
Dissertation Proposal

Dialog Management with Deep Neural Networks

Lukáš Žilka

Institute of Formal and Applied Linguistics
Faculty of Matematics and Physics

Charles University in Prague

Abstract. This document is a dissertation proposal submitted in par-
tial fulfillment of the requirements for the doctoral exams. Its purpose
is to define the dissertation goals and summarize initial experiments.
We propose a novel approach to dialog state tracking in spoken dia-
log systems based on long short-term memory recurrent neural neural
networks. The proposed model allows incremental, word-by-word dialog
state tracking and is trainable from a corpus of annotated dialogs. The
experiments show that the model achieves competitive performance on
sub-tasks and suggest ways for improvement. Future work proposes ex-
tensions to the model and a way to use it for dialog state tracking with
large knowledge-bases.

1 Introduction

A dialog state tracker is an essential component of modern spoken dialog systems.
It maintains the user’s goals throughout the dialog by looking at the automatic
speech recognition (ASR) results of her utterances. For example, in the restau-
rant information domain, the dialog state tracker tracks what kind of food the
user wants and which price range is she looking for, and provides this informa-
tion as a probability distribution over food and price range: P(food,price range)
The dialog state tracker also needs to deal with speech recognition errors and
tries to reduce their impact on the dialog (Williams et al., 2013).

The standard mode of operation of a spoken dialog system is turn-by-turn,
where the system always waits for the user to stop talking and only then gener-
ates its response. Also the system assumes its responses are spoken to the user as
a whole without interruption. This brings simplicity to the spoken dialog system
architecture, because the system can be implemented as a pipeline without feed-
back loops, but it also introduces some limitations. Particularly, people are used
to say feedback things during the system’s response as a sign of understanding,
surprise or not-understanding, like “yes”, “ok”, “really”, or “oh, wait”. Also,
sometimes only partial information provided by the system is enough for the
user, and she will interrupt the system in the middle of its utterance to ask
a follow-up question or otherwise continue with the dialog. The turn-by-turn
mode of operation does not allow for utilizing these clues. We will refer to the
more advanced mode of operation, where the system processes the user’s input

2 Lukáš Žilka

incrementally as it is coming in and also generates the response incrementally,
as word-by-word. This mode of operation allows the dialog system to be more
natural and responsive with the user, because it can interpret the various signs
the user gives during the system’s responses and react more precisely to what
the user says. A simple example of a dialog system working in this advanced
mode can be found in (Skantze and Schlangen, 2009).

The state-of-the-art dialog state trackers (Williams, 2014, Henderson et al.,
2014b,Lee et al., 2014,Smith, 2014,Sun et al., 2014) achieve their performance by
learning from annotated data, and they were shown to work well in the restaurant
information domain in the dialog state tracking challenge DSTC2 (Henderson
et al., 2014a). However, they possess two undesirable traits. First, they can only
track the dialog state turn-by-turn (as opposed to the more complicated word-
by-word approach), which limits the responsiveness of the dialog system. And,
some of the trackers rely on the results from a spoken language understanding
(SLU) component (Wang et al., 2005), which brings an additional component
into the dialog system that needs to be trained and tuned. In this thesis proposal
we aim to address these problems.

The contribution of this thesis proposal is a novel approach to dialog state
tracking. It aims towards building more responsive and simpler dialog systems
by proposing the first trainable dialog state tracker which naturally operates
incrementally, word-by-word, and can directly learn from annotated dialogs, re-
moving the need for an SLU unit. The word-by-word mode of tracking allows
the dialog manager to be more responsive with the users. Simplicity comes from
the fact that the whole dialog state tracker can be automatically optimized from
data by a standard backpropagation algorithm.

Our approach is based on the modern deep learning techinques, particularly
the long-short term memory recurrent neural network (LSTM RNN) (Hochre-
iter and Schmidhuber, 1997). We have chosen this approach due to several
reasons: First, LSTMs were shown to be effective for learning sequence map-
pings in automatic speech recognition (Graves and Schmidhuber, 2005), machine
translation (Sutskever et al., 2014), protein structure prediction (Sønderby and
Winther, 2014), and many other sequence classification tasks. The length of the
sequences successfully modelled by LSTMs is comparable to the length of the
word sequences in the spoken dialog systems. Second, the sequential nature of
the dialog naturally fits the LSTM’s recurrent mode of operation. And finally, as
the tracker processes the input, it incrementally builds an intermediate represen-
tation of the dialog. It has been shown that good intermediate representations
help generalization (Gülçehre and Bengio, 2013). The success of LSTM on multi-
ple complicated and diverse tasks promises to be exploitable also in dialog state
tracking.

The thesis proposal is organized as follows. First, we give an overview of the
relevant spoken dialog systems and neural networks literature (Section 2). In
Section 3, the model of the LSTM dialog state tracker is described along with
the experiments. In Section 4, we discuss the future research directions.

Dialog Management with Deep Neural Networks 3

2 Background

This thesis builds upon the work from the fields of statistical spoken dialog
systems and deep neural networks.

2.1 Spoken Dialog Systems

A spoken dialog system needs to understand what the user says, process it and
provide an answer. Usually the dialog systems are turn-based, meaning that the
system listens to the user and only replies when the user stops talking (Thomson
and Young, 2010). They are commonly built as a pipeline of several components:

1. The automatic speech recognition (ASR) component converts the user’s
speech to text.

2. The spoken language understanding component converts the text into struc-
tured information.

3. The dialog management component updates the dialog state and generates
a system action.

4. The structured system action is converted to natural text.
5. The natural text is synthesized and spoken back to the user.

Automatic Speech Recognition The task of an automatic speech recognizer
is to decode the user’s utterance into a structure called ASR hypothesis. Typically
the hypothesis is either an 1-best list (Gorin et al., 1997,Wang et al., 2003), an
n-best list (He and Young, 2003), a word confusion network (Hakkani-Tür et al.,
2006) or a word lattice (Oerder and Ney, 1993). Word lattices are the richest
but also the most complex structures to work with. It has been shown that using
word lattices or word confusion networks in the spoken language understanding
yields substantially better results over 1-best hypothesis (Tür et al., 2002). The
ASR hypothesis is consumed by the other components of the dialog system.

