori-
cal development of NLG regarding two compet-
ing paradigms: pipeline-based and end-to-end ap-
proaches. Next, we lay out the theoretical back-
ground for our work in Section 3, including an
overview of the relevant models and datasets. In
Section 4, we present our work regarding the flu-
ency and semantic accuracy in NLG. In Section 5,
we follow up with our experiments on the evalua-
tion of generated texts. Regarding future work, we
outline our plans on unifying the input data format,
adding symbolic operations, and aligning the text
with the data in Section 6. Finally, we summarize
our work in Section 7.

2 Approaches to Natural Language
Generation

2.1 Pipeline-based Approaches

A dominant approach to automatic text generation,
which has prevailed since the beginning of the field,
is to use several modules connected in a pipeline
(Reiter and Dale, 1997, 2000; Gatt and Krahmer,
2018). The modules typically take care of the fol-
lowing tasks:
(1) content determination – deciding which facts

to include in the text,
(2) text structuring – determining the order of the

facts,
(3) sentence aggregation – dividing the facts into

individual sentences,
(4) lexicalisation – transforming the facts to

words and phrases,

(5) surface realisation – combining the words and
phrases into a well-formed text.

An advantage of the pipeline-based approaches
is that the modules are reusable and individual mod-
ules may be developed using different frameworks
(template-based, grammar-based, statistical, etc.).
The outputs of the systems are also explainable,
which is a challenge for end-to-end approaches
(Reiter, 2019). Building custom pipeline-based
NLG systems is facilitated by frameworks such as
SimpleNLG (Gatt and Reiter, 2009) or Data2Text
Studio (Dou et al., 2018).

However, the modular architecture is accompa-
nied by high development costs: creating the rules
or templates requires considerable human effort,
and the resulting system works only in the particu-
lar domain. The modular architecture also suffers
from lower fluency—in part because of the rigid-
ness of the specific approaches, in part because the
errors accumulate along the pipeline (Castro Fer-
reira et al., 2019).

Practical applications of pipeline-based NLG
systems range from generating information about
train timetables (Aust et al., 1995) and weather fore-
casts (Goldberg et al., 1994; Reiter et al., 2005), to
reporting about patients in health-care (Buchanan
et al., 1995; Portet et al., 2009) or robo-journalism,
i.e., generating news or sport stories (Chen and
Mooney, 2008; Molina et al., 2011; Teixeira et al.,
2020). The pipeline-based NLG systems also form
the backbone of current commercial applications,
including virtual assistants Amazon Alexa,1 Apple
Siri2 or Google Home,3 or applications for generat-
ing business intelligence reports.4,5

2.2 End-to-End Approaches

Recent advances in machine learning and neural
networks—namely the encoder-decoder architec-
ture (Sutskever et al., 2014), the attention mecha-
nism (Bahdanau et al., 2015; Luong et al., 2015)
and the Transformer model (Vaswani et al., 2017)—
have brought the possibility to formulate NLG as
a sequence-to-sequence (seq2seq) problem. This
problem can be approached end-to-end, offering
a counterpart to the modular approach. Moreover,
the input-output transformations are learned from
input-output pairs (with no need for explicit align-

1https://developer.amazon.com/alexa
2https://www.apple.com/siri/
3https://madeby.google.com/home
4https://www.arria.com/
5https://automatedinsights.com
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ment), which reduces the amount of human effort
and increases the robustness of the systems.

First neural approaches for NLG were based
on recurrent neural networks (RNNs; Rumel-
hart et al., 1986). Wen et al. (2015) used a long
short-term memory network (LSTM; Hochreiter
and Schmidhuber, 1997; an extended variant of
RNN) for generating responses in dialogue sys-
tems. Mei et al. (2016) added a content selection
mechanism, which is trained jointly with the model.
Dušek and Jurčíček (2016) showed that generating
the text end-to-end is more efficient than a two-
stage approach that uses an external surface realizer
for deep syntax trees. Most recently, Gehrmann
et al. (2018) added a pointer generator network
(See et al., 2017), allowing the model to explicitly
copy the parts of the input.

Various shared tasks and comparisons (Gardent
et al., 2017b; Dušek et al., 2020; Castro Ferreira
et al., 2019) showed that RNN-based approaches
are generally competitive with pipeline-based ap-
proaches. The approaches differ in their strengths
and weaknesses: the RNNs produce more fluent
text, while the pipeline-based approaches can con-
vey the data more accurately.

