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Abstract

Results of previous studies in the field
suggest that neural machine translation
(NMT) models can achieve better perfor-
mance by exploiting information from ex-
ternal sources. In this thesis proposal, we
categorize a variety of types of the en-
hanced models into four classes – mul-
timodal, multilingual, linguistically co-
supervised, and linguistically inspired. We
summarize some of the approaches in each
of these categories found in the litera-
ture. A part of this work is a devel-
opment of a sequence-to-sequence learn-
ing toolkit designed for fast prototyping
of various kinds of experiments. We re-
port results of experiments proposed by
us in the past, which were mainly based
on the multimodal models. In the future,
we plan to focus on the linguistically co-
supervised models, which could make use
of the abundance of linguistic annotation
available.

1 Introduction

With the advent of deep learning, the model ar-
chitectures we use for natural language process-
ing (NLP) tasks have simplified to such level that
they do not use any external information, be it an
expert knowledge (e.g. linguistic annotations) or
an equivalent information expressed in a differ-
ent modality (e.g. photos or sound). This means
that we are losing valuable sources of linguistic
information which according to many studies re-
tain their value in a number of NLP tasks, such as
machine translation (Sennrich and Haddow, 2016;
Eriguchi et al., 2017), question answering (Zhang
et al., 2017), or sentiment analysis (Matsumoto
et al., 2005).

In this text, we categorize the models that
exploit the external information to multimodal,
multi-source, linguistically co-supervised, and lin-
guistically inspired. We present a selected number
of works from each of those categories.

We present our contributions to the category of
multimodal models. We show the results of the ex-
periments conducted in the previous years, mainly
as submissions to the shared task at Conference on
Machine Translation (WMT).

For our future research, we plan to contribute to
the category of linguistically co-supervised mod-
els applied to neural machine translation (NMT).
The main feature of linguistically co-supervised
models is the use of linguistic annotations in the
training process, rather than imposing hard con-
straints to the network architecture itself. This can
be achieved for example in the multi-task learning
scenario.

We see a particular particularly promising re-
search direction in using our in-house annotated
corpora, such as Prague Czech-English Depen-
dency Treebank (Hajič et al., 2012), that may show
the usefulness of these high-value resources.

The text of this proposal is structured as follows.
In Section 2, we describe the standard models used
for NMT. Section 3 gives an overview of existing
methods of incorporating linguistic information to
deep learning models. Section 4 sums up the ex-
periments already conducted and presents their re-
sults. In Section 5, we present a number of ideas
for the following experiments. We conclude in
Section 6.

2 Neural Machine Translation

The goal of NMT is to train a neural network to
read a sentence in the source language and gen-
erate a corresponding sentence in the target lan-
guage. In a broader context, this task can be



Figure 1: Scheme of the classic sequence-to-sequence model by Sutskever et al. (2014)

viewed as an instance of a sequence-to-sequence
(S2S) learning problem (Sutskever et al., 2014).

In S2S learning, first, the source sequence X =
(x1, . . . , xTx) is encoded using a recurrent neural
network (RNN) in a fixed-length vector hTx . Next,
in each step, the output of the previous step is fed
to the decoding RNN, which updates its hidden
state si−1 and outputs a new state si and a new
output symbol yi. The step procedure is repeated
until a special symbol <eos> is emitted.

Since plain RNNs can suffer from the vanishing
gradients problem, they were replaced in the first
NMT experiments with Long Short-Term Mem-
ory networks (LSTM; Hochreiter and Schmidhu-
ber, 1997). Another variant of the RNN which was
used in our experiment is the Gated Recurrent Unit
network (GRU, Cho et al., 2014). Both of these
variants introduce a gating system which can han-
dle vanishing gradients problem in long-range de-
pendencies through additive memory updates with
linear derivatives.

The following equations describe a GRU-based
sequence-to-sequence model:

hj = GRUenc(hj−1;Eenc xj), (1)

s0 = tanh(VshTx + bs), (2)

si = GRUdec(si−1;Edec yi−1) (3)

where h0, . . . , hTx are hidden states of the encoder
(h0 being a null-vector), Eenc and Edec are the so-
called embedding matrices, which assign a real-
valued vector to each word in the vocabulary, Vs
and bs are additional trainable parameters of the
linear projection of hTx , and s0, . . . , sTy are hid-
den states of the decoder. As y0, we use a spe-
cial <go> symbol that denotes the start of the sen-
tence. Tx and Ty are the lengths of the source and
target sequence respectively. We use semicolon to
denote vector concatenation.