There are open-source and commercial ASR solutions available with vary-
ing capabilities and purposes of use. The most pouplar open-source solution
is Kaldi (Povey et al., 2011), which can be trained out-of-the-box to provide
state-of-the-art ASR performance. Google Speech API1 is a popular commer-
cial solution that is very fast and accurate for general speech and supports a
lot of languages, but is not customizable and has unclear licensing conditions.
Nuance’s2 commercial recognizers are more flexible but they are paid and closed-
source. ISpeech ASR API3 is also customizable (users can select expected speech
type: text messages, voice mail, dictation) but it does not allow full customiza-
tion and is also paid. AT&T Watson4 allows users to provide a custom grammar
(language model) but its free use is limited.

1 https://www.google.com/intl/en/chrome/demos/speech.html
2 http://dragonmobile.nuancemobiledeveloper.com/public/
3 http://www.ispeech.org/api
4 http://developer.att.com/apis/speech

4 Lukáš Žilka

Spoken Language Understanding Spoken language understanding (SLU)
unit aims to interpret the user’s intention from their speech utterance (Wang
et al., 2005). Particularly it converts the ASR hypothesis to some form of mean-
ing representation. For example “yes” could be represented as “affirm()”, or “I
want to go to Brno” as “inform(task=find connection)&inform(to stop=Brno)”
in the meaning representation used in ALEX dialog system (Dušek et al., 2014).
The meaning representation is arbitrary and adjusted to the particular dialog
system. Examples of other representations can be found in (Skantze, 2008, He
and Young, 2003).

Historically, SLU has been done by manually writing grammars used to fill
slots in semantic frames (Ward and Issar, 1994, Dowding et al., 1993), but this
is expensive and non-flexible, because an expert needs to devise the grammar
and then laborously maintain it. As the complexity of the domain grows the
maintanence effort grows much more. Instead, statistical approach to SLU has
been adopted, where SLU is viewed as a pattern recognition problem

M̂ = arg maxM P(M |W) (1)

where we are looking for the best meaning representation M of the input given
the ASR hypothesis W . The main benefit of this approach is the ability of the
model to leverage the training data to improve its performance. HMM can be
used to model the joint probability of the words and meaning representation
given the acoustic signal (Pieraccini et al., 1992, Pieraccini and Levin, 1992).
Hidden Vector State model that learns stack operations to parse the user’s ut-
terance in a hierarchical way was proposed (He and Young, 2003). It is par-
ticularly appealing for its ability to infer the hierarchy in the user’s utterances
without explicit hierarchical annotations. Markov Logic Networks were used for
SLU by (Meza-Ruiz et al., 2008), where first-order logic formulaes are used as
templates to instantiate complex Markov network that model the slot-value rep-
resentation. In (Zettlemoyer and Collins, 2007) an algorithm that learns to parse
the text input into lambda-calculus expressions using extended combinatory cat-
egorial grammar is given.

Dialog Management Dialog management (DM) component directly influences
how natural and intelligent will the dialog system be perceived among its users.
Its task is to come up with the next action of the system given the previous
progress of the dialog. It usually consists of two parts: dialog state tracking, and
dialog policy.

Dialog state tracking watches the dialog progress and keeps track of impor-
tant information in form of the dialog state, or as a probability distribution
over all possible dialog states called the belief state. Usually, the dialog state
is a structure that contains several components that take several values, for ex-
ample a component “food” that can take values “chinese”, “indian”, or “thai”,
and a component “area” that take values “north” and “south”, and only the
information needed for the dialog policy is tracked.

Dialog Management with Deep Neural Networks 5

Dialog policy acts upon the dialog state or the belief state to generate the
next action. There are handcrafted approaches to the dialog policy (Pieraccini
and Huerta, 2005,Skantze, 2008), and approaches that automatically learn from
observing rewards (Levin et al., 2000,Walker, 2000,Lemon et al., 2006,Thomson
and Young, 2010).

Bayesian Networks Bayesian networks can be used for the belief state track-
ing (Pulman et al., 1996,Williams, 2007,Bui et al., 2006,Thomson and Young,
2010). The belief b is updated as

b′(s) =
1

Z
· P (o′|s, a)

∑
s′

P (s|s′, a)b(s′) (2)

where o is the observation, typically the user utterance, s is the dialog state and
a is the system action.

Recurrent Neural Network Tracker Using recurrent neural network (RNN) for
dialog state tracking has been proposed in (Henderson et al., 2014b, Henderson
et al., 2013). N-gram features from n-best lists are extracted and used as an
input to the RNN model at each turn. The hidden state is updated as

ht = f(xt, ht−1) (3)

where ht = (pt,mt) consists of the distribution over the slot’s values in form of
the vector pt and memory mt.

Ranking-based Tracking The dialog state tracking was posed as a ranking prob-
lem by (Williams, 2014), where all the possible dialog states given the observed
SLU hypotheses so far are enumerated and then ranked using a LambdaMART
ranking algorithm. Then the best ranked dialog state is selected as the hypoth-
esis.

Discriminative Model Tracking Generalized linear regression model f was trained
to update the belief state

b′(s) = f(b(s), a, o) (4)

and shown to outperfrom heuristic update rules (Bohus and Rudnicky, 2006).

Natural Language Generation The natural language generation (NLG) com-
ponent generates the natural language utterance of the system action generated
by DM. For example, if the system generates the action confirm(food=chinese)

then the NLG should generate “Did you say chinese food?”. One of the simplest
approaches is a template-based NLG that has a database of templates, where for
each possible system action there is a template to be used (Dušek et al., 2014).
A more sophisticated approach is a data-driven model that given a corpus of
(system action; its surface realization; alignment) tuples learns to generate the
natural language utterances (Mairesse et al., 2010).