In 2017, models using the Transformer archi-
tecture (Vaswani et al., 2017) immediately became
the state-of-the-art for high-resource NLP areas
such as machine translation (Bojar et al., 2018)
or constituency parsing (Kitaev and Klein, 2018).
However, NLG as a low-resource area has only
started to benefit from the Transformer architecture
with the arrival of pretrained models, which allow
efficient transfer learning on top of representations
learned from large-scale unlabeled corpora (see
Section 3.2). For example, the recent WebNLG+
shared task (Ferreira et al., 2020), in which the goal
is to generate text from graph-structured triples
(see Section 3.3), was dominated by systems based
on pretrained denoising autoencoders (Yang et al.,
2020; Agarwal et al., 2020; Kasner and Dušek,
2020b). The results suggest that Transformer-based
pretrained models can produce outputs with con-
siderably better fluency than previous NLG models.
A subject of ongoing research (including Harkous
et al., 2020; Len et al., 2020; Rebuffel et al., 2021;
and our work) is to make the models perform well
also in domains with a limited amount of training
data and provide guarantees on the semantic ac-
curacy of the output, so that the models can be
deployed as real-world NLG systems.

3 Background

Here we first provide the theoretical background for
the end-to-end approaches (Section 3.1), followed
by an overview of relevant pretrained models (Sec-
tion 3.2) and datasets (Section 3.3).

3.1 Architectures and Mechanisms

Language Models Given a sequence of tokens
y = {y1, . . . , yn}, a language model (LM; Man-
ning and Schutze, 1999) aims to output a probabil-
ity of the sequence p(y) in a language represented
by the training corpus C. To learn the probability
distribution p using a neural LM, we minimize the
cross-entropy between the probability distribution
of the model pθ and the empirical distribution p of
sequences in C:

H(p, pθ) = Ep(− log pθ) = −
∑
y∈C

p(y) log pθ(y).

In practice, we factorize the probability distribution
using the chain rule, conditioning the probability
of a token on its left context:

pθ(y) =
n∏
i=1

pθ(yi|y<i).

After training, we can use the LM to generate se-
quences from left to right, e.g., by using greedy
decoding, where we select the most probable token
from the vocabulary V at each step:

yi = arg max
y∈V

pθ(y|y<i).

Masked Language Models In contrast to lan-
guage modeling, masked language modeling
(MLM; Devlin et al., 2019) allows the model to see
the bidirectional context for each token. Randomly
chosen tokens in the sequence y are replaced by a
<mask> token and the model is trained to predict
the original value of the masked tokens:

pθ(yi|y<i,<mask>,y>i).

Since MLMs need both left and right context, the
models cannot be straightforwardly used for se-
quence generation. However, the bidirectional con-
text allows to learn contextual representations for
tokens, which can be used by subsequent layers,
e.g. for token classification tasks.



Encoder-Decoder In the encoder-decoder archi-
tecture, an input sequence x = {x1, . . . , xn} is
processed by the encoder into a sequence of hid-
den states h = {h1, . . . , hn}. The decoder then
uses h to decode the sequence of output tokens
y = {y1, . . . , ym}. Both the encoder and the de-
coder typically consist of mutliple layers of feed-
forward neural networks. We can use the encoder-
decoder architecture for seq2seq generation by
computing the conditional probability of y given
x, conditioning on the left context:

pθ(y|x) =
n∏
i=1

pθ(yi|y<i,x).

In this light, a language model can be seen as
decoder-only, whereas a masked language model
as encoder-only.

Attention Mechanism An attention mechanism
(Bahdanau et al., 2015; Luong et al., 2015) enables
a model to incorporate relevant information from a
previous sequence of hidden states h′ into the value
of the state hi. The output of the attention mech-
anism is a context vector ci, which is a weighted
combination of h′:

ci =
m∑
j=1

αijh
′
j .

In RNNs, ci is typically summed with a previous
hidden state hi−1 before being passed through the
non-linear function of the network.

Transformer Architecture The Transformer
(Vaswani et al., 2017) is a multi-layer encoder-
decoder model. The Transformer generalizes the
attention mechanism using three vectors: queries
Q, keys K, and values V :

att(Q,K, V ) = softmax

(
QK>√
dk

)
V.

The dot product between Q and K computes the
relatedness score of the pair of states, while V is
used for computing the actual attention value (dk
is the dimension of the keys used for normaliza-
tion). Q, K and V may also come from the same
layer, which means the model attends to the layer
itself. This concept, called self-attention, allows
the Transformer to parallelize the computation of
states in each layer while preserving the dependen-
cies between tokens.

• A B C D

A B C D E

A C E

B D

A B X E • A B C D

A B C D E

decoder encoder encoder decoder

LM MLM Denoising Autoencoder

Figure 1: A scheme of the common objectives used
by pretrained models: 1) language modeling (decoder-
only), 2) masked language modeling (encoder-only),
3) denoising (encoder-decoder). The special symbol
• (beginning of a sentence) is used to bootstrap the de-
coding process.

Denoising Autoencoders An autoencoder (Bal-
lard, 1987) deals with a specific instance of the
seq2seq problem in which the input and output se-
quence is identical, i.e. y = x. The aim of the
model, based on the encoder-decoder architecture,
is to learn a compact and informative representa-
tion h which allows reconstructing the input. A
denoising autoencoder (Vincent et al., 2008) is an
autoencoder variant which takes as an input a cor-
rupted version of the original sequence x̃ and aims
to restore the original undistorted input x. Besides
adding the capability to remove noise from the in-
put, this approach increases the robustness of h to
input perturbations.