The actual output word is selected based on the

output of the decoder network:

ti =Wo(si;Edec yi−1) + bo, (4)

P (ŷi|x,y<i) ∝ exp ti, (5)

ŷi = argmax
y

P (y|x,y<i). (6)

One of the most significant improvements over
the S2S baseline model is introduction of the at-
tention mechanism (Bahdanau et al., 2014). Sim-
ilarly to content-based addressing in Neural Tur-
ing Machines (Graves et al., 2014), the attention
mechanism allows us to use context-sensitive in-
formation in the decoding phase.

In each decoder step i, the output of the at-
tention mechanism is a context vector ci, which
is then concatenated to the input of the decoder
RNN. The Equations 3 and 4 are thus adjusted to
work with the context vector as follows:

si = GRUdec(si−1; ci;Edecyi−1). (7)

ti =Wo(si; ci;Edec yi−1) + bo. (8)

In the i-th step of the decoder, the context vec-
tor ci is defined as a weighted sum of the encoder
states using the attention distribution αij , which is
in turn obtained by normalizing the attention ener-
gies eij :

eij = v>a tanh(Wasi + Uahj), (9)

αij =
exp(eij)∑Tx
k=1 exp(eik)

, (10)

ci =

Tx∑
j=1

αijhj . (11)

The trainable parameters Wa and Ua are projec-
tion matrices that transform the decoder and en-
coder states si and hj into a common vector space
and va is a weight vector over the dimensions of
this space. For the sake of clarity, bias terms (ap-
plied every time a vector is linearly projected us-
ing a weight matrix) are omitted.



En: A wall divided the city.
De 1: Eine Wand teilte die Stadt. ×
De 2: Eine Mauer teilte die Stadt. X

Figure 2: An illustration of disambiguation using
the visual features. Example taken from Specia
et al. (2016).

The model is trained by minimizing a loss func-
tion defined over the output probability distribu-
tion. A commonly-used loss function for NMT
models is the negative log-likelihood:

L(θ) = − 1

N

N∑
i=1

logP (yi|xi,y<i, θ) (12)

where N is the number of training examples, and
θ is the set of all trainable parameters.

3 Related Work

There is a significant amount of evidence that sug-
gests using external information can help improve
NMT.

In this section, we divide these studies into four
categories according to the type of the external
information: First, Section 3.1 deals with mul-
timodal translation – exploiting information pro-
vided as an additional modality, specifically im-
ages. Second, Section 3.2 describes approaches
based on using linguistic annotations. Third, Sec-
tion 3.4 shows results of multilanguage translation
models. Finally, Section 3.3 present studies that
are linguistically inspired, although do not use the
linguistic annotation data directly.

3.1 Multimodal Translation
Multimodal translation is a task of generating the
target sentence given a source sentence and an ad-
ditional information in a different modality. In this
section, we will focus on translation models en-
hanced with images. This means our task is to

translate an image caption from one language to
another, provided we can access the image itself.

Elliott et al. (2015) argue that including the im-
age features in the model architecture can help the
translation system to disambiguate between differ-
ent meanings. Figure 2 gives an example where
visual features provide such information for dis-
ambiguation.

In their work, they employ a S2S model as
described in Equations 1–6 which is provided
with the visual features obtained from the penul-
timate layer of the VGG-16 object recognition
network (Simonyan and Zisserman, 2014). In
each step of the encoder and/or encoder, they in-
clude the visual feature vector among the inputs
of the RNN (i.e. they concatenate the visual fea-
ture vector with the rest of the inputs in Equa-
tions 1 and 3). Although they argue the mod-
els benefit from the added modality, their best
model did not outperform the textual baseline in
terms of BLEU/METEOR (Papineni et al., 2002;
Denkowski and Lavie, 2011).

Xu et al. (2015) introduced attention mecha-
nism used for image captioning – a task of gener-
ating a textual description of an image. Instead of
attending to a set of states of an RNN encoder, they
employ the same technique over the components
of the last convolutional layer of the VGG-16 net-
work. This way, they were able to extract context-
sensitive image features relevant for a given RNN
decoder state.

In their WMT16 submission, Caglayan et al.
(2016a) tried to combine the attention distribution
instead of combining the resulting context vectors.
They perform the weighted sum from Equation 11
over the states from both modalities:

ci =

Tx∑
j=1

αtxt
ij hj +

196∑
j=1

αimg
ij vj (13)

where vj is the j-th vector in the last convolutional
layer (which contains 196 such vectors that corre-
spond to the image down-scaled to 14-by-14 re-
gions). In this case, they made a strong assump-
tion that the network can be trained in such a way
that the encoder states and the states of the con-
volutional network occupy the same vector space.
Therefore, the score of their multimodal MT sys-
tem remained far below the text-only setup.