6 Lukáš Žilka

Speech Synthesis Speech synthesis takes the natural language utterance gen-
erated by NLG and transforms it to speech signal. Two main approaches are
used: 1.) concenative speech synthesis (Campbell and Black, 1997,Masuko et al.,
1996), and 2.) statistical parametric speech synthesis (Zen et al., 2009) Users still
consider the concenative approach to be better, but the statistical parametric
speech synthesis is catching up quickly (Zen et al., 2009).

The concenative speech synthesis (also called unit-selection synthesis) uses a
database of speech segments, from which it selects some and concatenates them
together to form the speech signal. The input utterance is converted to a sequence
of speech units that describe how it should be pronounced. For each speech unit
the synthesizer finds the most appropriate segment from the database, in terms
of the similarity to the sound to be synthesized speech unit and the smoothness
of concatenation with the other segments.

Statistical parametric speech synthesis directly models the acoustics of the
speech. During the training of the model, linguistic l and acoustic features a
are extracted from the training data and a conditional model of p(a|l) found.
During synthesis the best acoustic features for the given linguistics features are
found â = arg maxa p(a|l), and used for generating the resulting waveform.
HMM (Yoshimura et al., 1999), DNN (Ze et al., 2013), and RNN (Zen and Sak,
2015) were used as the conditional models.

2.2 Deep Neural Networks

Neural networks are known to be universal function approximators (Hornik
et al., 1989), thus are able to model arbitrary measurable function with arbitrary
accuracy given enough capacity. This makes them powerful for statistical mod-
eling. The never-ending advances in the computational speed brought computer
architectures capable of coping with previously inconceivable amounts of data.
Because neural networks have enough capacity to leverage this data, the new
neural networks applications were able to achieve impressive results on various
tasks.

New applications of neural networks in almost all fields where machine learn-
ing was applied before yielded the new state-of-the-art results or came close
to the state-of-the-art performance with much simpler models (e.g. automatic
speech recognition (Graves and Schmidhuber, 2005), machine translation (Sutskever
et al., 2014), image recognition (Karpathy and Fei-Fei, 2014), natural language
processing (Socher et al., 2012), protein structure prediction (Sønderby and
Winther, 2014)).

Also because the fundamental algorithm that underlies the deep learning,
the gradient descent algorithm, is very simple and computationally tractable, it
allowed the researches to build bigger and better models. Proving once again
that simple models with more data beat more complex models (Halevy et al.,
2009).

The research in the deep neural networks is also fueled by the available open-
source deep learning toolkits like Theano (Bastien et al., 2012), Torch7 (Collobert

Dialog Management with Deep Neural Networks 7

et al., 2011), or Caffe (Jia et al., 2014), that provide a good programming infras-
tructure for building custom neural network models and for testing hypotheses
fast. With these toolkits it is very easy to share experimental code, try out new
models, and replicate experiments.

The currently used neural networks are called deep because of their ar-
chitecutre. It consists of several layers of parametrized computational units,
which are stacked in a deep hierarchy. We can classify the deep neural networks
by their architecture into several conceptual classes:

– fully-connected networks – their layers are densely connected and their input
is just a vector x that is mapped to output y = f(x) = g(W · x), where g(.)
is some activation function like tanh, σ, or ReLU, and W ∈ R2 is a matrix
of parameters

– convolutional networks – their layers are connected through a convolutional
kernel; the convolutional kernel behaves like a small fully-connected layer ap-
plied at the different positions of the input simultaniously y1 = f(x1:|k|), ...,
yn−|k|+1 = f(xn−|k|+1:n); the result [y1, ..., yn−|k|+1] is usually very large so it
is transformed by a pooling layer into a smaller space y = pool(y1, ..., yn−|k|+1);
in the most general case the pooling layer sub-samples its inputs, for example
selects the maximum values for each dimension of the input vectors

– recurrent neural networks – are almost the same as the fully-connected net-
works, but with the difference that they are applied to a sequence rather
than a single input x1, x2, ..., one by one, and some of the results of the
computation performed by computing an output for the input xt (e.g. the
values of the hidden layer) are passed on to the function’s application on the
next element of the sequence xt+1; formally we have (yi, hi) = f(xi, hi−1),
where hi denotes the results of the computation passed from the previous
step, and yi is an output

However, this classification is not strict and almost every model from the litera-
ture is a combination of these classes. We aimed to give an intuitive feel for the
different classes of architecture rather than their rigorous description, which can
be found in the literature (Graves, 2013).

Long Short-Term Memory Networks An important type of the recurrent
neural networks is the long short-term memory (LSTM) (Hochreiter and Schmid-
huber, 1997) model that aims to overcome some of the practical drawbacks of
the standard RNN model. Standard RNN model suffers from the vanishing gra-
dient problem (Bengio et al., 1994) during training, and also the network forgets
information very fast. LSTM’s special architecture aims to overcome this, and

8 Lukáš Žilka

has the following form:

f :X × U → U (5)

f(xt, ut−1) = ut =

(
ht
ct

)
(6)

it = σ(W(i) ·

 xt
ht−1
ct−1

+ b(i)) (7)

ft = σ(W(f) ·

 xt
ht−1
ct−1

+ b(f)) (8)

x′t = tanh(W(x) ·
(
xt
ht−1

)
+ b(x)) (9)

ct = ft � ct−1 + it � x′t (10)

ot = σ(W(o) ·

 xt
ht−1
ct

+ b(o)) (11)

ht = ot · tanh(ct) (12)

The vectors it, ft, ot represent the input, forget and output gates, respectiv-
elly, x′t is the modulated input, the vector ct is the cell state and the vector ht
denotes the output, jointly denoted by ut.

3 LSTM Dialog State Tracker

In this section we will describe our dialog state tracking model based on the
long short-term memory units. Our model fits in the big picture of a spoken
dialog system described in subsection 2.1 as a spoken language understanding
and dialog state tracker together. Thus it connects between the automatic speech
recognizer and the dialog policy, getting the ASR hypotheses as its input and
provides the belief state as its output to the dialog policy.