Self-Supervised Learning The models for the
(masked) language modeling and denoising are
trained using self-supervised learning paradigm
(Schmidhuber, 1990). As the name suggests,
the training labels are derived automatically from
the unlabeled training data. In the case of self-
supervised language modeling, the labels are equal
to the original tokens (e.g., the model is given a
<mask> token, while it is trained to predict the orig-
inal token). This paradigm allows efficient training
of large models from unlabeled corpora. Figure 1
shows a comparison of the self-supervised objec-
tives.

3.2 Pretrained Models

In our context, the term pretrained models refers to
the family of models using the Transformer archi-
tecture which were trained on large corpora using
self-supervised learning. Pretraining is the key to
transfer learning, i.e., re-using the parameters of
the model for a downstream task. The parameters
usually contain useful language representations and
need to be only slightly adjusted to achieve good
performance on downstream tasks. The process of



adjustment, called finetuning, involves additional
training of the model on task-specific examples. In
some cases, it may be beneficial to freeze a subset
of the parameters, but usually, it is possible to fine-
tune all the parameters at once (Peters et al., 2019;
Rothe et al., 2020).

The following models are used in our work and
belong among the most influential (see, e.g., Qiu
et al., 2020 for further reference). All of the pre-
sented models are freely accessible in the Hugging-
face Transformers repository (Wolf et al., 2019).6

BERT BERT (Bidirectional Encoder Represen-
tations from Transformers; Devlin et al., 2019) was
the first pretrained language model based on the
Transformer architecture. It builds upon previous
work in contextualized representations (Peters et al.,
2018) and transfer learning (Howard and Ruder,
2018). BERT uses the Transformer encoder to out-
put a contextualized representation of each token.
A representation for a special [CLS] token at the
beginning of the sequence is used for sequence clas-
sification. The model is trained on BooksCorpus
(Zhu et al., 2015) and English Wikipedia using the
MLM objective, masking or replacing 15% of the
input tokens. Using BERT as a backbone model
has brought state-of-the-art results in various NLP
areas (e.g., Devlin et al., 2019; Liu and Lapata,
2019; Joshi et al., 2020). Although follow-up work
has revealed inefficiencies in training the model
(Liu et al., 2019; Lan et al., 2019), BERT is often
used as a prototypical pretrained language model
for further investigations (e.g., Petroni et al., 2019;
Rogers et al., 2020; Limisiewicz et al., 2020; Izsak
et al., 2021).

RoBERTa RoBERTa (Liu et al., 2019) shares
the architecture with BERT, but achieves better
performance thanks to carefully selected hyperpa-
rameters and increased training data size. At the
time of writing, finetuned versions of the model
achieve state-of-the-art results in NLP tasks such
as natural language inference, grammatical error
correction, and common sense reasoning (Liu et al.,
2019; Omelianchuk et al., 2020).

GPT-2 GPT-2 (Radford et al., 2019) is a stan-
dalone Transformer decoder which is capable of
conditional left-to-right text generation. The model
allows calculating the perplexity of a sentence,
which we use in our work as an indirect measure
of its fluency (see Section 4.1). Unlike the more

6https://huggingface.co/transformers/

recent and much larger model GPT-3 (Brown et al.,
2020), GPT-2 is openly accessible.

BART BART (Lewis et al., 2020a) is a pretrained
denoising autoencoder. The model is trained to
denoise the input sequence corrupted by various
transformations, including token masking, token or
span deletion, and sentence permutation. Unlike
the aforementioned models, BART uses the full
Transformer encoder-decoder architecture, which
makes it suitable for seq2seq generation, including
NLG, text summarization, and question answering.

T5 The T5 model (Raffel et al., 2020) shares
many characteristics with BART, including the
encoder-decoder architecture, denoising objective,
and comparable performance on seq2seq tasks. Its
specific feature is a unified text-to-text format for
each task utilizing prompts (e.g., “summarize: ” or

“translate English to French: ”), which allows to
pretrain the model on multiple downstream tasks
at once.

Multilingual Models The original versions of
the aforementioned models are English-only, as
data in English is easily accessible online and it is
the dominant language for NLP benchmarks (e.g.,
Wang et al., 2019; Gehrmann et al., 2021). Nev-
ertheless, there are also versions of the models
with identical architecture trained on multilingual
corpora, such as XLM-RoBERTa (Conneau et al.,
2020; 100 languages), mBART (Liu et al., 2020a;
25 languages), or mT5 (Xue et al., 2021; 101 lan-
guages). An advantage of the multilingual models
is the possibility of cross-lingual transfer, i.e., train-
ing for a task in a high-resource language and ap-
plying the model to the same task in a low-resource
language.

