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Abstract

In this thesis proposal, we present a method for
creating word-formation networks by transfer-
ring information from another language. The
proposed algorithm utilizes an existing word-
formation network and parallel texts and cre-
ates a low-precision and moderate-recall net-
work in a language, for which no manual an-
notations need to be available. We then extend
the coverage of the resulting network by us-
ing it to train a machine-learning method and
applying the resulting model to a larger lexi-
con, obtaining a moderate-precision and high-
recall result. The approach is evaluated on
French, German and Czech against existing
word-formation networks in those languages.
We also report on experiments with modeling
semantics of word-formation relations using
word embeddings and present our plans for fur-
ther development.

1 Introduction

A word-formation network is a dataset capturing
information about how are lexemes created using
derivation, compounding, conversion and other
types of relations. Such networks can be created
using various degrees of automatization. On one
end of the spectrum are networks created by man-
ually annotating the individual relations, resulting
in a dataset that is highly precise, but either expen-
sive to create or small in size.
The proposed thesis aims to explore methods

from the opposite part of the scale: methods that
require little or no human input or in-language
annotations of word-formation relations. Instead,
we seek to utilize a combination of unsupervised
machine learning and transfer of existing word-
formation networks from other languages. We
hope that it is possible to emulate the successes
of transfer learning methods used for lemmatiza-
tion (Rosa and Žabokrtský, 2019b), part-of-speech

tagging (Zhang et al., 2016) or syntactic parsing
(McDonald et al., 2011); tasks, which are in many
ways similar to ours. The resultingmethods should
allow for a cheap and rapid creation of word-
formation networks for many languages, although
potentially at a cost of lower quality.

1.1 Why is word formation difficult
There are many issues which make the task of cor-
rectly recognizing word-formational relations dif-
ficult. Chiefly, for derived lexemes, it is diffi-
cult to recognize the extent of allomorphy. Some
derivatives accumulate so many morphological,
phonological and orthographical changes at once
that the relation becomes almost opaque (e.g. the
Czech sejmout (“to take off”) → sňatý (“taken
off”)). In other cases, misanalyzing allomor-
phy may lead to incorrect derivation (recogniz-
ing the incorrect derivation of hůl (“cane”) →
holka (“girl”) by analogy with e.g. stůl (“table”)
→ stolek (“small table”) or Eiffelův (“Eiffel’s”)→
Eiffelovka (“Eiffel Tower”)).
Very often, it is even difficult to recognize

whether a lexeme is derived or non-derived. One
useful feature is the length of its lemma, but it
can be misleading e.g. in the case of loanwords,
which are considered to be non-derived despite
their length. Also, the degree of lexicalization may
result in disagreement even among native speak-
ers, with some e.g. deriving kolej (“rail”) from kolo
(“wheel”) and others considering it non-derived.
Such disagreements can also be caused by “folk
etymology”, where different people interpret the
derivations differently, e.g. mísa (“bowl”) can be
derived from mísit (“to mix”) or considered a non-
derived loanword from Latin mēnsa (“table”).
The direction of derivation is also a contested is-

sue for many lexemes, especially for neoclassical
formations and internationalisms. A useful feature
for determining the direction can be the ratio of
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corpus frequencies of the two words, but in many
cases, semantic analysis is required (Panocová,
2017).
Another problem is delineating derivation from

other processes, such as inflection. The research
on word-formation is usually performed only on
lemmas, but sometimes it is necessary to also
consider inflected word forms. For example, ac-
cording to long-standing Czech linguistic tradition,
negation is considered to be an inflectional process,
but negatedwords are used to form derivatives (e.g.
nejistý-znejistět).

1.2 Scope of our current experiments
The experiments presented in this thesis proposal
focus on one-to-one relations between lexemes.
We omit compounding altogether, because apart
from the fact that it requires correct identification
of two or more parents instead of just one, it also
often combines with derivation in a two-step pro-
cess, such as in the Czech compound pes (“dog”) +
vést (“to lead”) → psovod (“dog handler”), where
the lexeme vést is first derived to form the unat-
tested *vod. This can also happen with pure deriva-
tion (some theories analyze e.g. the circumfixation
les (“forest”)→ polesí (“forest district”) as double
derivation (Bauer, 2014, p. 127)), but it is rarer.
Therefore, we simplify the task of creating a

word-formation network to a task of assigning
each lexeme a single parent lexeme, or deciding
that it is unmotivated and should function as a root
of the word-formational family. This is done to
simplify the task and to get a workable proof-of-
concept, which we will expand on in the future.
Moreover, although we aim to produce algo-

rithms and models which would be able to cre-
ate word-formation networks for any language
with mostly concatenative morphology and writ-
ten in an alphabetic script, we currently focus on
French, German and Czech, because we can these
are among the few languages for which a large,
high-quality word-formation network already ex-
ists (Kyjánek, 2018). These existing networks
serve a dual role as data for transfer on the source
side, and evaluation datasets on the target side.

1.3 Overview of this proposal
Other researchers have shown that a word-
formation network can be created from scratch
using pattern-mining approaches utilizing or-
thographic similarities and differences between
words, or using word embeddings as a proxy for

semantic similarity. We outline several possible
methods in Section 2 below. Our work tries to ex-
tend and improve upon these results by transfer-
ring the necessary information from another lan-
guage and we especially aim at supporting under-
resourced and small languages. So far, the low-
resource setting is merely simulated, because eval-
uating our approach on existing resources allows
for more rapid development and verification of hy-
potheses.

