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Abstract

In recent years, Neural Networks proved their
usefulness in computing and processing vec-
tor representations to solve various NLP tasks.
The key objective of the thesis is to provide a
better explanation of the neural network’s rep-
resentation of language, also known as embed-
dings. We hypothesize that the understanding
of representations is necessary to improve the
models and alleviate issues hindering models’
performances. We investigate the spatial distri-
bution of vector representation and correlation
with language features (syntax, lexicon, mor-
phology) to answer which phenomena are en-
coded by a model. We aim to indicate which
parts of the representation are relevant to a
specific type of information. We propose a
method that allows disentangling embedding
spaces into parts that encode specific linguistic
features. Our findings generalize to multiple
diverse languages. In future work, we intend
to analyze the encoding of higher-level linguis-
tic features. We want to apply our findings to
cope with the unwanted behaviors of language
models, such as the unprovoked generation of
toxic or biased texts.

1 Introduction

The recent wave of deep learning research in Nat-
ural Language Processing produced the models
that achieve state-of-the-art results for diverse NLP
tasks. The contributing factor to the success was
transfer learning. In this approach, models trained
on unannotated data (language models, neural ma-
chine translators) were applied to solve, Question
Answering, Syntactic Parsing, Natural Language
Inference, Named Entity Recognition, etc. (Kon-
dratyuk and Straka, 2019; Sun et al., 2020; Yan
et al., 2021, inter alia). The success of such models
is not yet fully explained. Their internal mecha-
nism is unknown to the users and the developers;
such models are commonly referred to as black

boxes.
The interpretability analysis closely follows the

works on developing new models. The concept of
interpretability is crucial for applications where the
model’s decision needs to be justified, for instance,
health care, finance. The understanding of the al-
gorithms also raises the social trust toward new
technologies (Molnar, 2020). Therefore, the first
aim of our research is the interest in learning the
inner workings and the reason behind the success
of neural networks in NLP. The second motivation,
not less important, is recognizing deep models’
shortcomings and finding paths for improvement.
In our work we mostly concentrate on post-hoc (or
extrinsic) interpretation defined by Lipton (2018)
explaining the functioning of a model after training,
“without sacrificing its predictive performance”.

We perceive the hidden representations of pre-
trained neural networks as the way a model under-
stands the language. This understanding is learned
by seeing a large amount of data. It covers lin-
guistic features of the texts (e.g., syntax, lexicon,
semantics) and non-linguistic ones such as factual
information about the world and various biases
present in the training corpora.

The former features are more interesting from
the linguistic point of view. Nevertheless, we can-
not disregard the representation of non-linguistic
aspects. Deep language models convey signif-
icant factual information (Brown et al., 2020;
Khashabi et al., 2020) and tend to correctly an-
swer the questions like: “George wants to warm
his hands quickly by rubbing them. Which skin
surface will produce the most heat?” answer: “dry
palms”1 (Clark et al., 2018; Mihaylov et al., 2018).
Notwithstanding, the ability to non-linguistic fea-
tures makes the model prone to biases present in
the data. There is no mystery that contemporary

1In the evaluation model needs the most probable option
out of four.



systems require vast corpora that cannot be man-
ually pruned. This leads to the problem that the
models are typically trained on lower quality data
that could include nonfactual information, discrim-
inatory texts, and toxic language. The biases can
easily leak to the output of the models (Bolukbasi
et al., 2016; Manzini et al., 2019).

Obtaining good language representations re-
quires extensive corpora to optimize the deep
model. Such corpora are available for English and a
handful of other languages. For other less resource-
ful languages, we need to somehow transfer the
representations from high-resource languages. An
efficient solution to this problem is training a model
on monolingual corpora in multiple languages to-
gether. Such models benefit from seeing more data
and acquire linguistic knowledge in multiple lan-
guages (Pires et al., 2019). From an interpretability
perspective, we may question how the model’s rep-
resentations vary across languages. The analysis
could improve the representations for low-resource
languages.

1.1 The Motivations of the Thesis
In the thesis, we want to continue our work on
interpretations of neural networks’ representations.
The main directions of my current and future work
are:

A Which linguistic and non-linguistic features
are encoded by the neural networks?