Particularly, the task of our tracker is to map a sequence of words in the dialog

w1, ..., wt to predictions for each of the k dialog state components (p
(1)
t , ..., p

(k)
t).

Each p
(i)
t is a vector corresponding to a probability distribution over the values of

the i-th dialog state component. For example, p
(area)
t is a probability distribution

over values {north, south, east, west} at the time t.

3.1 Dialog State

In this thesis, we define the dialog state at time t as a vector st ∈ C1 × ...× Ck

of k dialog state components, sometimes called slots. Each component ci ∈ Ci =

Dialog Management with Deep Neural Networks 9

{v1, ..., vni} takes one of the ni values. Our dialog state tracker maintains a
probability distribution over st factorized by the dialog state components:

P (st|w1, ..., wt) =
∏
i

p(ci|w1, ..., wt; θ) (13)

Note that all models p(ci|·) share a substantial portion of the parameters, as
detailed in the next section, so despite the fact that the predictions are factor-
ized and thus independent, they were optimized to minimize a joint objective
function and therefore naturally model the dependence between the dialog state
components.

3.2 Model

Our dialog state tracking model can be seen as an encoder-classifier model,
where an LSTM is used to encode the information from the input word sequence
into a fixed-length vector representation. Given this representation, the classifier
produces a probability distribution for each of the dialog state components.

Formally we have an encoder that maps an input word and a previous hidden
state to a new hidden state, Enc(w, ht−1) = ht, and a classifier that maps
a hidden state to a prediction, C(ht) = pt. To encode the whole dialog, the
encoder is applied sequentially on the input sequence of words. In our system,
we have one encoder Enc and multiple classifiers C, one for each dialog state
component (e.g. C(food), C(area), ...).

The model of the encoder Enc is a LSTM RNN (Section 2.2). In case of a
recursive application of Enc, we write

Enc(w1, ..., wn, h, c) (14)

instead of
Enc(wn, ...Enc(w1, h, c)) (15)

to simplify the notation. The model of the classifier C is a single-layer neural
network with rectified linear units in the hidden layer and the softmax output
layer. The architecture is illustrated in Figure 1.

The encoder and classifier form together the LSTM dialog state tracker that
we call LecTrack :

LecTrack : a1, ..., an → p1, ..., pk

∀i ∈ 1, ..., k : pi = Ci(Enc(E · a1, ..., E · an, h0, c0))

Here, n is the length of the input sequence, k the number of the dialog state
components, a1, ..., an is the input word sequence encoded in a one-hot encoding,
E is a word embedding matrix, and h0 = c0 = 0 are zero vectors. As shown,
each token ai is mapped to its corresponding embedding vector through the
embedding matrix E, wi = E·ai. The literature suggests many ways for obtaining
the embedding matrix E (Mikolov et al., 2013, Kim, 2014, Stratos et al.,), but

10 Lukáš Žilka

Fig. 1. A demonstration of the LSTM Dialog State Tracker applied to a user utterance
“looking for chinese food”. The encoding LSTM model Enc is sequentially applied to
each input word and at the end, its hidden state is used to feed to the state component
classifiers.

in the experiments in this thesis, we treat it just as another set of parameters
for the sake of simplicity.5

3.3 Training

The model is trained using the standard cross-entropy criterion (Rubinstein and
Kroese, 2004) in the vanilla stochastic gradient descent scenario (Bottou, 2010):

l(a1, ..., an, y1, ..., yk; θ) =

k∑
i=0

log LecTrack(a1, ..., an)iyi
(16)

Here, LecTrack(.)mn denotes the probability of the n-th value in the m-th dialog
state component.

After each optimization epoch, we monitor the performance 6 of the model on
a held-out set D. When the performance stops increasing for several iterations,
we terminate the training and select the best-performing model.

3.4 Experiments

Dataset To train and evaluate our model, we use the DSTC2 (Henderson et al.,
2014a) data, which is a common data set for dialog state tracking evaluation.
The DSTC2 data consists of about 3,000 dialogs from the restaurant information

5 Informal experiments with different types of initialisaion of word embedings, such
as using word2vec (Mikolov et al., 2013) embedings estimated from a large out-of-
domain corpus, did not suggest any advantage over randomly initialised embeddings
in this relatively limited domain. Therefore, we decided not to explore this direction
further.

6 See the experiments section for the description of the featured metrics.

Dialog Management with Deep Neural Networks 11

domain, each dialog is 10 turns long on average. The data is split into training,
development and test sets. This data allows us to measure the performance of
our tracker on turn-based dialogs. Ideally we would run the evaluation on a
dataset where we could also measure the incremental capabilities of the tracker,
but to the best of our knowledge, no such dataset is publicly available yet, and
we shall address this in our future work.

Baseline A baseline system for this domain has been provided by the DSTC2
organizers. It uses the SLU results and confidence to rank hypotheses for the
values of the individual dialog state components. There were several baselines
described in (Henderson et al., 2014a) and we report the results of the focus
baseline, which was the best among them.

Data Preprocessing Each dialog turn contains the system utterance and the
user utterances, which we need to serialize into a stream of words as the input
to our model. The system utterance undergoes a simple preprocessing detailed
below, and the user utterance is directly fed to the model word-by-word without
any further preprocessing. There is no difference between the system and user
utterance in the eyes of our model, both are seen together as one long sequence
of words.

System Input: To get the system input, we perform a simple preprocessing. We
flatten the system dialog acts of the form act type(slot name=slot value)

into a sequence of two tokens t1, t2, where t1 = (act type, slot name) and t2 =
slot value. For example request(slot=food) is flattened as (request, slot), food,
which the model then sees as a word sequence of length two7. The result-
ing tokens are added to the vocabulary of the model side by side with the
words from the user utterances, but in such a way that they are still differ-
entiated from the user’s words of the same form. For example, the system act
inform(food=chinese) results in the tokens (inform, food) and chinese.
But the user utterances also contain the word chinese, so if we put both the
system tokens and the user words into one vocabulary, they would be mixed.
We care to keep them separate because we empirically found that mixing user
words and system tokens to be harmful to the performance of the tracker.