The experiments we’ve conducted so far attempt
to translate word-formation networks using paral-
lel texts and off-the-shelf tools for tokenization and
lemmatization. The main idea behind our meth-
ods is that many types of word-formational rela-
tions have parallels across languages. For exam-
ple, actor nouns are typically derived from verbs –
and if we take two such nouns from two languages,
which are translations of one another, chances are
that their predecessor verbs will also be translation
equivalents (e.g. the Czech and English relations
opravit (“to repair”)→ opravář (“repairman”) are
parallel, even though one uses derivation and the
other one compounding). Therefore, we believe
that some information about word-formation rela-
tions can be shared across languages.

We model this sharing by constructing a word-
translation lexicon using word alignments gath-
ered from parallel texts. This lexicon is used to
translate an existing word-formation network to
create a list of potential word-formation relations
ranked by probability. By further filtering the
potential relations by orthographic distance and
selecting best-scoring parents using a maximum
spanning tree algorithm, we obtain a moderate-
precision and low-recall set of word-formation re-
lations. This model is described in Section 3.

In Section 4, we describe two experiments that
aim at further improving the transfer algorithm by
including semantic information from word embed-
dings. The recall of the transfer algorithm can
be improved by extracting the discovered word-
formation paradigms using a statistical machine-
learning method and finding more examples of
them across the lexicon, as shown in Section 5.

In section 6, we establish the methods and
metrics used for evaluating the quality of word-
formation networks, and we analyze our results in
Section 7. Appendix A contains samples of out-
puts of the transfer method.
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2 Related work

Several unsupervised methods of creating word-
formation networks have been proposed before.
Baranes and Sagot (2014) created a method
that infers derivational relations from inflectional
paradigms and reported a very high precision (80-
98% depending on the language). The relations
are detected by first extracting a list of possible
prefixal and suffixal changes and then pattern-
matching pairs of words against it. The inflectional
paradigms are used for reducing problems with
suppletion and allomorphy within stems, which
would otherwise cause the prefix- and suffix pat-
tern matching to fail – e.g. if we know that worse
is a comparative form of the lemma bad, we can
link the lexeme worsen to bad using the rule -e→
-en.

A different solution to the problem of allomor-
phy is proposed by Lango et al. (2021), who use a
pattern-mining method to detect rules of allomor-
phy jointly with affixation. The patterns are ex-
tracted automatically in an unsupervised fashion
and the potential relations are ranked by amachine-
learning model trained on a small manually anno-
tated word-formation network.
Batsuren et al. (2019) deal with cognate detec-

tion (i.e. linking words of common origin, identi-
cal meaning and similar spelling in different lan-
guages) using a multilingual approach. The multi-
lingual data they use is a specialized linguistic re-
source containing information about etymological
ancestry, which means that their methods are not
directly applicable in our semi-supervised setting.
A method utilizing cosine distance between

neural-network word embeddings was used by
Üstün and Can (2016) to construct an implicit
word-formation network as an intermediate step in
morphological segmentation. These results show
that word embeddings contain some information
about derivational relations, which is further sup-
ported by the fact that it is (to some extent) possible
to use them to automatically differentiate between
derivational and inflectional relations in an unsu-
pervised setting (Rosa and Žabokrtský, 2019a). In
our prior research, we analyzed word embeddings
to show that words created through similar word-
formation processes have similar embedding dif-
ferences (Musil et al., 2019); however, we did not
use these results to construct a network out of word-
embedding data.
Transfer learning is a general method useful for

improving results in under-resourced settings by
utilizing knowledge gained in different but simi-
lar settings. For example, it is possible to trans-
fer delexicalized syntactic parser models between
similar languages and get better results than fully
unsupervised parsers, and the advantage improves
when combining multiple models transferred from
different sources (McDonald et al., 2011). It is
also possible to transfer information between dif-
ferent tasks in the same language, not just between
identical tasks for different languages. For ex-
ample, many neural network models for process-
ing natural language benefit from using pretrained
word-embeddings, even though the embeddings
are trained on a different task.
Generally, the more similar the settings, the

more successful the transfer is – transferring mod-
els between languages with similar grammar gives
a better result than using a distant source and tar-
get. The similarity can be approximated using met-
rics such as KLcpos3 based on trigrams of part-of-
speech tags (Rosa, 2018). Multi-source transfer
has the additional advantage that it can utilize infor-
mation even frommore distant sources: Chen et al.
(2019) demonstrate that an adversarially-trained
neural network can learn common features for indi-
vidual language pairs and efficiently transfer infor-
mation in a massively multilingual setup without
any parallel data or target-side annotations.
A useful tool for transfer learning is multilin-

gual word embeddings. They allow us to train a
model on a high-quality resource available for one
language, and easily apply it on under-resourced
languages, as long as the word-embedding spaces
used for representing language data are similar
enough. As an example, a successful transfer of
a part-of-speech tagger using multilingual embed-
dings was performed by Zhang et al. (2016). Cre-
ating the multilingual word embeddings generally
requires some amount of parallel data, but the
amount needed is not as large as for training align-
ments (Mikolov et al., 2013b; Gouws et al., 2015).
Multilingual embeddings can also be used to

infer word translation dictionaries, as shown by
Artetxe et al. (2017). Another possible approach
to creating a word translation dictionary is shown
by Lample et al. (2018), who use adversarial neu-
ral networks with character-level embeddings to
align pre-trained word embeddings for multiple
languages.
We have previously shown that it is possible
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to create a word-formation network using a neu-
ral network trained in a supervised way (Vidra,
2018). The neural network used a character-level
encoder-decoder architecture with attention and
achieved 90% accuracy in predicting the correct
parent when trained on 600 000 derivational re-
lations from DeriNet (Vidra, 2018, p. 49). The
scores could be further improved by constraining
the network to only generate words from the lexi-
con, instead of sometimes producing novel or erro-
neous words due to the character-by-character gen-
eration. However, the models produced by this ar-
chitecture are not easily transferable between lan-
guages, as they use character-level embeddings,
which are more language-specific than word em-
beddings, and they require a large amount of train-
ing data (at least 200 000 relations are necessary
for reliable results, making even the largest word-
formation networks, such as French Démonette
with 96 000 or German DErivBase with 51 000 re-
lations, too small).