3.3 Datasets

Datasets are an important asset in NLG, providing
two resources: a) training examples and b) evalua-
tion benchmarks. Moreover, a dataset is usually fo-
cused on particular areas of interest, which gives us
a notion of a domain.7 Since structured data paired
with text descriptions is generally not available on

7In NLG, a domain, in the sense of an area of knowledge
or activity (Merriam-Webster, 2021), is usually considered
to be an application area (Budzianowski et al., 2018; Rastogi
et al., 2020; van der Lee et al., 2020). A dataset may cover
multiple domains, but the examples usually follow the same
input format and sentence style. In our work, we aim to-
wards systems that also generalize to domains across multiple
datasets.

https://huggingface.co/transformers/
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C) Schema Guided Dialogue

Zizzi
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confirm: event_name(Blackbear)
confirm: date(March 8th)

Team Win Loss Pts
Mavericks 31 41 86
Raptors 44 29 94

Player AS RB PT
Patrick Patterson 1 5 14

Delon Wright 4 3 8
…

…
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D) Rotowire

area: riverside
eatType: coffee shop

familyFriendly: yes
priceRange: less than £20

notify_success

Figure 2: Input data formats in NLG datasets: a graph
(A), a set of key-value pairs (B, C), and a set of tables
(D). The target (not shown here) is a textual description
which corresponds to the input data (A,B,C) or which
describes selected important content (D).

the web (or not in sufficient quality), the datasets
are created manually or semi-automatically with
the help of crowdsourcing platforms such as Ama-
zon Mechanical Turk.8 The following datasets (il-
lustrated in Figure 2) are commonly used as bench-
marks in NLG research. We also use the datasets
in our experiments described in Section 4 and 5.

WebNLG The WebNLG dataset (Gardent et al.,
2017a,b) contains graph-structured RDF triples
from DBPedia (Auer et al., 2007) and their crowd-
sourced descriptions. An RDF triple has three con-
stituents: a subject and an object (usually describ-
ing entities such as people, objects, or places), and
a predicate, expressing the relation between the
subject and the object. The WebNLG Challenge
(Gardent et al., 2017b; Ferreira et al., 2020) is a
shared task on RDF-to-text generation, which eval-
uates the systems on the WebNLG dataset. We
describe our submission to the 2020 round of the
challenge in Section 4.2.

E2E The E2E dataset (Dušek et al., 2020) con-
tains restaurant descriptions in the form of attribute-
value pairs and corresponding human-written rec-
ommendations. The name of the dataset is derived
from the E2E Challenge, a shared task that focused
on evaluating end-to-end NLG systems. Dušek
et al. (2019) show that the original version of the
dataset contains semantic noise (incorrect or miss-
ing facts in the crowdsourced descriptions) and
present a cleaned version of the dataset, which we
use for our experiments.

8https://www.mturk.com

Schema Guided Dialogue Schema Guided Dia-
logue (SGD; Rastogi et al., 2020) is a dataset with
task-oriented dialogues. Each dialogue consists of
system and user utterances, together with system
actions for each turn. Following Kale and Rastogi
(2020a), we use the dataset as an NLG benchmark
by generating system utterances from the system
actions.

Rotowire Rotowire (Wiseman et al., 2017) is a
dataset with tabular statistics of basketball games
and their corresponding textual summaries, in
which only a relevant subset of the input data
should be verbalized. Together with the above-
average length of the target summaries, this aspect
makes the dataset particularly challenging for NLG
systems. We evaluate the outputs of neural models
for the Rotowire dataset in Section 5.2.

4 Domain Adaptation for NLG

In this section, we describe our experiments re-
garding domain adaptation for natural language
generation:
(1) iterative text generation with text-editing mod-

els (Section 4.1),
(2) multilingual NLG using denoising autoen-

coders (Section 4.2),
(3) task-specific pretraining for low-resource

NLG (Section 4.3).
We focus here on research questions (i) and (ii), i.e.,
generating a fluent text which also verbalizes all the
required facts, particularly in the domains with few
or zero training examples. In order to use neural
LMs, we formulate the NLG as a seq2seq prob-
lem. In Section 4.1 and 4.3, we also utilize simple
template-based transformations to take advantage
of the text-to-text pretraining.

4.1 Iterative Text Editing
This section is based on our work published in Kas-
ner and Dušek (2020a). Our idea is to transform
individual data items to text using trivial templates
(which are accurate but not fluent) and let a neu-
ral model improve the resulting text. With this
approach, we prioritize semantic accuracy, but we
still leverage the language capabilities of a pre-
trained LM.

The approach is illustrated in Figure 3. Let us
consider input data X = {(Dublin, capital, Ireland),
(Ireland, language, English)}. We can transform
the first triple into text by filling the template <sub-
ject> is the capital of <object> . In the next step,

https://www.mturk.com


Xi-1 = Dublin is the capital of Ireland.

t i
 = (Ireland, language, English)

English is spoken in Ireland.

One of the languages of Ireland is English.

English is the official language of Ireland.

...

Xi-1 lex(t i) = Dublin is the capital of 

Ireland.  English is spoken in Ireland.