User Input: For the sake of simplicity, we use only the best live-ASR8 hypothesis
and ignore the rest of the n-best list. We plan to extend our model for processing
multiple ASR hypotheses in the near future.

7 The whole system utterances could be used and result in a similar performance
under the measured metrics, but also increase the training time of the model and
contain no more information than the stringified dialog acts. Therefore, we only use
the flattened dialog acts.

8 There are batch and live ASR results in the DSTC2 data. We use the live ones and
refer to them as live-ASR.

12 Lukáš Žilka

Out-of-Vocabulary Words are randomly mixed into the training data to give the
model a chance to cope with unseen words: At training time, a word in the user
input word is replaced by a special out-of-vocabulary token with probability α.
At test time, this token is used for all unknown words.

Experimental Methodology We follow the DSTC2 methodology (Henderson
et al., 2014a) and measure the accuracy and L2 norm of the joint slot predictions.
The joint predictions are grouped into the following groups, and the results of
each group is reported separately: Goals, Requested, Method. For each dialog
state component in each dialog the measurements are taken at the end of each
dialog turn, provided the component has already been mentioned in some of the
SLU n-best lists in the dialog9

Results The results of LecTrack on the DSTC2 data are summarized in Ta-
ble 1. For the groups Method and Requested LecTrack’s accuracy is better than
the baseline and comes close to the state-of-the-art. Within these groups the
handcrafted preprocessing present in the baseline and the state-of-the-art mod-
els is not as effective as for the Goal group.

We hypothesize that the accuracy on the Goal group does not achieve the
state of the art because of two reasons. First, LecTrack needs to see examples for
each value of each dialog state component. But the distribution of the individual
values in the data has a heavy tail, and thus the baseline method and state-of-
the-art methods that use various kinds of handcrafted abstraction to make the
data denser and leverage hand-crafted generalization beat LecTrack. Second,
our model does not utilize the information in the n-best lists, thus loses useful
information in the uncertain cases where more hypotheses than the first one are
useful.

For the frequently seen values from the group Goal the performance of Lec-
Track is much better than the baseline, as is shown in Table 2. We looked at
the sub-goal food and compared the classification accuracy of its individual val-
ues. The top of the table contains 9 values, which occur more than 100 times
in the test set, as the representatives of the classes that are well-represented
in the data; the bottom of the table contains the representatives of the under-
represented classes, and we selected values which occur at least 10 times in the
test set to get meaningful accuracy estimates. For the well-represented classes,
LecTrack’s performance is stable and usually beats the baseline by a large mar-
gin, however for the under-represented classes LecTrack’s performance is much
worse than the baseline. This suggests that some form of abstraction should
improve the results for the under-represented cases.

To keep the model simple we did not use any form abstraction, such as
gazeteers to preprocess our data, and only used 1-best hypothesis as an input.
Gazeteers offer a cheap solution to data sparsity for English but are difficult to

9 Note we do not use the SLU n-best list in our model at all, but we adapt this metric
to be able to compare to the other trackers in DSTC2.

Dialog Management with Deep Neural Networks 13

gather and maintain for other languages where one word can have many forms.
In our future experiments we plan to introduce some form of abstraction. Also,
it is not obvious from the machine learning literature how an n-best list could
be used in the model to improve the performance. This is another aspect that
will be addressed in our future experiments.

Dev Test
Goal Method Requested Goal Method Requested

model Acc. L2 Acc. L2 Acc. L2 Acc. L2 Acc. L2 Acc. L2

baseline 0.61 0.63 0.83 0.27 0.89 0.17 0.72 0.46 0.90 0.16 0.88 0.20
LecTrack 0.62 0.79 0.87 0.24 0.95 0.09 0.60 0.79 0.91 0.17 0.96 0.07

(Williams, 2014)10 0.71 0.74 0.91 0.13 0.97 0.05 0.78 0.35 0.95 0.08 0.98 0.04

Table 1. Performance on the DSTC2 data.

value baseline LecTrack

chinese 0.53 0.82
indian 0.49 0.79
korean 0.67 0.93

asian oriental 0.54 0.86
dontcare 0.98 0.88
european 0.61 0.80

italian 0.41 0.79
spanish 0.69 0.73

thai 0.14 0.64
...

traditinal 0.17 0.17
steakhouse 0.14 0.07

romanian 0.35 0.21
german 0.28 0.07

Table 2. Accuracy for the most frequent values for the food dialog state component
which have at least 100 test examples in the test set, and for some that contain between
10 to 20 examples in the test set.

3.5 Discussion

Our LSTM dialog state tracker is capable of learning from raw dialog text,
annotated with true dialog state component values at some timesteps. No spoken
language understanding unit is needed to pre-process the input for our model.
In addition, the model performance does not suffer if the input word sequences

14 Lukáš Žilka

are long, which is in accordance with other LSTM applications (Sutskever et al.,
2014).

Our model naturally handles the inter-slot dependence by projecting the in-
put sequence into a fixed-length vector from which all the dialog state component
predictions are made. However, the predictions are made independently for all
of the state components and the joint distribution is not explicitly modelled.

Provided the ASR decodes also non-speech events, e.g., the affirmative ”hmm”
or ”oh” or the information that the user is silent, the model can naturally learn
to interpret them and provide hints to the dialog manager, such as whether the
user seems to be confused, or if they started saying something and the dialog
manager should interrupt its speech production and listen instead. In noisy con-
ditions, waiting for silence is very limiting for the dialog system. The tracker’s
ability to process the input incrementally can overcome this issue and signal to
the dialog manager when the incoming speech starts to make sense. This can
lead to more human-like and interactive dialogs and simpler dialog managers.
Our model was designed to be able to predict at arbitrary time in the dialog the
full distribution over the dialog state components, and this mode of operation
costs no additional computation as opposed to other trackers.