3 Transfer algorithm

To transfer a word-formation network from a
source to a target language, we view the network
as a list of parent-child derivational relations and
attempt to find the best parent for each target-side
lexeme using a word-translation model together
with several target-side similaritymetrics. Concep-
tually, the source lexeme C is first backtranslated
into the source language as C ′, a suitable parent
P ′ of the translation is found in the source word-
formation network and this parent is translated into
the target language as P .
The translations and backtranslations are found

using a probabilistic word translation lexicon in-
duced fromword-aligned data obtained by running
FastAlign (Dyer et al., 2013) on a lemmatized par-
allel corpus.
Since there may be multiple possible transla-

tions of each lexeme, and because themost suitable
parent needn’t be the direct parent ofC ′, but rather
another member of its word-formational family
(e.g. the Czech lexemes svoboda (“freedom”) →
svobodný (“free”) have the opposite derivational
relation from English or German frei → die Frei-
heit), the process is conducted probabilistically,
yieldingmany potential parentsP for eachC, each
with a score. The target network is then found by
finding the spanning tree of this graph of relations
which maximizes the product of the scores.

The score of each potential relation is obtained
as a weighted arithmetic mean of one minus the rel-
ative edit distance betweenC andP and their trans-
lation score. The relative edit distance is the Lev-
enshtein distance between the lemmas of C and P
divided by the maximum of their lengths, yielding
a number between 0 and 1.
We define the translation score of C and

P as
∑

∀C′,P ′
|align(C,C′)|∑
∀x|align(C,x)| · 0.5dist(C

′,P ′) ·
|align(P ′,P )|∑
∀x|align(P

′,x)| , where |align(x, y)| denotes the
number of alignments between lexemes x and y
seen in the aligned data and dist(C ′, P ′) denotes
the number of relations on the shortest path from
C ′ to P ′ in the source network.
Therefore, the translation score is the product of

the conditional probability of obtaining the back-
translated lexeme C ′ given the lexeme C and the
conditional probability of obtaining the translated
parent lexeme P given P ′, halved for each rela-
tion that has to be traversed between C ′ and P ′. If
there are multiple possible choices of C ′ and P ′

for the given C and P , their translation scores are
summed.
To prevent relations with low scores from being

selected in the case where there are no better can-
didates, a relation is only considered for inclusion
if its score is higher than a threshold.
An illustration of the translation score calcula-

tion is given in Figure 1.
The transfer algorithm is parametrized by the

weights used for calculating the weighted mean of
the translation and edit distance scores, and by the
threshold. Since we intend to use the transfer algo-
rithm in an unsupervised setting, it is necessary to
obtain the weights without using e.g. grid search or
gradient descent. We have, however, found that al-
though the algorithm is moderately sensitive to the
setting of the weights and the threshold, the opti-
mal settings in all tested languages are nearly iden-
tical. Therefore, we empirically set the weight of
the edit distance to 5, the weight of the translation
to 1 and the threshold to 0.8.
The algorithm described above has been intro-

duced in a paper accepted to the DeriMo 2021
workshop (Vidra, 2021).

4 Using embeddings to model
word-formation semantics

The transfer algorithm selects the best derivational
edges based on two scores, corresponding to ortho-
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Figure 1: An example of finding a parent for the German lexeme Lehrer (“teacher”) by transferring information
from a French word-formation network, with word-formation relations in grey and alignments in green. Lehrer is
aligned to enseigneur 3∕5 times, which has enseigner available through 1 relation, to which lehren is aligned 4∕4 times.
Lehrer is also aligned to instructeur 2∕5 times, which has instruire available through 1 relation, to which lehren is
aligned 1∕4 times and instruieren 3∕4 times. The translation score of lehren→ Lehrer is therefore 3

5 ·
1
2 ·

4
4 +

2
5 ·

1
2 ·

1
4 =

0.35while the score of instruieren→ Lehrer is 2
5 ·

1
2 ·

3
4 = 0.15. The relative edit distance is 2∕6 for lehren→ Lehrer,

and 8∕11 for instruieren → Lehrer. Therefore, the final score of lehren → Lehrer is 0.35+5·(1−2/6)
6 = 0.336 and the

score of instruieren → Lehrer is 0.15+5·(1−8/11)
6 = 0.252.

graphic similarity and translation context similar-
ity. Upon inspection of the outputs of the trans-
fer algorithm, we can observe two common types
of errors produced when one score overpowers the
other one, with authentic examples taken from the
results:

1. Sometimes, the model connects semantically
unrelated words with similar spelling, such as
Beruf (“profession”) and liberal (“liberal”),
because the orthographic distance is rela-
tively small (they both have ber in common).

2. In other cases, the model connects words
which are not word-formationally related in
the target language, such as anbauen (“to
build on, to plant”) and kultivieren (“to cul-
tivate”), because they share common transla-
tions in the source language.

The first problem is caused chiefly by the fact
that the optimal setting of the weights used to
combine the translation and orthographic similar-
ity scores diverges – increasing the weight of the
orthographic similarity produces a marginally bet-
ter model when evaluated against gold-standard
data. This way, the model reduces the second
problem while making the first one worse. We
attempted to solve the issue by adding two other
scores, both representing different aspects of se-
mantic similarity. In theory, the additional infor-
mation should help the model detect large seman-
tic shifts between unrelatedwords and discard such
wrong relations. These two scores are described in
the following two subsections.