Dublin is the capital of Ireland.,  where English is spoken in Ireland.

Dublin is the capital of Ireland.,  where English is spoken in Ireland.

Dublin is the capital of Ireland. English is the language spoken in Ireland.

...

0.8

0.3

0.7

...

 Xi = Dublin is the capital of Ire- 

land, where English is spoken.

0.9

-

0.4
...

?
?

?
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1 2 3

Template Selection LMScorer Sentence Fusion Beam Filtering + LMScorer

Figure 3: Our approach to data-to-text generation, focusing on semantic accuracy of the output. We transform the
data to text using simple templates and iteratively improve the resulting text using a text-editing model.

we concatenate it with the second template <sub-
ject> is spoken in <object>. To improve the flu-
ency of the text, we process it with a text-editing
model trained to fuse sentences. We filter out the
outputs from the model missing any facts, rescore
the remaining outputs according to their fluency,
and use the best result as the output. We repeat the
process until we transform all the input triples.

Our text-editing model is based on LASERTAG-
GER (Malmi et al., 2019), which is a BERT-based
encoder adapted for text editing. LASERTAGGER

generates the output sequence by tagging the in-
put tokens by the tags KEEP, DELETE, or ADD
a phrase before the token. The main advantage of
the text-editing approach is the reduced size of the
vocabulary (containing mostly function words or
phrases), which limits the possibility of generating
false facts. We check for missing facts using simple
heuristics (literal string matching or regular expres-
sions). For rescoring the sentences, we compute
a geometric mean of the token conditional prob-
ability using an off-the-shelf GPT-2 model. We
derive the training data for our text-editing model
automatically from the WebNLG and E2E datasets,
using pairs of examples where one of the examples
contains a single extra triple.

The fluency of our system lags behind state of
the art in terms of automatic metrics, although our
fusion component still improves the results com-
pared to the baseline with no fusion. The strength
of our system is in 100% coverage of input facts
since a fallback to a simple template is used every
time a fact is missing. Our system also allows fine-
grained control over the generation process and
shows how to formulate data-to-text generation via
text-editing operations, which we aim to follow in
our future work (cf. Section 6.3).

4.2 Multilingual NLG with Denoising
Autoencoders

This section describes our submission for the
WebNLG+ Challenge (Ferreira et al., 2020) pub-
lished in Kasner and Dušek (2020b). We partici-
pated in the track focusing on generating text from
the RDF triples in the WebNLG dataset. For the
challenge, the dataset (originally English-only) was
expanded by Russian reference texts, and the partic-
ipants were encouraged to submit models for both
languages.

Inspired by the good performance of pretrained
denoising autoencoders on seq2seq tasks, we sub-
mitted a solution that used a simple and identi-
cal setup for both English and Russian. For each
language, we finetuned a multilingual denoising
autoencoder (mBART; Liu et al., 2020b) on a lin-
earized9 version of the WebNLG data. Our model
placed in the first third of the leaderboard for En-
glish and first or second for Russian on automatic
metrics, and in the best or second-best system clus-
ter on human evaluation. The model performed
well even on domains that were not part of the
training set, although the performance was lower
than for the seen domains.

The shared task has shown that pretrained mod-
els for seq2seq generation can excel on simpler
NLG datasets (i.e., without content selection), beat-
ing more complex approaches that consider the
data structure. However, our manual analysis has
revealed details which can be still improved upon,
such as correct verbalization of predicates in un-
seen domains (e.g., understanding that the pred-
icate populationMetro means the number of in-
habitants of the city), correct understanding of the
directions of the relations (e.g., follows vs isFol-
lowedBy), and occasional hallucinations of facts

9Markers <s>, <p>, and <o> were used for separating
the constituents of each triple; the triples were concatenated
in their default order.
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Leigo is a group of sixteen lakes. It is in Estonia.

coreference replacement

Leigo is a group of sixteen lakes. Leigo is in Estonia.
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a high-priced restaurant.

The Waterman is a restaurant. The Waterman has high price range.
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Figure 4: An overview of our fuse-and-rephrase approach. Left: we build a fuse-and-rephrase dataset from a large,
unlabeled corpus and use it to train a fuse-and-rephrase model. Right: We first use a set of templates to transform
the data to text. Then we apply the fuse-and-rephrase model on the templates direcly (full arrows) or we finetune
the model with a few in-domain examples (dashed arrows).
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Figure 5: Results of our fuse-and-rephrase model (Sec-
tion 4.3) on the WebNLG dataset in terms of BLEU
score (Papineni et al., 2002). Our model (green/cir-
cles) is able to achieve better score with a small number
of examples than the model based solely on templates
(yellow/squares) and the model using structured input
(blue/triangles).

not present in the input data. We also assume that
the performance would be lower for languages that
are less represented in the pretraining corpus than
English and Russian.

4.3 Fuse and Rephrase

This section describes our unpublished work,
which is currently under review for the 2021 Con-
ference on Empirical Methods in Natural Language
Processing.