3.6 Related Work

The only incremental dialog system in the literature that we are aware of is (Skantze
and Schlangen, 2009). In this paper, the authors describe an incremental dialog
system for number dictation as a specific instance of their incremental dialog
processing framework (Schlangen and Skantze, 2009). To track the dialog state,
they use a discourse modelling system (Skantze, 2008), which keeps track of the
confidence scores from the semantic parses of the input. The semantic parses
are produced by a grammar-based semantic interpreter (Skantze and Edlund,
2004) with a hand-coded context-free grammar. While their system is mostly
handcrafted, ours is trained using annotated dialog data, so we do not need the
handcrafted grammar and an explicit semantic representation of the input.

Using RNN for dialog state tracking has been proposed before (Henderson
et al., 2014b, Henderson et al., 2013). The dialog state tracker in (Henderson
et al., 2014b) uses an RNN, with a very elaborate architecture, to track the
dialog state turn-by-turn. Similarly to our model, their model does not need an
explicit semantic representation of the input. However, unlike our model, they
use tagged n-gram features, which allows them to perform better generalization
on rare but well-recognized values. Our model is capable of such generalization,
too, but it needs more data. We refrain from using the tagged features because
they introduce a preprocessing effort, and we are interested in a model that
can learn from the data directly without assuming any correspondence between
the names and values of the dialog state components and their surface forms
that occur in the dialog (e.g. that value “chinese” of the dialog state component
“food” will typically be represented as “chinese food” in the dialog). In English
dialog systems, it might be perceived as an unneccessary complication not to
leverage these tagged features, but when we consider other languages, where a

Dialog Management with Deep Neural Networks 15

word often has a lot of forms, it pays off, because the effort spent on producing
quality tagged features is non-trivial.

4 Future Work

There are several directions that we would like to explore further.

4.1 LSTM Dialog State Tracker

As suggested by the conducted experiments, the tracker seems to have problems
with the under-represented classes. A straightforward way how to address this
issue is by replacing the values in the input by placeholders, effectively delexi-
calizing the output classifier, and then replacing the values back. This will allow
us to learn a general model on a somehow aggregated dataset, thus we will have
more training data for less parameters, and it will allow us to extend the range of
values recognized without having to retrain the model. The cost of this approach
is that it will not be able to learn characteristics of specific values, and react on
specific value confusions by the recognizer.

Our model does not account for the probability of the 1-best hypothesis, thus
it cannot ignore bad recognition results, which results in a bad performance in
noisy conditions. One approach to introduce the ASR confidence score into our
model is through confidence embeddings. We can bin the confidence scale into
several bins, for example bin1=0.0-0.1, bin2=0.1-0.2, etc., and add to each input
word embedding a vector that corresponds to the bin of the word’s confidence.
There are various ways how to do it (vector addition, vector multiplication, or
vector concatenation). We will explore these possibilities and see how it influ-
ences the model’s performance.

Also, we just used the 1-best hypothesis of the ASR, but the literature sug-
gests that using the whole n-best list, the confusion network or the lattice rep-
resentation of the ASR hypothesis brings improvements in model’s recall. Thus
we decided to extend our model to use the confusion networks. Ideally we would
use the lattice, but because the confusion networks are available in the DSTC2
dataset and simpler to work with we will work with them at the beginning.

4.2 Knowledge Base Tracking

Similarly to Wikipedia that gathers information about the real world in textual
form, the Wikidata (Vrandečić, 2012) aims to gather the information about the
real world in a structured form, in the form of an entity graph. Each entity in the
graph represents something from the real world, for example a person, a country,
an animal, and the edges between the entities represent the relationships these
entities have among themselves. So far the dialog systems have always worked
with databases in the order of thousands of entities, however, with Wikidata, the
magnitude grows to millions entities and billions relationships. Thus the dialog
state tracking in dialog systems that will work with such a huge database will

16 Lukáš Žilka

need a special approach to be computationally tractable. Inspired by (Sutskever
et al., 2014), we will try to modify our LSTM tracker to handle such databases
well. The basic idea is to replace the output classifier layer for an output genera-
tor, effectively letting our state tracker to generate the answer word-by-word as
people would do, rather than as a million-dimensional vector. Then some stan-
dard information retrieval approach can retrieve the entity of interest from the
database.

The main challenge here will be to come up with training data that will allow
us to train such a tracker in a way that for different things from the real world
it learns how people refer to them and their relationships.

References

Bastien et al., 2012. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow,
I. J., Bergeron, A., Bouchard, N., and Bengio, Y. (2012). Theano: new features and
speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012
Workshop.

Bengio et al., 1994. Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-
term dependencies with gradient descent is difficult. Neural Networks, IEEE Trans-
actions on, 5(2):157–166.

Bohus and Rudnicky, 2006. Bohus, D. and Rudnicky, A. (2006). A k-hypotheses+
other belief updating model. In Proc. of the AAAI Workshop on Statistical and
Empirical Methods in Spoken Dialogue Systems.

Bottou, 2010. Bottou, L. (2010). Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer.

Bui et al., 2006. Bui, T. H., Poel, M., Nijholt, A., and Zwiers, J. (2006). A tractable
ddn-pomdp approach to affective dialogue modeling for general probabilistic frame-
based dialogue systems.

Campbell and Black, 1997. Campbell, N. and Black, A. W. (1997). Prosody and the
selection of source units for concatenative synthesis. In Progress in speech synthesis,
pages 279–292. Springer.

Collobert et al., 2011. Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7:
A matlab-like environment for machine learning. In BigLearn, NIPS Workshop,
number EPFL-CONF-192376.

Dowding et al., 1993. Dowding, J., Gawron, J. M., Appelt, D., Bear, J., Cherny, L.,
Moore, R., and Moran, D. (1993). Gemini: A natural language system for spoken-
language understanding. In Proceedings of the 31st annual meeting on Association for
Computational Linguistics, pages 54–61. Association for Computational Linguistics.