Soon after, Caglayan et al. (2016b) introduced
the multimodal attention mechanism. In their ver-
sion, they compute the context vectors for both im-



age and the source sentence in each decoder step.
They adapt Equations 7 and 8 by supplying either
the sum or the concatenation of the single-modal
context vectors as ci. In this work, they reported
slight improvements over the textual baseline on
the Multi30k dataset, which was made available
for the WMT16 multimodal translation task (El-
liott et al., 2016). A significant difference be-
tween this work and the previous approaches is
that instead of the VGG-19 network, they use the
ResNet-50 network for extracting the visual fea-
tures (He et al., 2016).

More recent state-of-the-art results on the
Multi30k dataset were achieved by Calixto et al.
(2017). The best-performing architecture uses the
last fully-connected layer of VGG-19 network for
the initialization of the decoder and attends only to
the states of the RNN (text) encoder.

Elliott and Kádár (2017) brought further im-
provements by introducing the “imagination”
component to the neural network architecture.
Given the source sentence, the network is trained
to output the target sentence jointly with predict-
ing the image vector. The model uses the visual in-
formation only as a regularization and thus is able
to use additional parallel data without accompany-
ing images.

3.2 Linguistically Co-Supervised Models

Training of linguistically co-supervised models re-
quires an external source of linguistic annotation.
The linguistic annotation itself can be of any kind.
In most of the published studies, we encounter
the use of part-of-speech (POS) tags, syntax, or
named entities.

Sennrich and Haddow (2016) introduce linguis-
tic features (lemma, POS, and dependency label)
as an additional input to the decoder, as previ-
ously applied to neural language models (Alexan-
drescu and Kirchhoff, 2006). In this scheme,
each feature type (factor) has its own embed-
ding matrix. The embedded factors are concate-
nated together with the word embedding (Equa-
tion 1). The rest of the architecture is identi-
cal to the standard NMT model described above.
The results on the WMT16 test data show that us-
ing all factors together gives significant improve-
ments over a strong baseline in terms of BLEU
and chrF3 (Popović, 2015). The study also shows
a contrastive comparison of the effect of different
feature types to the translation quality.

Similarly, Li et al. (2017) focus on providing the
source syntax information to the encoder. They
propose three encoder models which operate on
the input sentences combined with sequences of
labels from linearized phrase-structure trees. First,
parallel encoder is composed of two RNNs – one
processes the sequence of words, and the other
processes the the sequence of syntactic labels. The
states of the word encoder are then concatenated
with the syntax encoder states which correspond
to the syntactic labels of the words (leaves of the
tree). Second, hierarchical encoder is also di-
vided into two RNNs. Unlike the parallel encoder,
the hierarchical encoder first processes the parse
tree and then concatenates the tree-leaf RNN states
with embeddings of corresponding words. After
that, the second RNN is run over the updated em-
beddings. Finally, mixed encoder is a single RNN
that operates on a (mixed) sequence of both syn-
tactic labels and words. This sequence is ordered
so the words are inserted to the network immedi-
ately after their corresponding labels. The mixed
encoder model is shown to have the best perfor-
mance of all the proposed models. It outperforms
the RNNSearch model of Bahdanau et al. (2014)
on NIST MT02–MT05 datasets.

Bastings et al. (2017) use so-called graph-
convolutional networks in encoders. They use
a dependency parser to preprocess the training
data so that each word has its dependency la-
bels and a pointer to its head in the tree. The
graph-convolutional encoder processes the input
sequence in multiple layers. In each layer, the in-
formation from the dependent nodes is mixed with
the state of the head. This way, the information
from one node propagates through the dependency
graph layer-by-layer.

The following approaches employ multi-task
learning techniques. The loss function from Equa-
tion 12 can be changed to contain the joint prob-
ability of predictions for all the different types of
labels.

Eriguchi et al. (2017) found that training the
model to parse and translate helps NMT. They
present a hybrid model between NMT and recur-
rent neural network grammar (RNNG, Dyer et al.,
2016). The model replaces the parser’s buffer with
the decoder state, which enables the decoder to
control the parser. For training the model, in-
stead of using manually annotated parallel cor-
pora, they use the SyntaxNet parser (Andor et al.,



2016) and generate the training parse trees auto-
matically. This model gains significant improve-
ments over NMT baseline on WMT newstest2016
on three of four language pairs that has been ex-
perimented with.