B We aim to analyze multilingual representa-
tions. How do such representations vary
across languages? Will we observe similar
patterns for diverse languages?

C Can we disentangle the representation and fil-
ter out specific parts related to specific fea-
tures?

D Can our findings be applied to filter out biases
present in the representation? Will it improve
the fairness of NLP models?

1.2 Structure of the Proposal
Sections 2 to 4 presents the main areas of previ-
ous research: architectures and types of the most
prominent neural models; the methods of analyzing
models’ representations; biases and other unwanted
non-linguistic features manifested by the models.
In Section 5, I present my previous work on the
topic and set a plan for future research in Section 6.

Section 7 reiterates the main points and concludes
the proposal.

2 Deep Models in NLP

The employment of neural networks to obtain the
representation of language has a long history (Ben-
gio et al., 2003; Mikolov et al., 2013a, inter alia).
The networks needs to numerically express corre-
lation found in corpora, such representations are
especially suitable for processing and statistical
analysis. The major breakthrough was the applica-
tion of neural language models to obtain contextual
representation. The first such model was ELMO

proposed by Peters et al. (2018). Contextual em-
beddings encode not only one word but also its
context. The ELMO was based on bidirectional
recurrent neural network, this architecture was re-
cently supplanted by more potent Transformer ar-
chitecture (Vaswani et al., 2017). The Transformer
based successor of ELMO - BERT improved re-
sults across various NLP tasks. Currently, the back-
bone of transfer learning in NLP are language mod-
els. They are trained on extensive corpora that do
not need human curation. To a lesser extent, rep-
resentations of neural machine translation systems
are used for transfer learning (McCann et al., 2017),
their main disadvantage is the requirement of paral-
lel data that are harder to obtain than monolingual
corpus.

Transformer language models can be divided
into two families: masked (or auto-encoding) and
auto-regressive models. The masked models (e.g.,
BERT (Devlin et al., 2019), XLNet (Yang et al.,
2019))are trained to predict specific words inside
the sentence based on all the other words in the
sentence, and the auto-regressive models predict
the word that follows after a sequence of given or
previously generated words.

2.1 Auto-encoding Models

The first Transformer-based masked language
model for pre-trained contextual embeddings was
BERT, introduced by Devlin et al. (2019). The
pre-trained model generates useful sentence repre-
sentations and may be fine-tuned for many natural
language processing tasks. This approach led to
outstanding results on multiple NLP tasks. Among
other: natural language inference (Bowman et al.,
2015) and question answering (SQUaD by (Ra-
jpurkar et al., 2016)).

A range of models has come after BERT, all



Figure 1: GLUE benchmark (Wang et al., 2018) performance of the pre-trained systems compared to the human
performance (1.0 on the y-axis). Reprint from Wang et al. (2019a).

based on the same architecture, just with some
additional twists that improve the performance in
various ways. The most important are the follow-
ing:

• XLNet Yang et al. (2019) enabled learn-
ing bidirectional contexts by maximizing the
expected likelihood over all permutations
of words and therefore overcame the pre-
train–finetune masking discrepancy, which is
present in BERT.

• RoBERTa Liu et al. (2019b) is a model simi-
lar to BERT trained by Facebook using much
more training data than the original BERT

• DistillBERT Sanh et al. (2020) promises to
deliver comparable results to BERT at a sig-
nificantly lower computational cost.

• Albert Lan et al. (2019) is claimed to be as
good as BERT with fewer parameters.

The subsequent models improve the results on
benchmarks. They also base on Transformer ar-
chitecture. The key factor contributing to the im-
provements were additional data, a higher number
of parameters, more efficient initialization.

The transfer-learning performance of the mod-
els is measured by GLUE benchmark (Wang et al.,
2018). It consists of nine language understand-
ing tasks. Fig. 1 shows the gradual improvement
of subsequent pre-trained models. The average
score surpassed the non-expert human performance.
Therefore, the authors introduced a new evaluation
benchmark – SuperGLUE with more challenging
tasks Wang et al. (2019a).

2.2 Auto-regressive Models
The notable examples of auto-regressive trans-
former models are:

• GPT, GPT-2 Radford et al. (2019) large-
scale unsupervised Transformer-based lan-
guage models called GPT and GPT-2, which
are able to generate coherent paragraphs of
text.