4.1 Modeling semantic distance

One score models semantic similarity of the two
lexemes simply as their cosine similarity, based on
the hypothesis that word-formationally related lex-
emes share a common root and therefore should
be semantically similar. This hypothesis is true
in practice – derivationally related lexemes have a
higher cosine similarity between their embedding
vectors than indirectly related or unrelated ones, as
shown in Figure 2. Note that the relation between
word-formational closeness and semantic similar-
ity is a one-way implication. Many lexemes, e.g.
synonyms, have similar semantics even without
any common word-formational ancestry.
We’ve tested several types of embeddings:

Word2Vec (Mikolov et al., 2013a) using publicly
available vectors from the Gensim-data project
(Řehůřek and Sojka, 2010) pretrained on unlemma-
tized data and vectors manually trained on lemma-
tized data from the CoNLL 2017 parsing shared
task (Ginter et al., 2017); FastText (Bojanowski
et al., 2017), again using both publicly available
pretrained ones (Grave et al., 2018) and vectors
we trained ourselves on lemmatized texts, and pre-
trained Multilingual BERT (Devlin et al., 2019).
Since the BERT embedding vectors for a given
word depend on its context, we’ve obtained con-
crete word embeddings by averaging the context-
dependent embeddings of that word’s word pieces
across a corpus.
Each of the three types of embeddings has ad-

vantages and disadvantages; in the next few para-
graphs, we will list those that are of particular in-
terest to us.
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Figure 2: A histogram of FastText embedding cosine similarity between parents and children of relations proposed
by the transfer algorithm on the Czech → German transfer pair; with curves for correct relations (found in the
gold-standard data) and incorrect ones plotted separately. In the left plot, the negative examples are scaled down
by a factor of 1 000. On the right, both curves have an identical scale; the curve for positive elements is too low to
be visible.

The Word2Vec embeddings are trained on
whole words using only their sentence-level con-
text, while FastText and BERT break words down
into subwords. Although subwords don’t corre-
spond to morphemes, syllables, phonemes or any
other linguistically meaningful unit, this still gives
the latter two methods partial access to the or-
thographic composition of the word in question.
This is both a benefit and a curse. The advan-
tage of subwords is that the model can produce
an embedding of any word, including previously
unseen ones (as long as they are composed using
only characters from the training alphabet). The
disadvantage is that these embeddings are created
by averaging embeddings of individual subwords.
If those subwords happen to correspond (even
loosely) to morphemes, the difference between
two words sharing the same stem will be wholly
determined by the embeddings of the affixes. For
example, assuming subword splits are found at
“∙”, the differences in FastText vectors of skříň
(“wardrobe”) – skříň∙ka (“cabinet”) (diminution),
spoj (“connection”) – spoj∙ka (“connector / con-
junction / messenger / clutch”) (instrument), baron
(“baron”) – baron∙ka (“baroness”) (grammatical
gender change) and čelen (“bowsprit”) – čelen∙ka
(“headband”) (distant relation through čelo (“fore-
head”)) will be identical. This would prevent us
from distinguishing correct and incorrect deriva-
tions based on their semantics.

This model of semantics of word-formation re-
lations suffers from one large issue – it considers
semantically close pairs of words to be more prob-
ably related than distant words. But this reflects

reality only in cases where the only difference be-
tween the derivational parent and child is mostly
grammatical, such as conversion, where speakers
create the child word to better fit a particular sen-
tence context. Usually, the reason for using word
formation in the first place is to create a seman-
tically different word that is related to its parent
only in some aspects. For example, the adjective
vodovatý (“watery”) describes a thing that shares
some properties with water, but it is not water.
Therefore, we expect that the two lexemes con-
nected by a word-formation relation will exhibit
systematic semantic shifts. We describe how we
try to exploit these shifts in the following subsec-
tion.

4.2 Modeling semantics of affixal patterns

Note: The contents of this subsection are a result of
collaboration with colleagues Tomáš Musil (Musil
et al., 2019) and Jan Bodnár (paper in preparation).
One nice property shared by all types of embed-

dings we tested is, that they (to some degree) pre-
serve semantic differences between words. For ex-
ample, the vector difference between the embed-
dings for the words Berlin and Germany should
be roughly similar to the difference between Paris
andFrance (Mikolov et al., 2013a). We have previ-
ously verified that this property extends to deriva-
tional relations as well and that it is even possible
to use unsupervised clustering methods to distin-
guish between different semantic types of deriva-
tional relations (Musil et al., 2019).
This means that the embedding difference

between Lehrer (“teacherMASC”) → Lehrerin
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(“teacherFEM”) andMaler (“painterMASC”)→Ma-
lerin (“painterFEM”) should be similar, but at the
same time distinct from the difference between e.g.
Fahrer (“driver”)→ Beifahrer (“front passenger”)
or schwer (“heavy”)→ Schwerin (“Schwerin, city
in Mecklenburg-Vorpommern”). A caveat is that
the expected difference is sometimes identical
even for words which are not word-formationally
related, because the difference between e.g. Lehrer
→ Lehrerin is the same as for Mann (“man”) →
Frau (“woman”). We assume that such spurious
relations would be rejected by their large ortho-
graphic distance in a different component of the
combined model.
We exploit the systematicity by scoring how