Building upon Kale and Rastogi (2020b),
Ribeiro et al. (2020) and our work described in Sec-
tion 4.2, we note that denoising autoencoders are
efficient in generating text using a simple linearized
representation of the structured data. However, the
models tend to overfit the particular representation,
leading to inconsistent results when applied to new
domains. Kale and Rastogi (2020a) have shown
that these problems can be partially mitigated by

first transforming data to text using trivial, single-
attribute templates (similarly to our work in Section
4.1), allowing the model to work only with text.

In our work, we devise a task-specific pretrain-
ing task (Gururangan et al., 2020) on which the
model can be trained for better performance in few-
shot settings. The task, which we name fuse-and-
rephrase, is inspired by the process of transform-
ing templates to fluent text. It is roughly inverse to
the split-and-rephrase task, which aims to split a
complex sentence into multiple simpler sentences
(Narayan et al., 2017; Botha et al., 2018). We show
that the data for the task can be generated automat-
ically from an unlabeled corpus (e.g. Wikipedia)
by applying a split-and-rephrase model on the cor-
pus and then swapping the data, i.e., using the split
sentences as sources and the original sentences as
targets (see the illustration of the process in Figure
4).

We evaluate the benefits of our task by gener-
ating texts using a T5 model (Raffel et al., 2020)
in three setups: (1) the model which uses the tem-
plates and is pretrained for the fuse-and-rephrase
task, (2) the model which uses only the templates,
and (3) the model which uses a linearized struc-
tured representation (note that our task applies on
text-based input only). Our results on three datasets
(WebNLG, E2E, SGD; see also Figure 5) show that
our additional pretraining task helps to improve
output quality regarding both fluency and semantic
accuracy in few-shot settings (i.e., with a limited
number of in-domain examples), and the model
can perform well even in zero-shot settings (i.e.,
with no in-domain examples). The models using
templates perform better than the model using struc-
tured representation, which can be explained by the



Figure 6: Our method for evaluating semantic accuracy
of a generated sentence using RoBERTa for NLI (Sec-
tion 5.1). To detect omissions, we check if the sen-
tence entails individual facts; to detect hallucinations,
we check if the concatenated facts entail the sentence.

fact that the templates provide more semantic in-
formation. However, the templates still have to be
created manually, which we plan to improve upon.
The model can also be trained to follow a plan of
order and aggregation of the facts, which we plan
to use for more fine-grained control over the output
(see Section 6.1 for both).

5 Evalution of NLG

In this section, we describe our experiments on
evaluating semantic accuracy of texts generated
from data:

(1) on a sentence level using a model trained for
natural language inference (Section 5.1),

(2) on a token level using a custom model (Sec-
tion 5.2).

We focus on the research question (iii), i.e., devel-
oping automatic metrics for evaluating semantic
accuracy in NLG. Currently, this aspect can be
measured only indirectly by other metrics (which
is imprecise), using a slot-error script (which is
domain-specific), or using human evaluation pro-
tocols (which is time-consuming and costly). Au-
tomatic metrics will facilitate the development of
NLG systems faithful to the input data, which is a
subject of current research, including our work in
Section 4.

5.1 Evaluating Semantic Accuracy using
Natural Language Inference

This section is based upon our work published in
Dušek and Kasner (2020). In the work, we propose
an automatic method for detecting omissions (i.e.,
missing facts) and hallucinations (i.e., extra facts)
in the text generated from data.

We build our system upon a model trained for
natural language inference (NLI). A NLI model
takes two inputs—a hypothesis and a premise—and
produces one of the three outputs: the hypothesis
is entailed by (follows from) the premise, contra-
dicts the premise, or their relation is neutral. We
propose that if the input data correspond to the
generated text, individual facts must be entailed
by the text (otherwise a fact is missing), and also
the text should be entailed by the concatenation of
individual facts (otherwise there is a hallucination
in the text). Since NLI models are trained only on
the text modality, the key to our approach is again
to transform individual data items into text using
simple templates, similarly to our work in Section
4.1 and 4.3. Our method is illustrated in Figure 6.

For our experiments, we use an off-the-shelf
RoBERTa model (Liu et al., 2019) trained on the
MNLI dataset (Williams et al., 2018) without any
additional finetuning. Our results on the WebNLG
and E2E datasets show that our metric can achieve
high accuracy in identifying erroneous system out-
puts (77% and 91%, respectively) using human
annotations or a slot-error script as a ground truth.
Moreover, our manual analysis revealed that out
of the examples where the output of our metric
differed from the ground truth, around a half were
classified correctly by our metric, and the error was
in the ground truth data. The results suggest that
our metric can be used for automatic evaluation of
semantic accuracy of generated texts, which will
allow more rapid development of NLG systems.10

5.2 Token-Level Error Checking

This section describes our system for the Shared
Task in Evaluating Accuracy (Reiter and Thomson,
2020). The goal of the shared task is to detect se-
mantic errors in texts generated by neural systems
on the Rotowire dataset. Errors should be classified
on token level using predefined categories such as
incorrect number, incorrect name, context error,

10As an early example, the metric helped us to evaluate
the semantic accuracy of our system in Section 4.3 (together
with specialized slot-error scripts).



etc. A system for detecting the errors on token level
will facilitate the development of reliable NLG sys-
tems and potentially allow to remove the incorrect
facts from the generated output.