• GPT-3 Brown et al. (2020) model that builds
upon GPT and GPT-2. It outperforms pre-
ceding models due to a significantly larger
pre-training dataset and a larger number of
parameters.

• CTRL Keskar et al. (2019) is a large language
model. Predictions are conditioned on control
codes allowing to set desired properties of the
generated text explicitly.

Auto-regressive language models are closely re-
lated to the contemporary neural machine transla-
tion systems (NMT). They share the same architec-
ture and auto-regressive prediction method. The
main difference is that in NMT input and output of
the network are in different languages. Some of the
Transformer-based translation models are publicly
available (Ng et al., 2020; Sennrich et al., 2016).

2.3 Multilingual models
The previously mentioned models were trained
mainly on English data. We can obtain the repre-
sentations in other languages in two ways: training
a new model specifically for the language or train-
ing a multilingual model. The latter approach re-
quires less computation and can benefit languages



with a small amount of data available. From an in-
terpretability perspective, the multilingual models
allow us to easily investigate whether the observa-
tions about the model’s representations generalize
across languages. Because of these reasons, we
will focus on shared multilingual representations.

The notable examples of Transformer-based mul-
tilingual models are:

• MBERT Devlin et al. (2019) trained on
Wikipedias in 100 languages. The architec-
ture of the model and training method is the
same as in original BERT.

• XLM Lample and Conneau (2019) improves
initialization and training method of MBERT.

• XLM-ROBERTA Conneau et al. (2020)
uses enhancements introduced in RoBERTa
and XLM. Model is trained on a much larger
dataset than previous ones – cleaned Common
Crawl (Wenzek et al., 2020).

Similarly to the monolingual Transformers, the
subsequent models achieve improvement on a vari-
ety of cross-lingual benchmarks.

3 Interpretation of Neural Networks’
Representations

With the recent success of pre-trained models in
NLP, a significant focus was put on interpreting
their representations. Latent representations of neu-
ral networks encode specific linguistic features. Re-
cently, a lot of focus was devoted to finding corre-
spondence from the internal representations of the
networks to existing linguistic abstraction. Among
others, they include coreference, syntactic struc-
ture, morphology.

Two main approaches to explaining the inner
workings of neural networks are behavioral and
structural analysis. The former one investigates
the sensitivity of the model’s output to the targeted
changes of input. This way, it is possible to inves-
tigate the model’s behavior in specific situations
(Ribeiro et al., 2020). The structural analysis asks
how linguistic features are encoded in the inner
representations of the network. This approach di-
rectly works with the parameters of the network
(Belinkov and Glass, 2019). We will devote more
focus to structural analysis.

3.1 Probing

One of the most popular methods of analysis is
probing. The parameters of the pre-trained network
are fixed, the output word representations are fed
to a simple neural layer. This simple layer is opti-
mized for a linguistic task (e.g., POS tagging) to
evaluate whether the necessary feature is encoded
in the representation.

The number of probing experiments rose with
the advent of multilayer RNNs and Transformers
trained for language modeling and machine trans-
lation.

Belinkov et al. (2017a) probe a recurrent neu-
ral machine translation system with four layers to
predict part of speech tags (along with morpholog-
ical features). They use Arabic, Hebrew, French,
German, and Czech to English pairs.

The introduction of ELMO (Peters et al., 2018)
brought a remarkable advancement in transfer
learning from the RNN language model to a variety
of other NLP tasks. The authors examined POS ca-
pabilities of the representations and compared the
results with the neural machine translation system
CoVe (McCann et al., 2017), which also uses RNN
architecture.

Another comprehensive evaluation of morpho-
logical and syntactic capabilities of language mod-
els was conducted by Liu et al. (2019a). Prob-
ing was applied to a language model based on
the Transformer architecture (BERT) and com-
pared with ELMO and static word embeddings
(Word2Vec Mikolov et al. (2013a)).

Apart from morphosyntax, semantic information
was also probed for in other experiments. (Teichert
et al., 2017; Rudinger et al., 2018) examined encod-
ing of semantic proto-roles, (Bjerva et al., 2016)
optimized probe for semantic tagging. Those exper-
iments showed that the probes had problems with
uncovering deep syntactic relations.