well the embedding difference of each potential
word-formation relation corresponds to the ex-
pected difference. To do this, we first extract the
affixal change pattern (see below) of each poten-
tial word-formation relation identified by the trans-
fer algorithm. Extracting the exact morpheme dif-
ference is a difficult task (Vidra, 2018), but we
approximate it by four steps: First, we lowercase
the lemmas of both lexemes. Second, we find the
longest common contiguous substring of the lem-
mas of the two lexemes and consider the leftover
substrings to be the affixes. Third, we gather these
affixal patterns for all relations. Fourth, we clas-
sify each relation as belonging to all affixal pat-
terns that match the ends of the lemmas, regard-
less of what’s left over. For example, the relation
Kampf (“a fight”) → kämpfen (“to fight”) has the
longest common contiguous substring mpf and af-
fixal pattern ka-→ kä- + -en, but it is also assigned
to the pattern λ → -en found e.g. in Bad (“a bath”)
→ baden (“to bathe”) despite the umlaut change.
After we have a list of matching relations for

each affixal pattern, we compute the mean of all
the differences and consider it to be the prototyp-
ical semantic difference embodied by the affixal
pattern. A semantic similarity score of any relation
is found as the cosine similarity between the mean
of its affixal pattern and the embedding difference
of the relation.
The method of assignment relations to patterns

results in any given relation potentially being as-
signed to multiple patterns. We do this to avoid
most issues with allomorphy, resulting in more pre-
cise estimates of the means – without this, mean
estimates for many patterns would consist of only
a single example from the corpus.

The obvious downside is that many patterns will
get mixed up with semantically unrelated relations.
For example, pošta (“post (office)”) → poštovní
(“postal”) has the affixal pattern -a→ -ovní, but it
is also assigned to -a→ po- + -í found in e.g. voda
(“water”) → povodí (“drainage basin”) and λ →
po- found in e.g. chodit (“to walk”) → pochodit
(“to go well”).
To reduce the impact of these spurious assign-

ments, we can split a pattern into multiple means
by clustering the assigned differences. The clus-
tering is done using K-Means (Lloyd, 1982) with
K ranging from 1 to 30, and selecting the K
which minimizes the Akaike information criterion
(Akaike, 1974). This generally results in 1-3 clus-
ters per pattern, with several patterns with a high
degree of spuriousness (such as the -a → -í men-
tioned above) being split into more. The seman-
tic similarity score of a relation is then calculated
against the closest cluster in the pattern.

5 Expansion through machine learning

The word-formation network obtained via cross-
lingual transfer covers only lexemes with align-
ments, i.e. high-frequency ones. Therefore, it is
desirable to increase coverage of lower-frequency
parts of the lexicon and lexemes not seen in the
parallel data. We perform this by extracting affixal
patterns from the transferred network and applying
them across the data.
To do this, we use the transferred network as

a seed to train a machine learning method to pre-
dict derivational relations by classifying pairs of
lexemes as either directly derived or non-derived
from one another. The output network is obtained
by finding themaximum spanning tree of the graph
of predictions. The features used for classification
are the one-hot-encoded part-of-speech categories
of both lexemes, their edit distance, the difference
of their lengths, whether each of them starts with
a capital letter and the frequency of their affixal
pattern as seen in the training dataset.
Since classifying all pairs of lexemes found in

the dataset is too computationally expensive, we
only sample pairs of lexemes that are near one an-
other when the dataset is lexicographically sorted
by lemma, in both prograde and retrograde fash-
ions. The prograde-sorted list puts lemmas with
common beginnings near each other, meaning that
pairs of words differing only in short suffixes
will be selected for classification. The retrograde-
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sorted one does the same with lemmas differing
only in a short prefix.
We perform the lexicographic sorting on upper-

cased lemmas stripped of accent marks so that e.g.
the German word Wunsch (“a wish”) sorts close
to wünschen (“to wish”) despite the differences in
case and the presence or absence of the umlaut.
Empirically, looking at a window of ±5 lexemes

catches 85% of all possible derivational relations
in DErivBase, and ±10 catches 90%. On Démon-
ette, 96% of derivations are within ±5 and 98% are
within a ±10 window. In DeriNet, a window of
±5 contains 85% of all relations and ±10 contains
90%.
We’ve evaluated multiple classification meth-

ods implemented in the scikit-learn package (Pe-
dregosa et al., 2011), namely SVC, LogisticRe-
gression, AdaBoostClassifier, KNeighborsClassi-
fier, DecisionTreeClassifier, BernoulliNB and Per-
ceptron and selected logistic regression for its con-
sistent evaluation performance.

6 Evaluation Method

We evaluate the performance of our systems by
measuring precision, recall and accuracy in the
task of assigning a parent to a lexeme. We define
precision as the ratio of correctly predicted rela-
tions to all predicted relations, recall as the ratio
of correctly predicted relations to all gold relations
and accuracy as the ratio of correctly assigned par-
ents or correctly recognized non-derived lexemes
to all gold lexemes. Therefore, the precision and
recall don’t take into account non-derived lexemes,
while the accuracy does. The gold-standard data
is taken from the existing word-formation network
for the target language.
Because the set of lexemes captured in the trans-

ferred network differs from the one used in the
gold-standard data, we calculate the metrics in two
ways, which differ in their treatment of missing
lexemes. “External” measures consider all gold-
standard relations of lexemes missing from the
evaluated network to be false negatives, while the
“internal” measures ignore them instead and only
measure scores on the intersection of the two lexi-
cons. The baseline measures and the networks ob-
tained by machine learning are created from the
set of lexemes found in the gold-standard network,
which makes the internal and external measures
identical.