Our system is illustrated in Figure 7. We first
generate text descriptions of the facts which can
be derived from the input table using a rule-based
NLG system (Mille et al., 2019). Since the set of
generated sentences is much larger than the max-
imum input size of our error-checking model, we
select a subset of relevant sentences by measuring
cosine similarity over sentence embeddings from
Sentence Transformers (Reimers et al., 2019). The
sentences with the highest similarity score are con-
catenated with the evaluated sentence and provided
as an input to the error checking model.

For error checking, we use a RoBERTa model
with token classification head, which we finetune
for the task. Our final submission is based on a
two-stage approach. First, we train the model on
custom “corrupted” data which were created by
adding errors to the Rotowire training data (con-
taining 3,395 examples), and then we finetune the
model on the annotated data provided for the shared
task (containing only 60 examples). According to
preliminary results provided by the organizers, our
system achieves 69% recall and 75% precision on
the test set, which makes our system the best out
of three submitted automatic metrics.

6 Research Plan

In this section, we describe show how we plan to
address the research questions (iv), (v), and (vi)
(see Section 1) in our future work. In Section 6.1,
we will outline our initial plans on developing a
unified representation using an explicit text plan
which will serve as an input for a pretrained LM.
In Section 6.2, we will discuss several potential
extensions to the text plan, including logical rea-
soning and external knowledge retrieval. Finally,
in Section 6.3 we describe our research ideas on
alignment between the text and the data, which can
be developed in parallel and eventually integrated
with our previous research.

6.1 Unifying the Input Data Representation

The variations in input data format are one of the
major obstacles to domain adaptation in NLG. Al-
though a simple linearization of the input data for
a seq2seq model has been shown to bring better
results than specialized approaches such as graph

neural networks (Zhao et al., 2020; Ribeiro et al.,
2020; Kale and Rastogi, 2020b), the models re-
quire a large number of training examples and do
not generalize to different input representations.
In some cases, the input data may also contain ei-
ther too much information, forcing the model to
perform implicit content selection (Lebret et al.,
2016; Wiseman et al., 2017), or not contain enough
information, forcing the model to introduce extra
knowledge in the text (van der Lee et al., 2020).
Both cases lead to undesirable omissions or hallu-
cinations.

We will base our initial experiments on a two-
step approach: first transforming the input data to a
unified text plan, which should contain all and only
the information necessary for generating the text,
and subsequently verbalizing the text plan with
a neural LM. The text plan will be structured and
will include additional annotations together with ex-
plicit control codes for the LM. As demonstrated in
work on controllable generation, including control
codes enables fine-grained control over the output
of the model (Len et al., 2020; Keskar et al., 2019;
Ficler and Goldberg, 2017). At the same time, the
structure of the text plan will be linearizable, which
will allow us to directly use the architectures from
our previous work.

Our approach will build upon research on ex-
plicit content planning (Moryossef et al., 2019; El-
der et al., 2019; Trisedya et al., 2020). Unlike these
works, we plan to experiment with assembling a
rich representation of the input compiled from mul-
tiple sources, including ordering and aggregation
of the input facts, retrieved external knowledge
(see Section 6.2), and explicit linguistic informa-
tion (e.g., tense) estimated from the training data.
In addition, we will aim to unify the input format,
e.g., by transforming individual data items to text
using templates, similarly to our work in Section
4 and 5. We will also experiment with generating
the templates automatically using the approach of
Laha et al. (2019).

6.2 Adding Symbolic Knowledge Processing

The use of low-level objective functions for train-
ing the neural LMs (cf. Section 3) limits the use
of the LMs in more complex scenarios, including
generating longer texts, such as full articles or sto-
ries (Fan et al., 2019; See et al., 2019; Rosa et al.,
2021), and generating texts which require logical
or common sense reasoning (Chen et al., 2020a,b;
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Figure 7: Our approach to detecting semantic errors on token level. First, we generate facts from the input table
using a rule-based NLG system. For each evaluated sentence, we select relevant facts (according to the semantic
similarity score) and use the facts as a context for a pretrained LM, which is trained to annotate the data.

Lin et al., 2020). Without additional grounding, the
output in these scenarios—often based on spurious
correlations in the training data—may be biased
and incoherent (McCoy et al., 2019; Bender et al.,
2021).