3.2 Encoding Structure

Extraction of dependency structure is demanding
because instead of predicting single tokens, every
pair of words needs to be evaluated.

Blevins et al. (2018) propose a feed-forward
layer on top of a frozen RNN representation to
predict whether a dependency tree edge connects
a pair of tokens. They concatenate the vector rep-
resentation of each of the words and their element-
wise product. Such a representation is fed as an
input to the binary classifier. It only looks at one



pair of tokens at a time, therefore predicted edges
might not form a valid tree.

Another approach, induction of the whole syn-
tactic structures from latent representations, was
proposed by Hewitt and Manning (2019). Their
syntactic probing is based on training a matrix that
is used to transform the output of the network’s lay-
ers (they use BERT and ELMO). The objective of
the probing is to approximate dependency tree dis-
tances between tokens 2 by the L2 norm of the dif-
ference of the transformed vectors. Where authors
consider linear transformation, i.e., embeddings are
multiplied by gradient-optimized matrix. Probing
produces the approximate syntactic pairwise dis-
tances for each pair of tokens. The minimum span-
ning tree algorithm is used on the distance matrix to
find the undirected dependency tree. The best con-
figuration employs the 15th layer of BERT large.
It induces treebank with 82.5% undirected UAS on
Penn Treebank with Stanford Dependency annota-
tion (relation directions and punctuation were disre-
garded in the experiments). The result for BERTis
significantly higher than for ELMO, which gave
77.0% when the first layer was probed.

The paper also describes an alternative method
of approximating the syntactic depth by the L2
norm of latent vector multiplied by a trainable ma-
trix. The estimated depths allow prediction of the
root of a sentence with 90.1% accuracy when rep-
resentation from the 16th layer of BERTlarge is
probed.

3.3 Encoding Multilingualism

The subsequent paper by Chi et al. (2020) applies
the setting of Hewitt and Manning (2019) to the
multilingual language model MBERT. They train
syntactic distance probes on 11 languages and com-
pare UAS of induced trees in four scenarios: 1.
training and evaluating on the same languages; 2.
training on a single language, evaluating on a dif-
ferent one; 3. training on all languages except the
evaluation one; 4. training on all languages, in-
cluding the evaluation one. They demonstrate that
the transfer is effective as the results in all the con-
figurations outperform the baselines3. Even in the
hardest case – zero-shot transfer from just one lan-
guage, the result is at least 6.9 percent points above
the baselines (for Chinese). Nevertheless, for all

2Tree distance is the length of the tree path between two
tokens

3There are two baselines: right-branching tree and probing
on randomly initialized MBERT without pretraining

Figure 2: Two-dimensional t-SNE visualization of
probed MBERT embeddings. Analysis of the clusters
shows that embeddings encode information about the
type of dependency relations and, to a lesser extent, lan-
guage. Reprint from Chi et al. (2020).

the languages, no transfer-learning setting can beat
the training and evaluating a probe on the same
language.

The paper includes an analysis of intrinsic fea-
tures of the BERT’s vectors transformed by a probe.
Noticeably, the vector differences between the rep-
resentations of words connected by dependency
relation are clustered by relation labels, see fig-
ure 2.

Multilingual BERTembeddings are also ana-
lyzed by Wang et al. (2019b). They show that
even for the multilingual vectors, the results can be
improved by projecting vector spaces across lan-
guages. They use a Biaffine Graph-based Parser
by Dozat and Manning (2017), which consists of
multiple RNN layers. Therefore, the experiment is
not strictly comparable with probing as most of the
syntactic information is captured by the parser and
not by the embeddings. The article compares differ-
ent types of vector representations fed as an input
to the parser. It is demonstrated that cross-lingual
transformation on MBERT embedding improves
the results significantly in LAS of parser trained on
English and evaluated on 14 languages; on average,
from 60.53% to 63.54%. In comparison to other
cross-lingual representations, the proposed method
outperforms transformed static embeddings (Fast-
Text with SVD Bojanowski et al. (2017)) and also
slightly outperforms contextual embeddings (XLM