6.1 Baselines

To better evaluate the quality of the results, it is
helpful to establish upper and lower bounds of rea-
sonably achievable scores. For the lower bound,
we came up with two baselines, one trivial, called
“empty”, and one inspired by the purely left- or
right-branching parse, the standard baseline in syn-
tactic parsing, called “closest-shorter”.
The empty baseline for a given lexicon is calcu-

lated as the scores of an empty word-formation net-
work created over that lexicon, i.e. a network with-
out any relations. The lexemes from gold-standard
data which have no assigned parent are therefore
evaluated as correct, while all lexemes with par-
ents are incorrect, resulting in unmeasurable (zero)
precision, zero recall and moderate-to-high accu-
racy.
The closest-shorter baseline gives each lexeme

four options for its parent and selects the onewhich
has a shorter lemma and the closest orthographic
distance, as measured by the ratio of the length of
the longest common contiguous substring to the
sum of lengths of the two lemmas. The options
to choose from are the previous and next lexemes
in prograde sorting of the lexicon, and the previous
and next lexemes in retrograde sorting. The lemma
length criterion means that lexemes surrounded
by longer neighbors in both prograde and retro-
grade sorting of the lexicon remain non-derived.
We have already observed that both ends of most
derivational relations lie within a small window on
a sorted lexicon, making this baseline rather strong
in terms of both precision and recall.
The upper bounds can be estimated by inter-

annotator agreement on the task of derivational par-
ent assignment, which we performed during the de-
velopment of DeriNet 1.0 (Vidra, 2015). To mea-
sure it, we had two annotators with linguistic back-
ground assign parents to 1 000 lexemes sampled
uniformly randomly from DeriNet 1.0, with the
possibility of listing multiple parents if the lexeme
in question was ambiguous (e.g. unlockable can be
derived from either lockable or unlock; or Karlův
(“Charles’s”) from either Karel or Karl). The an-
notations matched in at least one parent in 87.8%
of lexemes.

6.2 Oracle Score

As an additional measure of the potential qual-
ity of the transfer approach, we measured the or-
acle score of obtaining the gold-standard parent
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1 for gold_child in gold.lexemes:
2 if not gold_child.parent:
3 true_negative++
4 else:
5 for t_child in translations(gold_child):
6 for t_parent in family(t_child):
7 for parent in backtranslations(t_parent , gold_child):
8 if parent = gold_child.parent:
9 true_positive++
10 continue_line 1
11 false_negative++
12 accuracy := ((true_positive + true_negative)
13 / (true_positive + true_negative + false_negative))
14 recall := true_positive / (true_positive + false_negative)
Listing 1: Pseudocode for calculating oracle accuracy and recall of the transfer algorithm. The backtranslation
function returns all backtranslations of t_parent, except those that translate to gold_child.

through any combination of back- and forward-
translations of gold-standard child lexemes. Un-
der this measure, unmotivated lexemes are always
considered to be correct, and a derived lexeme is
considered to be correctly connected to its parent
if it can be backtranslated to a member of a word-
formational family, which contains a member that
can be translated to the correct parent. The pseu-
docode of this algorithm is present in Listing 1.
The recall and accuracy obtained using this algo-
rithm represent the maximum scores achievable
with the transfer method, if it selected the gold par-
ent for each lexeme every time it is available.
Any error in the recall can be broken down into

three categories: first, where we cannot translate
the child to the language of the transferring net-
work; (no t_child on line 5 of Listing 1); second,
where there are no translations of any members
of the translated lexeme’s family (no parent on
line 7) and third, where no possible parent matches
the gold one (predicate on line 8 is always false).

6.3 Experimental setting

For this proposal, we conducted experiments on
Czech, French and German, which are all lan-
guages with existing word-formation networks
suitable for transfer – DeriNet 2.0 (Žabokrtský
et al., 2016) with 809 282 relations, Démonette 1.2
(Hathout and Namer, 2014) with 13 808 relations
and DErivBase 2.0 (Zeller et al., 2013) with 43 368
relations, respectively. For ease of use, we used
their versions available in the UDer 1.0 collection
(Kyjánek et al., 2019), which have been converted

to a common format at a slight loss of information.
We transferred each network into both other lan-
guages and compared the result to the existing net-
work for that language.
The transfer was realized using word dictio-

naries obtained from word alignments of parallel
data. We used the OpenSubtitles dataset from the
OPUS collection (Tiedemann, 2012) for all lan-
guage pairs, lemmatizing them with UDPipe 1.2
(Straka and Straková, 2017) and extracting only
words tagged as adjectives, adverbs, nouns and
verbs. The lemmatizer uses pretrained models
trained on treebanks fromUniversal Dependencies
(Nivre et al., 2016). The lemmatized corpora are
then aligned using FastAlign (Dyer et al., 2013).
The data sizes are listed in Table 1.

7 Evaluation Results

As can be seen in Table 2, the networks created
by the transfer algorithm are rather small in size.
Within the constructed network, precision and re-
call are moderate for most language pairs, but
when compared to the gold standard data, recall is
nearly zero for all of them. Samples of outputs are
in Appendix A.
The performance of the transfermethod depends

a lot on the size of the transferred network. Since
the Czech DeriNet is an order of magnitude larger
than the other networks, the gold scores for net-
works created by using it as a base are the highest
ones, but even these don’t match more than 2.5%
of relations from the gold-standard data.
The precision of the constructed networks is also
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Lang pair Sentences Tokens on left Tokens on right

de — cs 15 237 340 48 320 109 45 922 280
fr — cs 25 838 124 83 108 504 87 983 667
fr — de 14 779 572 44 135 610 48 440 995

Table 1: Sizes of parallel data for each language pair after part-of-speech category filtering.

Size Internal scores [%] Gold scores [%]

Alg Lang pair Lex Rel Prec. Recall F1 Acc. Recall F1 Acc.