In contrast, the explicit nature of the text plan in
Section 6.1 allows us to control the output of the
model using symbolic operations over the text plan.
We plan to conduct experiments in these research
directions:

• Fetching information from external knowl-
edge bases in order to include additional con-
text about factual data (Bollacker et al., 2008)
or commonsense knowledge (Speer et al.,
2012; Hwang et al., 2020), e.g., retrieving
additional context for named entities. The
goal is to introduce relevant facts in the text
without retraining the model and relying on its
implicit knowledge, similarly to (Lewis et al.,
2020b).

• Using symbolic reasoning operations such as
logical inference and numerical computa-
tions. The operations may be carried on ex-
plicitly on the text plan. The goal is to limit
the dependence on the logical and quantitative
reasoning capabilities of neural LMs, which
are not reliable (Andor et al., 2019; Geva et al.,
2020).

Our general aim is to use dedicated modules for
tasks that have inherently symbolic nature while
leveraging good surface realization capabilities of
neural models. In contrast to pipeline-based ap-
proaches, we will assemble individual pieces of
information for the text plan independently and use
the information as an input for the neural model,
which will take care of the final generation step.

6.3 Linking the Text with the Data
The neural NLG in the current form is a one-sided
transformation process—the individual parts of
the output sequence cannot be reversely related to
the input. Although there is research on interpret-
ing the attention values of the models (Vashishth
et al., 2019), research is lacking on applying the
results further beyond explaining the reasoning of
the model since clues in attention values are weak
(Serrano and Smith, 2019; Thorne et al., 2019; Li
et al., 2020).

We aim for a more explicit alignment between
the data and the text, similarly to phrase-based ma-
chine translation systems (Och and Ney, 2003). We
hypothesize that adding explicit connections will
not only increase the interpretability of the models
but also allow informed and targeted improvement
of the text. This line of research is orthogonal to our
other research directions, but it may benefit from
the positive results and eventually be integrated
into a unified system.

We want to experiment with multiple ways of
extracting the alignments. The first option is to use
unsupervised alignment approaches based on statis-
tical (Och and Ney, 2003) or neural models (Garg
et al., 2019; Zenkel et al., 2020). The approaches
provide sufficient accuracy for the sentence-level
alignment and also allow a more fine-grained,
phrase or token-level alignment. Another option is
to use the duality of NLG and natural language un-
derstanding (NLU)—an inverse process of parsing
a text in natural language into structured represen-
tation (Su et al., 2020). In this case, we would use
the explicit text plan outlined in Section 6.1. The
generated text will be parsed to structured repre-
sentation, which will be subsequently aligned with
the text plan, e.g., using graph matching algorithms
(Conte et al., 2004; Caetano et al., 2009).

Regarding the targeted improvement of the text,



we plan to follow up on our experiments from Sec-
tion 4.1 using text-editing models which we will
modify for our purposes. In contrast to full seq2seq
models, text-editing models allow to control and
interpret individual edits over multiple iterations.
The most recent text-editing models (Mallinson
et al., 2020; Stahlberg and Kumar, 2020) also al-
low reordering of individual tokens, which could
help to alleviate the problems with fluency from
our previous experiments.

7 Conclusion

The thesis proposal described current challenges
in adapting NLG systems to new domains. We
showed how pretrained neural LMs allow us to
tackle some of these challenges while posing new
research problems. In our experiments, we first
addressed the problem of fluency and semantic ac-
curacy of texts generated by neural NLG systems,
focusing on low-resource domains. Semantic accu-
racy was also the subject of our research regarding
NLG evaluation, in which we developed automatic
metrics for evaluating the semantic accuracy of
generated texts. In the future, we plan to follow
up on our experiments by unifying the input to the
neural models, combining advantages of symbolic
operations and surface realization capabilities of
pretrained LMs to improve the reliability and do-
main independence of NLG systems.
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Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/K19-1079
https://doi.org/10.18653/v1/P19-1282
https://doi.org/10.18653/v1/P19-1282
https://doi.org/10.18653/v1/2020.acl-main.63
https://doi.org/10.18653/v1/2020.acl-main.63
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199


Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2253–2263.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mt5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498.

Zixiaofan Yang, Arash Einolghozati, Hakan Inan,
Keith Diedrick, Angela Fan, Pinar Donmez, and
Sonal Gupta. 2020. Improving text-to-text pre-
trained models for the graph-to-text task. In Pro-
ceedings of the 3rd International Workshop on Nat-
ural Language Generation from the Semantic Web
(WebNLG+), pages 107–116.

Thomas Zenkel, Joern Wuebker, and John DeNero.
2020. End-to-End Neural Word Alignment Outper-
forms GIZA++. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1605–1617, Online. Association for
Computational Linguistics.

Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi.
2020. Bridging the structural gap between encod-
ing and decoding for data-to-text generation. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2481–
2491, Online. Association for Computational Lin-
guistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the 2015
IEEE International Conference on Computer Vision
(ICCV), pages 19–27.

https://doi.org/10.18653/v1/2020.acl-main.146
https://doi.org/10.18653/v1/2020.acl-main.146
https://doi.org/10.18653/v1/2020.acl-main.224
https://doi.org/10.18653/v1/2020.acl-main.224