Dušek et al., 2014. Dušek, O., Plátek, O., Žilka, L., and Jurćıcek, F. (2014). Alex:
Bootstrapping a spoken dialogue system for a new domain by real users. In 15th
Annual Meeting of the Special Interest Group on Discourse and Dialogue, page 79.

Gorin et al., 1997. Gorin, A. L., Riccardi, G., and Wright, J. H. (1997). How may i
help you? Speech communication, 23(1):113–127.

Graves, 2013. Graves, A. (2013). Generating sequences with recurrent neural networks.
arXiv preprint arXiv:1308.0850.

Graves and Schmidhuber, 2005. Graves, A. and Schmidhuber, J. (2005). Framewise
phoneme classification with bidirectional lstm and other neural network architectures.
Neural Networks, 18(5):602–610.

Dialog Management with Deep Neural Networks 17

Gülçehre and Bengio, 2013. Gülçehre, Ç. and Bengio, Y. (2013). Knowledge matters:
Importance of prior information for optimization. arXiv preprint arXiv:1301.4083.

Hakkani-Tür et al., 2006. Hakkani-Tür, D., Béchet, F., Riccardi, G., and Tur, G.
(2006). Beyond asr 1-best: Using word confusion networks in spoken language un-
derstanding. Computer Speech & Language, 20(4):495–514.

Halevy et al., 2009. Halevy, A., Norvig, P., and Pereira, F. (2009). The unreasonable
effectiveness of data. Intelligent Systems, IEEE, 24(2):8–12.

He and Young, 2003. He, Y. and Young, S. (2003). A data-driven spoken language
understanding system. In Automatic Speech Recognition and Understanding, 2003.
ASRU’03. 2003 IEEE Workshop on, pages 583–588. IEEE.

Henderson et al., 2014a. Henderson, M., Thomson, B., and Williams, J. (2014a). The
second dialog state tracking challenge. In 15th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, page 263.

Henderson et al., 2013. Henderson, M., Thomson, B., and Young, S. J. (2013). Deep
Neural Network Approach for the Dialog State Tracking Challenge. In Proceedings
of SIGdial.

Henderson et al., 2014b. Henderson, M., Thomson, B., and Young, S. J. (2014b).
Word-based Dialog State Tracking with Recurrent Neural Networks. In Proceedings
of SIGdial.

Hochreiter and Schmidhuber, 1997. Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural computation, 9(8):1735–1780.

Hornik et al., 1989. Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer
feedforward networks are universal approximators. Neural networks, 2(5):359–366.

Jia et al., 2014. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick,
R., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093.

Karpathy and Fei-Fei, 2014. Karpathy, A. and Fei-Fei, L. (2014). Deep visual-semantic
alignments for generating image descriptions. arXiv preprint arXiv:1412.2306.

Kim, 2014. Kim, Y. (2014). Convolutional neural networks for sentence classification.
arXiv preprint arXiv:1408.5882.

Lee et al., 2014. Lee, B.-J., Lim, W., Kim, D., and Kim, K.-E. (2014). Optimizing
generative dialog state tracker via cascading gradient descent. In 15th Annual Meeting
of the Special Interest Group on Discourse and Dialogue, page 273.

Lemon et al., 2006. Lemon, O., Georgila, K., Henderson, J., and Stuttle, M. (2006).
An isu dialogue system exhibiting reinforcement learning of dialogue policies: generic
slot-filling in the talk in-car system. In Proceedings of the Eleventh Conference of
the European Chapter of the Association for Computational Linguistics: Posters &
Demonstrations, pages 119–122. Association for Computational Linguistics.

Levin et al., 2000. Levin, E., Pieraccini, R., and Eckert, W. (2000). A stochastic model
of human-machine interaction for learning dialog strategies. Speech and Audio Pro-
cessing, IEEE Transactions on, 8(1):11–23.

Mairesse et al., 2010. Mairesse, F., Gašić, M., Jurč́ıček, F., Keizer, S., Thomson, B.,
Yu, K., and Young, S. (2010). Phrase-based statistical language generation using
graphical models and active learning. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, pages 1552–1561. Association for
Computational Linguistics.

Masuko et al., 1996. Masuko, T., Tokuda, K., Kobayashi, T., and Imai, S. (1996).
Speech synthesis using hmms with dynamic features. In Acoustics, Speech, and Sig-
nal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International
Conference on, volume 1, pages 389–392. IEEE.

18 Lukáš Žilka

Meza-Ruiz et al., 2008. Meza-Ruiz, I. V., Riedel, S., and Lemon, O. (2008). Spoken
language understanding in dialogue systems, using a 2-layer markov logic network:
Improving semantic accuracy. Semantics and Pragmatics of Dialogue (LONDIAL),
page 191.

Mikolov et al., 2013. Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

Oerder and Ney, 1993. Oerder, M. and Ney, H. (1993). Word graphs: An efficient
interface between continuous-speech recognition and language understanding. In
Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE Interna-
tional Conference on, volume 2, pages 119–122. IEEE.

Pieraccini and Huerta, 2005. Pieraccini, R. and Huerta, J. (2005). Where do we go
from here? research and commercial spoken dialog systems. In 6th SIGdial Workshop
on Discourse and Dialogue.

Pieraccini and Levin, 1992. Pieraccini, R. and Levin, E. (1992). Stochastic repre-
sentation of semantic structure for speech understanding. Speech Communication,
11(2):283–288.

Pieraccini et al., 1992. Pieraccini, R., Tzoukermann, E., Gorelov, Z., Levin, E., Lee,
C.-H., and Gauvain, J.-L. (1992). Progress report on the chronus system: Atis bench-
mark results. In Proceedings of the workshop on Speech and Natural Language, pages
67–71. Association for Computational Linguistics.

Povey et al., 2011. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O.,
Goel, N., Hannemann, M., Motĺıček, P., Qian, Y., Schwarz, P., et al. (2011). The
kaldi speech recognition toolkit.