Xfer

de→ cs 18 118 5 971 39.66 33.11 36.09 53.71 0.29 0.58 1.19
fr→ cs 20 225 7 045 42.46 36.11 39.03 53.79 0.37 0.73 1.33
cs→ de 13 803 3 847 27.06 35.36 30.66 65.88 2.45 4.50 17.07
fr→ de 2 938 600 14.33 14.14 14.24 64.74 0.20 0.39 4.19
cs→ fr 2 769 1 219 23.54 30.50 26.57 42.72 2.10 3.86 7.65
de→ fr 439 144 3.47 11.36 5.32 59.45 0.04 0.07 1.84

ML

de→ cs 1 026 036 914 097 37.83 84.94 52.35 38.64 84.94 52.35 38.64
fr→ cs 1 026 036 917 863 32.41 81.15 46.32 32.80 81.15 46.32 32.80
cs→ de 280 454 263 477 9.21 84.01 16.60 13.06 84.01 16.60 13.06
fr→ de 280 454 270 180 5.81 84.27 10.87 8.21 84.27 10.87 8.21
cs→ fr 21 288 21 287 43.88 100.00 61.00 43.88 100.00 61.00 43.88
de→ fr 21 288 21 287 17.28 100.00 29.47 17.28 100.00 29.47 17.28

closest-
shorter
baseline

cs
de
fr

1 026 036 808 933 21.03 53.54 30.20 23.35 53.54 30.20 23.35
280 454 225 092 5.22 56.51 9.55 20.70 56.51 9.55 20.70
21 288 17 451 31.65 82.71 45.79 38.55 82.71 45.79 38.55

empty
baseline

cs
de
fr

1 026 036 0 N/A 0.00 0.00 21.14 0.00 0.00 21.14
280 454 0 N/A 0.00 0.00 84.62 0.00 0.00 84.62
21 288 0 N/A 0.00 0.00 35.15 0.00 0.00 35.15

Table 2: Evaluation scores of the results and baselines for each language pair. Internal scores are measured on the
set of lexemes in the generated network, gold scores on the set of lexemes from gold data. Precision is identical
for both. For the machine learning and baseline algorithms, the distinction between internal and gold scores does
not matter, since the lexicon used for prediction is taken from the gold-standard data as is.

Scores [%] Error cause [%] WFN rel count

Lang pair Recall Accuracy No child trans No parent trans No match Xferred Gold

de→ cs 5.10 29.14 91.05 0.08 3.77 43 368 809 282
fr→ cs 6.75 31.74 89.62 0.05 3.59 13 808 809 282
cs→ de 34.47 89.82 52.08 0.23 13.22 809 282 43 368
fr→ de 26.24 92.69 50.60 0.02 22.14 13 808 43 368
cs→ fr 34.67 80.11 56.81 0.20 8.33 809 282 13 808
de→ fr 22.26 64.01 61.89 0.07 15.78 43 368 13 808

Table 3: Transfer oracle scores for each language pair. Precision is 100% in all cases. The error causes list percent-
age of cases where the lexeme cannot be translated to the language of the transferring network, where no possible
parents can be translated back, and when none of the translated parents match the gold one, respectively. The error
percentage points are relative to the total relation count, i.e. they sum up to 100 together with recall. The last two
columns list sizes of the transferred and gold-standard word-formation networks, measured in relations.
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influenced by the translation quality. The align-
ment data trained on the de—fr pair (in both direc-
tions) has many incorrect alignments. This doesn’t
affect the oracle score, since the correct transla-
tions will generally be found, but the wide distri-
bution of the probability mass hurts the actual al-
gorithm, which is unable to distinguish plausible
and implausible translations.
Not shown are results including the word-

embedding-based improvements from Section 4.
We’ve tried many combinations of their settings:
different sources of embeddings, using cosine or
Euclidean distance, using K-Means clustering or
just a single mean for each affixal pattern, and
including a word under all affixal subpatterns or
only under its “native” pattern. However, a grid-
search of the weights of translation score, ortho-
graphic similarity score and the two embedding
similarity scores always tends to set the embedding
weights to 0 and maximize the orthographic simi-
larity weight. Ultimately, no improvement could
be reached using these two models.
For the semantic similarity score, the reason can

be seen in Figure 2. For any given score, there are
at least 1 000 times more negative examples than
positive ones, meaning that any useful signal in-
variably gets lost in the noise. The score could per-
haps serve as a useful feature in a supervised ma-
chine learning method, but the experiments show
that it is not helpful in our simple unsupervised set-
ting.
The reasons for the failure of the affixal pattern

score are more complex, and different variations of
the score fail in different ways. When we classify
each relation under just its single “native” pattern,
many relations (especially wrong ones) will be the
sole example in their cluster, giving them a simi-
larity score of 1. To avoid this failure mode, we
decided to require at least 30 samples in each clus-
ter. But this means that most relations will not be
able to get a score at all, because their affixal pat-
tern is rarer.
Therefore, it is necessary to classify each rela-

tion under all patterns that can be applied to it, al-
lowing many allomorphs to contribute to related
patterns. However, this causes shorter patterns to
accrue a large amount of spurious or wrong rela-
tions, splitting them into many clusters with high
variance. Then, when trying to find the similar-
ity between a given relation and its pattern, there
are many possible clusters to compare against, in-

creasing the probability that the embedding differ-
ence of the relation will be randomly close to one
of them, which in turn increases the variance of the
calculated similarity scores.
Unlike the embedding scores, themachine learn-