Most weight Gravity center Linguistic Layer attention
over layers of layer attention features distribution shape

11–13 11.7 Part of speech peaked
11–17 13.1 Constituency syntax very peaked
12–17 13.8 Dependency syntax very peaked
13–18 13.6 Semantic roles peaked
14–20 13.2 Named entities flat
13–22 12.7 Semantic proto-roles very flat
15–22 12.8 Semantic relations very flat
16–20 15.8 Coreference peaked

Table 1: Distribution of linguistic features in the 24-layer BERT, interpreted from Tenney et al. (2019). For each
feature type, we list an estimate of the range of layers on which it is captured significantly more than on other
layers, together with the “center of gravity” of the layer attention, and a note how peaked or flat the distribution of
the layer attention weights is. Reprint from Mareček et al. (2020)

Lample and Conneau (2019)).

3.4 Beyond Probing

Probing is by far the most popular method of ana-
lyzing the information encoded in pre-trained neu-
ral networks. However, it has been criticized for
introducing too much supervision and increasing
the risk that the knowledge for the task is learned
by the probe and not retrieved from the underlying
model (Hewitt and Liang, 2019).

There are methods of analyzing the network pa-
rameters that do not require supervision for a down-
stream task. One of them is the direct analysis
of the patterns in Tranformer’s attention matrices.
Mareček and Rosa (2019) found that in some layer,
all the words in a phrase of constituency tree are
attended by its governor. Other works showed that
in a few heads, high attention values correlated
with the presence of dependency edges between
the words (Voita et al., 2019; Clark et al., 2019;
Vig and Belinkov, 2019).

3.5 Where is Linguistic Information
Encoded?

It was observed that the encoding of linguistic fea-
tures varies across layers. The study of Tenney et al.
(2019) showed that starting from the input, subse-
quent layers of the network tend to capture aspects
of language in a similar order as they appear in the
traditional language processing pipeline (Manning
et al., 2014). Table 1 shows the range of layers in
which specific linguistic phenomenon was the most
salient. Additionally, in other works, the authors
also observed in Transformer models that typically,
the initial layer captures morphological informa-

tion (Belinkov et al., 2017b), the intermediate one
encodes syntax (Blevins et al., 2018; Hewitt and
Manning, 2019), and the later ones learn semantic
information (Jawahar et al., 2019).

The recent state of knowledge in intractability
is summarized in surveys on probing (Belinkov
and Glass, 2019) and interpretation of BERT’s
representations (Rogers et al., 2020).

4 Fairness of NLP Models

The reliance on black-box models raises concerns
about various biases acquired from raw scrapped
Internet data.

4.1 Toxicity in Language Models
In text generation, biases are especially severe and
raise questions about the reliability of deep learn-
ing systems. Gehman et al. (2020) have created
REALTOXICITYPROMPTS, a dataset of 100 thou-
sand prompts in English. The data can use to assess
the Language Model’s vulnerability to generate a
rude, disrespectful response. Identification of toxic
texts can be performed with commercially devel-
oped PERSPECTIVE API.4 The authors of the API
defines toxicity as “a rude, disrespectful, or unrea-
sonable comment; likely to make people leave a
discussion.” The current challenge is to prevent
the generation of toxic languages and improve the
accuracy of toxicity identification. The recent ap-
proaches to solving the former issue include:

• Word filtering (Raffel et al., 2020). The ap-
proach requires the creation and maintenance
of large vocabularies of disallowed words.

4https://www.perspectiveapi.com

https://www.perspectiveapi.com


Finnish source English translation
Hän on siivooja. She is a cleaner.
Hän on johtaja. He is a leader.
Hän on varhaiskasvatuksen opettaja. She is an early childhood education

teacher.
Hän on presidentti. He is the president.

Table 2: Sentences automatically translated from Finnish, which does not have grammatical gender, to English
with widely used Google’s Neural Machine Translation System (Wu et al., 2016). The predictions of gender in
English correlate with stereotypical gender roles.

The choice of words is debatable because, in
many cases, the context of a word is detrimen-
tal to toxicity.