Another example of multi-task learning is the
work of Tamchyna et al. (2017). Their NMT sys-
tem works in two steps. First, they train the system
to produce the lemma and POS tag of the target
word (in a serialized form). Second, they use a de-
terministic generator to produce the target words
from the lemmas and tags. In order to train the
system, they preprocess the target side of the train-
ing data with morphological analyzers and add the
lemma and POS information to the training cor-
pus. With this method, they obtain significant im-
provements, especially in English to Czech trans-
lation, where the target language is morphologi-
cally rich.

Finally, Niehues and Cho (2017) systemati-
cally explore the multi-task learning setups for
three tasks – machine translation, POS tagging,
and named-entity recognition. They experiment
with three different levels of sharing model parts.
First, the shared encoder model, uses a single
encoder for the source sentence and separate de-
coders and attention mechanisms for each of the
tasks. Second, the shared attention model, shares
not only the encoder, but also the attention mecha-
nism across the tasks. This is achieved by shar-
ing the Ua and va parameters from Equation 9.
Third, the shared decoder model shares the en-
coder, the attention model, and the decoder for all
the tasks. The first part of the model that is not
shared among task is therefore the Wo and bo pa-
rameters of Equation 8.

3.3 Linguistically Inspired Models

There are more ways of exploiting linguistic in-
formation than providing the training procedure
directly with explicit annotations. The category
of linguistically inspired models brings together
methods that apply changes to the model architec-
ture which are to some extent inspired by linguistic
theory.

To tackle the problem of translating low-
frequency words, Arthur et al. (2016) incorpo-
rate translation lexicons into NMT. The probabili-
ties from the translation lexicon are first converted
into predictive probabilities over next word us-
ing the attention distribution (Equation 10). They

present two ways of combining the lexicon predic-
tive probabilities with the probabilities outputted
by the model. First, the model bias approach intro-
duces a hyper-parameter that controls how much
the model is biased towards relying on the lex-
icon. Second, the linear interpolation approach
uses a trainable parameter which controls the in-
terpolation of the lexicon-based probabilities and
the output probabilities.

Another linguistically inspired approach is
source-side latent graph parsing (Hashimoto and
Tsuruoka, 2017). In these experiments, a pre-
trained LSTM dependency parser is used to pro-
cess the input, and the parse tree is provided as
input of a recurrent decoder with attention mecha-
nism. The parameters of the LSTM parser remain
trainable during training of the translation model,
without using any more annotated data.

3.4 Multi-source NMT

Multi-source NMT is a task of translating a sen-
tence (which can be in one of multiple source
languages) to a sentence in a common target lan-
guage.

One of the first experiments with multi-source
NMT was conducted by Zoph and Knight (2016).
They use a trilingual parallel corpus to train a
model that translates to English using a French and
German source sentence. In their paper, however,
they do not report scores of the model when one
of the source sentences is missing.

Johnson et al. (2016) present an extension of the
Google NMT model (Wu et al., 2016) that works
with many source and target languages. They de-
scribe separately the scenarios for many-to-one,
one-to-many, and many-to-many translation mod-
els. In these models, they include a special token
to the end of the source sentence which specifies
the target language (so the encoder can adjust to
the information). Interestingly, they found that for
a fixed language pair, adding data with a different
source language can help the translation quality of
the original language pair.

4 Experiments

This section presents experiments we conducted
so far and discuss the results. In the first part,
Section 4.1 describes our toolkit designed for fast
prototyping of neural architectures. Section 4.2
gives an overview of our models submitted to
the WMT 16 multimodal translation and post-



editing tasks. Section 4.3 presents our method for
combining attention mechanisms in multi-source
setup. Section 4.4 presents the revisited models
used in our submission to the WMT 17 multi-
modal translation task.

4.1 Neural Monkey

We developed a toolkit for fast prototyping of neu-
ral network models for our experiments. This sec-
tion gives a brief description of the toolkit and its
main features.

Neural Monkey (Helcl and Libovický, 2017) is
an open-source software implemented in Python3
using the TensorFlow library (Abadi et al., 2016).
It’s goal is to provide a higher level API which
enables users to quickly prototype and train new
architectures without requiring knowledge of the
implementation details. For that reason we try to
use as big abstract building blocks as possible.

Unlike other toolkits, like tfLearn1 or Lasagne,2

our building blocks are more abstract objects (e.g.
encoders or classifiers) rather than individual net-
work layers. These objects are parametrized so
that their actual properties (e.g. dimensionality of
embeddings or hidden states, dropout probability,
number of layers) can be set from distant perspec-
tive. This design decision allows us to have the ex-
periment configuration placed elsewhere than the
actual code, in a separate comprehensive configu-
ration file.