Pulman et al., 1996. Pulman, S. G. et al. (1996). Conversational games, belief revision
and bayesian networks. In Computational Linguistics in the Netherlands. Citeseer.

Rubinstein and Kroese, 2004. Rubinstein, R. Y. and Kroese, D. P. (2004). The cross-
entropy method: a unified approach to combinatorial optimization, Monte-Carlo sim-
ulation and machine learning. Springer Science & Business Media.

Schlangen and Skantze, 2009. Schlangen, D. and Skantze, G. (2009). A general, ab-
stract model of incremental dialogue processing. In Proceedings of the 12th Con-
ference of the European Chapter of the Association for Computational Linguistics,
pages 710–718. Association for Computational Linguistics.

Skantze, 2008. Skantze, G. (2008). Galatea: A discourse modeller supporting concept-
level error handling in spoken dialogue systems. In Recent Trends in Discourse and
Dialogue, pages 155–189. Springer.

Skantze and Edlund, 2004. Skantze, G. and Edlund, J. (2004). Robust interpretation
in the higgins spoken dialogue system. In COST278 and ISCA Tutorial and Research
Workshop (ITRW) on Robustness Issues in Conversational Interaction.

Skantze and Schlangen, 2009. Skantze, G. and Schlangen, D. (2009). Incremental di-
alogue processing in a micro-domain. In Proceedings of the 12th Conference of the
European Chapter of the Association for Computational Linguistics, pages 745–753.
Association for Computational Linguistics.

Smith, 2014. Smith, R. W. (2014). Comparative error analysis of dialog state tracking.
In 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue, page
300.

Socher et al., 2012. Socher, R., Huval, B., Manning, C. D., and Ng, A. Y. (2012).
Semantic compositionality through recursive matrix-vector spaces. In Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages 1201–1211. Association for
Computational Linguistics.

Dialog Management with Deep Neural Networks 19

Sønderby and Winther, 2014. Sønderby, S. K. and Winther, O. (2014). Protein sec-
ondary structure prediction with long short term memory networks. arXiv preprint
arXiv:1412.7828.

Stratos et al., . Stratos, K., Kim, D.-k., Collins, M., and Hsu, D. A spectral algorithm
for learning class-based n-gram models of natural language.

Sun et al., 2014. Sun, K., Chen, L., Zhu, S., and Yu, K. (2014). The sjtu system for
dialog state tracking challenge 2. In 15th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, page 318.

Sutskever et al., 2014. Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to se-
quence learning with neural networks. In Advances in Neural Information Processing
Systems, pages 3104–3112.

Thomson and Young, 2010. Thomson, B. and Young, S. (2010). Bayesian update of
dialogue state: A pomdp framework for spoken dialogue systems. Computer Speech
& Language, 24(4):562–588.

Tür et al., 2002. Tür, G., Wright, J. H., Gorin, A. L., Riccardi, G., and Hakkani-
Tür, D. Z. (2002). Improving spoken language understanding using word confusion
networks. In INTERSPEECH. Citeseer.

Vrandečić, 2012. Vrandečić, D. (2012). Wikidata: A new platform for collaborative
data collection. In Proceedings of the 21st international conference companion on
World Wide Web, pages 1063–1064. ACM.

Walker, 2000. Walker, M. A. (2000). An application of reinforcement learning to dia-
logue strategy selection in a spoken dialogue system for email. Journal of Artificial
Intelligence Research, pages 387–416.

Wang et al., 2003. Wang, Y.-Y., Acero, A., and Chelba, C. (2003). Is word error rate
a good indicator for spoken language understanding accuracy. In Automatic Speech
Recognition and Understanding, 2003. ASRU’03. 2003 IEEE Workshop on, pages
577–582. IEEE.

Wang et al., 2005. Wang, Y.-Y., Deng, L., and Acero, A. (2005). Spoken language
understanding. Signal Processing Magazine, IEEE, 22(5):16–31.

Ward and Issar, 1994. Ward, W. and Issar, S. (1994). Recent improvements in the cmu
spoken language understanding system. In Proceedings of the workshop on Human
Language Technology, pages 213–216. Association for Computational Linguistics.

Williams et al., 2013. Williams, J., Raux, A., Ramachandran, D., and Black, A.
(2013). The dialog state tracking challenge. In Proceedings of the SIGDIAL 2013
Conference, pages 404–413.

Williams, 2007. Williams, J. D. (2007). Applying pomdps to dialog systems in the
troubleshooting domain. In Proceedings of the Workshop on Bridging the Gap: Aca-
demic and Industrial Research in Dialog Technologies, pages 1–8. Association for
Computational Linguistics.

Williams, 2014. Williams, J. D. (2014). Web-style ranking and slu combination for dia-
log state tracking. In 15th Annual Meeting of the Special Interest Group on Discourse
and Dialogue, page 282.

Yoshimura et al., 1999. Yoshimura, T., Tokuda, K., Masuko, T., Kobayashi, T., and
Kitamura, T. (1999). Simultaneous modeling of spectrum, pitch and duration in
hmm-based speech synthesis.

Ze et al., 2013. Ze, H., Senior, A., and Schuster, M. (2013). Statistical parametric
speech synthesis using deep neural networks. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Conference on, pages 7962–7966. IEEE.

Zen and Sak, 2015. Zen, H. and Sak, H. (2015). Unidirectional long short-term mem-
ory recurrent neural network with recurrent output layer for low-latency speech syn-
thesis. In Acoustics, Speech and Signal Processing.

20 Lukáš Žilka

Zen et al., 2009. Zen, H., Tokuda, K., and Black, A. W. (2009). Statistical parametric
speech synthesis. Speech Communication, 51(11):1039–1064.

Zettlemoyer and Collins, 2007. Zettlemoyer, L. S. and Collins, M. (2007). Online learn-
ing of relaxed ccg grammars for parsing to logical form. In EMNLP-CoNLL, pages
678–687.