• Additional phase of LM pre-training on non-
toxic data (Gururangan et al., 2020; Keskar
et al., 2019). The approach requires a robust
method for non-toxic text selection and addi-
tional, computationally extensive epochs of
pre-training.

• Altering inference algorithm to penalize toxic
predictions of a model (Dathathri et al., 2020;
Schick et al., 2021; Gehman et al., 2020).

All of the approaches are partially effective and
display various disadvantages. Therefore, there is
space for further improvement in the field.

4.2 Biases in Machine Translation Systems
Other problems are relevant for machine translation.
The notion of grammatical gender is significantly
different in languages. In some, it is prevalent
(German, French, Czech, Polish, etc.), and other
languages (Hungarian, English, etc.) do not de-
note gender. Gender is often mistranslated due to
relying upon spurious correlations present in lan-
guage corpora instead of a clear indication from
the context.

Stanovsky et al. (2019) analyze gender bias of
state-of-the-art academic MT systems in translation
to eight languages with grammatical genders (Span-
ish, French, Italian, Russian, Ukrainian, Hebrew,
Arabic, German). The challenge set follows Wino-
grad Scheme principles (Winograd, 1972). Both
works conclude that machine translation systems
exhibit spurious correlations (gender bias), e.g., the
word “doctor” is typically translated to male form
and the word “nurse” to female form even if differ-
ent gender is indicated in their contexts. Moreover,
many systems perform better when translating male
names of professions. Noticeably, the symptoms

of gender bias can be observed in widely-used in-
dustrial MT systems (Table 2).

Comprehensive surveys on bias in NLP systems
were recently conducted by Blodgett et al. (2020)
and B et al. (2021).

5 Results

In my current and past research, I have focused on
gaining and extending the knowledge on interpret-
ing and analyzing linguistic information encoded
in Transformer models, mainly BERT. The ex-
periments were performed for English and other
languages. The work up to date encompasses the
motivations A, B, C, and partially D introduced in
Section 1.1.

5.1 Universal Dependencies according to
BERT

In Limisiewicz et al. (2020), we have focused on an-
alyzing BERT’s attention heads that were targeted
on uncovering annotation of dependency syntax.
For that purpose, we have used Universal Depen-
dency annotation available in multiple languages
(Nivre et al., 2020).

Confirming the previous observations, (Voita
et al., 2019; Clark et al., 2019) we showed that
attention in some heads is aligned with the places
where dependency edges appear. The heads tend
to be specialized in uncovering a specific type of
dependency edges, as shown in Fig. 3. The novelty
in our work was the method of grouping together
the heads (called head ensembles) and averaging
their attention matrices to find better alignment for
specific dependency relation types. For that pur-
pose, we required only small supervision to identify
syntactic heads.

Furthermore, we extracted dependency trees
from head ensembles following the method pro-
posed by (Raganato and Tiedemann, 2018). We
have surpassed original result (which extracted



Figure 3: Examples of two BERT’s attention heads covering the same relation label and their average. Gold
relations are marked by red letters. In the top row (purple), both heads identify the parent noun for an adjectival
modifier: Head 9 in Layer 3 if their distance is two positions or less, Head 10 in Layer 7 if they are further away
(as in “a stable , green economy”). Similarly, for an object to predicate relation (blue bottom row), Head 9 in Layer
7 and Head 8 in Layer 3 capture pairs with shorter and longer positional distances, respectively. Reprint from
Limisiewicz et al. (2020).

trees from a specific heads). We have repeated
our analysis for MBERT in nine diverse languages.

We found out that there is no one-to-one corre-
spondence between dependency labels and heads.
Specific heads can capture multiple relation types,
while many heads can also partially encode one
dependency relation type. In a multilingual setting,
we have observed that the same head can encode
the same syntactic information even for typologi-
cally diverse languages.

The article was published in The Findings of
EMNLP 2020 and was presented at a co-located
workshop: BlackBoxNLP 2021. It is aligned with
motivations A and B.