ing method is proven to be successful. It provides
a way of regularizing the output of the transfer
method, as it learns frequent affixal patterns from
the transferred data and applies them to a larger lex-
icon, omitting infrequent patterns. As seen in the
third part of Table 2, this results in increased pre-
cision on the French Démonette data, which only
contains a few selected paradigms and therefore
skews towards fewer, more productive patterns.
On the other target languages, some precision is
traded for recall, which increases from 0-2.5% to
84%. Due to this large increase, F1-score also
increases. In general, the resulting networks are
overgenerated, with very high recall and smaller
precision, but all our attempts at balancing the two
resulted in a decrease in the F1 score.
The oracle scores are in Table 3. The scores

are influenced by the ratio of sizes of the word-
formation networks used for transfer and evalua-
tion; transferring a large network and evaluating on
a smaller one gives an advantage in recall in com-
parison to the opposite scenario, simply because a
larger source network offers more options to select
from after transfer.
For all language pairs, most of the error in the re-

call is attributable to the first cause, where the gold
data contains untranslatable lexemes. For the pairs
that translate to Czech, this is again explainable by
the size and composition of its DeriNet network,
which contains many unattested lexemes – finding
lexemes such as přeskočitelnost (“skippability”) in
the parallel data is unlikely.
Additionally, transfers of networks to German

have higher accuracy than transfers to French,
even though the recall is comparable. This is be-
cause the German network, DErivBase, contains
many compounds, which don’t have their parents
annotated and are listed as nonderived. These are
counted in the accuracy scores (the definition of or-
acle score above considers missing relations to be
always correctly recognized) but do not contribute
to recall of relations. The non-derived words are
also the reason behind the fact that fr-de has higher
accuracy than cs-de, despite having lower recall
– fewer relations are translated, resulting in more
non-derived words being correct.
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The oracle scores show that the main bottleneck
is the word translation dictionary – the “No child
trans” category accounts for 50-90% of all errors.
This is why the networks obtained through the ma-
chine learning expansion have better scores than
the oracle of the transfer algorithm. The transfer
lexicon is limited to the lexemes found in the paral-
lel data, whose source-side alignments are found in
the source word-formation network, and for evalu-
ation purposes, we further limit the lexicon to lex-
emes from the gold-standard data. The machine-
learning pipeline uses the gold-standard lexicon di-
rectly, eliminating the “No child trans” class of er-
rors entirely.

8 Future work

An immediately necessary task is to manually an-
notate test data, because the German and French
word-formation networks we use for evaluation
have a too low recall. The recall of DErivBase is
approx. 44 %, recall of DeriNet is approx. 80 %
and recall of Démonette is approx. 70 %. The
low recall of DErivBase is mostly caused by com-
pounding, which is not captured in the resource,
but its lexicon nonetheless contains many com-
pounds.
To remedy this, we’ve annotated parents of 200

German and 100 French lexemes, in addition to
the already available 2 000 Czech lexemes (Vidra,
2018). However, these test sets are too small to re-
liably measure the quality of the transfer algorithm
– cross-validation performed by extracting varying
subsets of the input parallel data shows high vari-
ance, as opposed to the very stable scores mea-
sured on the word-formation networks themselves.
This is caused by the fact that the annotated lex-
emes were sampled from the outputs of the trans-
fer algorithm and mostly represent hapaxes, which
vary a lot when subsampling the input corpus. In
the future, we will annotate a sample of the data
weighted by corpus frequency to get a more repre-
sentative gold-standard dataset.
In the coming months, we plan to extend the cur-

rent transfer experiments to cover compounding
in addition to derivation. This should be doable
by fully utilizing the information contained in the
word alignments. At present, if a word on the
source side is aligned to a phrase on the target side
(or vice versa), we ignore the grouping and treat
the alignment as several independent 1:1 relations.
However, the fact that a word is aligned to sev-

eral content words at once indicates a degree of
relatedness to all of them, potentially signifying
compounding. In addition to this, the Czech word-
formation network contains annotations of com-
pounding, which can be transferred even across 1:1
relations.
Another way of increasing the quality of gener-

ated networks would be to use multi-source trans-
fer, combining the translation scores from multi-
ple source languages before constructing the target-
side network.
In a more long-term outlook, we would like to

use deep learning techniques to improve the re-
sults. Although word embeddings are known to
contain derivational information, we’ve been un-
able to successfully exploit them in the simple set-
ting where we reduced them to just a cosine or Eu-
clidean distance. We believe that using them as in-
puts to a neural network, possibly with joint train-
ing in an end-to-end architecture, would be more
successful. This would also enable us to trans-
fer information through multilingual embeddings,
which could eliminate a large source of error stem-
ming from the word translation dictionary that we
use for transfer now.

9 Conclusion

In this thesis proposal, we presented a cross-
lingual method for creating word-formation net-
works by transferring an existing network using a
word-translation lexicon induced from word align-
ments. One attempt at improving the transferred
data using word embeddings as a proxy for mod-
eling semantics of word formation has failed, but
a second attempt using a simpler machine learn-
ing method to expand the transferred small net-
works by extracting paradigms using statistical ma-
chine learning and applying them to a larger lexi-
con was successful. The resulting word-formation
networks are somewhat overgenerated, but still
show moderately high precision for several lan-
guage pairs.
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A Sample outputs from the transfer algorithm

Figure 3: Transferred word-formation networks for Czech, showing the family of lexeme kopat. On the left, transfer
from German, on the right, transfer from French.

Figure 4: Transferred word-formation networks for German, showing the family of lexeme schreiben. On the left,
transfer from Czech, on the right, transfer from French.

Figure 5: Transferred word-formation networks for French, showing the family of lexeme application. On the left,
transfer from Czech, on the right, transfer fromGerman. The left picture is cropped; root of the family is Ie, through
vie, vier, voir, avoir and 13 other lexemes.
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