5.2 Orthogonal Structural Probe

The work Limisiewicz and Mareček (2021b) is
based on the structural probe method introduced
by Hewitt and Manning (2019) described in Sec-
tion 3.2. In our modification, we replace linear
transformation with orthogonal transformation and
then dimension-wise scaling of elements. The for-
mulation is mathematically equivalent to the origi-
nal one, but using the scaling coefficient allows us
to analyze how important each dimension of the

representation is to the task.
Moreover, we have proposed new structural

probing tasks: hypernymy distance and depth in the
WordNet tree (Miller, 1995), word position in the
sentence. We have also evaluated how prone struc-
tural probes are to memorizing randomly generated
structures.

The main outcome of the work was the possi-
bility to identify where specific information is en-
coded in the network. Not only can we differentiate
between different layers, but thanks to scaling, we
could identify in each layer parts of the represen-
tation (or subspaces) relevant to particular tasks.
The surprising finding was the fact that in most
layers, subspaces encoding syntactic and lexical
information were disjoint Fig. 5.

The article was published in The Proceeding of
ACL-IJCNLP 2021 and presented at the conference.
The scope of work is related to the motivations A
and C.

5.3 Multilingual Orthogonal Structural
Probe

In the following work (Limisiewicz and Mareček,
2021a), we apply orthogonal structural probes to



Figure 4: Schema of orthogonal structural probes. Em-
beddings are at first rotated by Orthogonal Transfor-
mation and element-wise multiplied by Scaling Vec-
tor. The matrix and the vector are gradient opti-
mized.Reprint from Limisiewicz and Mareček (2021b).

MBERT’s nine diverse language. We continue with
analyzing syntactic dependency from UD (Nivre
et al., 2020) and lexical hypernymy from WordNets
(Bond and Foster, 2013) in many languages. The
method uses orthogonal transformation that can
be employed to aligning cross-lingual embeddings.
The previous research showed that under some con-
ditions when the embeddings are learned jointly,
the embedding spaces are isomorphic across lan-
guages, hence we could align the representations
with orthogonal transformation (Mikolov et al.,
2013b; Vulić et al., 2020). Our experiments sug-
gest that an orthogonal transformation can indeed
map the representation. Furthermore, for English
and languages typologically close to it, analyzed
information is encoded in the same subspace, i.e.,
the rotation is not needed.

Moreover, we show that the orthogonal struc-
tural probe can be used in zero-shot dependency
parsing with transfer learning from different lan-
guages.

The article is under review of EMNLP 2021 and
co-located workshop BlackBoxNLP.The research
is aligned with the motivation B and C.

5.4 Gender Bias

In Kocmi et al. (2020), we have extended the gen-
der bias evaluation of (Stanovsky et al., 2019) to
new languages: Czech and Polish. The analysis
showed that the symptoms of language bias are
present in all of the analyzed translation systems
submitted for the Workshop of Machine Transla-
tion. The models that perform well in automatic
measures of translation proficiency - BLEU tend to
rely more on the bias in the translation of profes-
sion. These findings underscore the importance of
evaluating the biases in the models.
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Figure 5: Histograms of dimensions selected by depen-
dency and lexical orthogonal structural probe in the
16th layer of BERT. Each bin of the histogram corre-
sponds to 10 coordinates. The height of a bar (in one
color) represents how many were selected for a specific
task. Reprint from Limisiewicz and Mareček (2021b).

The work is orthogonal to the previous ones, as
it is not related to the interpretation and process-
ing of the neural network’s representation. The
article was published in The Proceedings of WMT
2020 and presented at the workshop. It is an initial
approach to the motivation D.

5.5 Other Work

Besides the experimental results described in the
previous chapters, I have thoroughly studied the
area’s literature. As a result, we have compiled the
survey on the syntax representation: Limisiewicz
and Mareček (2020). The article was published in
The Proceedings of ITAT 2020. The excerpts from
this work were used in the overview of background
literature in Section 3.

I have also contributed to the book on interpre-
tations of neural models Mareček et al. (2020),
especially to chapters 5 and 6.

6 Future Work

The further work is a continuation of the research
done so far. We will focus on the following aspects:

6.1 Uncovering and Modifying Information
in Hidden Layers

Our aim is to identify and separate different kinds
of linguistic information encoded in the form of
subspaces of the representations. We will base
our experiments on the new probing techniques
(Torroba Hennigen et al., 2020; Limisiewicz and
Mareček, 2021b) and work on improving them.

We will focus on semantic features in complex
downstream tasks included in GLUE (Wang et al.,



2018) and SuperGLUE Wang et al. (2019a), such
as natural language inference (NLI), question an-
swering (QA), and paraphrasing. Such general-
ization will likely require further development of
mentioned probing methods because the “semantic”
tasks operate on the whole sentences instead of in-
dividual words, so averaging over the word vectors
or more sophisticated techniques will be needed.

Representation of linguistic features is convo-
luted. One possible method for disentangling these
word vectors is to find an orthogonal transforma-
tion (rotation of the vector space) that would sep-
arate the features from each other (Limisiewicz
and Mareček, 2021b). This method was shown to
separate some lexical and syntactic features (as de-
scribed in Section 5.2). In further work, we plan to
extend and adjust this approach to work with many
other features.

Once we identify a subspace encoding a specific
feature, we can easily regulate or suppress its ac-
tivation and analyze how it affects system output.
For example, we conjecture that filtering out the
items related to semantics would result in gener-
ating sentences grammatically correct but nonsen-
sical, similar to a famous example of Chomsky
(1957) “Colorless green ideas sleep furiously.’ Mo-
tivations: A, C.

6.2 Debasing and Filtering Out Unwanted
Correlations in the Networks

We want to propose a real-world application of
purely theoretical methods described in the pre-
vious part. We hypothesize that the transforma-
tion and the analysis of contextual word vectors
in language models can reveal which components
of these vectors are responsible for unwanted bi-
ases emerging from pre-training data. Filtering out
those components could result in a new structural
de-biasing technique.

We will mainly focus on effects in auto-
regressive language models and aim to eliminate
the model’s inclinations to generate sexist, racist,
aggressive, vulgar, or in any other way toxic texts.
We will approach the machine translation system
analogically to examine the potential of reducing
gender bias.

The evaluation of our methods will be
conducted on REALTOXICITYPROMPTS

(Gehman et al., 2020) for language model-
ing and WinoMT (Stanovsky et al., 2019) for
machine translation or similar datasets. Motivation:

C.

6.3 Analysis Beyond English

Our motivation is to show that analysis generalizes
well to many languages. We will evaluate low-
resource languages that were generally out of the
scope of the previous studies. We hypothesize that
a better understanding of the embeddings would
facilitate the cross-lingual transfer. Our initial re-
sults show that the observations for English can be
generalized for multiple languages (Limisiewicz
and Mareček, 2021a). Therefore we will continue
considering languages other than English in our
further work. Motivation: B

7 Conclusion

We have summarised the related work and our work
on the interpretation of neural networks. The field
of research is rapidly growing. However, still many
questions are left unanswered. Our work up to date
gave initial answers to our question posed in the
introduction:

A The linguistic features related to syntax, mor-
phology, semantics are encoded in the pre-
trained neural networks, even though these
sources of information were not revealed dur-
ing training.

B The representations of multilingual models
vary across languages. However, for topo-
logically close languages, the differences are
minimal, and we can apply the same interpre-
tation tool for their analysis.

C We have proposed orthogonal structural
probes that is capable to divide the subspaces
of the embedding spaces relevant to specific
linguistic information.

D We worked on an evaluation metric that mea-
sures gender bias in machine translation sys-
tems. We have shown that the NMT systems
are gender-biased.

We will continue the work on the mentioned top-
ics. Specifically, we will improve the methods of
disentangling the representation and extend their
scope to other sources of information. We aim to
find a way to enhance and diminish particular in-
formation in the embeddings. We hypothesize that
such an approach will allow filtering out unwanted



biases in the networks and benefit the practical ap-
plications of the networks.

References
Senthil Kumar B, Aravindan Chandrabose, and

Bharathi Raja Chakravarthi. 2021. An overview
of fairness in data – illuminating the bias in data
pipeline. In Proceedings of the First Workshop on
Language Technology for Equality, Diversity and In-
clusion, pages 34–45, Kyiv. Association for Compu-
tational Linguistics.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017a. What do neu-
ral machine translation models learn about morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 861–872, Vancouver,
Canada. Association for Computational Linguistics.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Yonatan Belinkov, Lluı́s Màrquez, Hassan Sajjad,
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