Neural Monkey is still under development and
its mission is to become an ever-growing collec-
tion of recent innovations in S2S learning so its
users are able to easily try out the models for their
specific tasks and datasets. With its simple ex-
periment management, it is used as a ready-made
easily-extensible toolkit for experiments with ma-
chine translation, image captioning, text classifi-
cation tasks or scene text recognition.

4.2 WMT 16 Multimodal Translation and
Automatic Post-Editing Tasks

This section describes our submissions to the
WMT 16 automatic post-editing and multimodal
translation shared tasks (Libovický et al., 2016).
The goal of the automatic post-editing task is to
automatically correct a machine-generated trans-
lation while having access also to the correspond-
ing source-language sentence. As mentioned

1https://github.com/tflearn/tflearn
2https://github.com/Lasagne/Lasagne

above, the goal of multimodal translation is to
translate an image description from one language
to another, with access to the image itself.

Our method uses the neural translation model
with attention by Bahdanau et al. (2014) and ex-
tends it to include an arbitrary number of encoders
(see Figure 3). Each input sentence enters the
system simultaneously in several representations
X(k). An encoder used for the k-th representation
is either a bidirectional GRU network (for textual
input) or the VGG-16 convolutional neural net-
work (CNN).

The initial state of the decoder is computed as
a weighted combination of the final states of all
the encoders. As the final state of a CNN encoder,
we use the activation vector from the penultimate
layer of the network.

The attention is computed over each encoder
separately as described in Equations 9, 10, and 11.
The context vectors are concatenated prior com-
puting the distribution over the output vocabulary.
Here is a revisited version of Equation 8 that re-
flects this approach:

ti =Wo(si;Edecyi−1; c
(1); . . . ; c(k)) + bo. (14)

For the automatic post-editing shared task, we
use two encoders. First encoder processes the
source sentence and the second encoder processes
the machine-generated translation. Rather than
training the model to generate the post-edited sen-
tence directly, we trained the model to output a se-
quence of edit operations. An edit operation could
be either a word from the output vocabulary (in
which case the word got inserted to the output), or
one of two special symbols, keep or delete. In or-
der to generate the final output, the edit operation
sequence was applied to the machine-generated
translation using a deterministic procedure.

For the multimodal translation task, we first
translated the training dataset with Moses (Koehn
et al., 2007). Then, we trained a model with three
encoders – one CNN encoder for the image (with
fixed parameters), and two textual encoders for the
source image description and the Moses transla-
tion.

Since the target language for both tasks was
German, we also did language dependent text pre-
processing. Before training, we split the con-
tracted prepositions and articles (am ↔ an dem,
zur ↔ zu der, . . . ) and separated some pronouns
from their case ending (keinem ↔ kein -em, un-
serer ↔ unser -er, . . . ). We also tried splitting



Figure 3: Multi-encoder architecture used for the multimodal translation.

compound nouns into smaller units, but on the rel-
atively small data sets we have worked with, it did
not bring any improvement.

In this submission, we also experimented with
some improvements of S2S learning such as
scheduled sampling (Bengio et al., 2015), noisy
activation function (Gülçehre et al., 2016), or lin-
guistic coverage model (Tu et al., 2016). How-
ever, none of these methods was able to improve
the performance of our systems.

4.3 Attention Combination Strategies for
Multi-Source S2S Learning

In this section, we describe flat and hierarchical
attention combination strategies (Libovický and
Helcl, 2017). We employ this architecture in S2S
learning with multiple input sequences of various
modalities and a single RNN decoder.

The prior approaches to multi-source S2S learn-
ing do not explicitly model different importance of
the inputs to the decoder (Firat et al., 2016; Zoph
and Knight, 2016). An example motivation sce-
nario is multimodal translation, where we might
expect the image description to be the primary
source of information, whereas the image features
would help mainly with visual disambiguation.

We describe the two combination strategies in
more detail.

Flat attention combination In this strategy, we
project the states of all encoders into a common
vector space and then compute attention over the
projected vectors.

The difference between the concatenation of the
context vectors (as seen e.g. in Caglayan et al.,
2016b) and the flat attention combination is that
the αi coefficients are computed jointly for all en-
coders (modified Equation 10):

α
(k)
ij =

exp(e
(k)
ij )∑N

n=1

∑T
(n)
x

m=1 exp
(
e
(n)
im

) (15)

where T (n)
x is the length of the n-th encoder in-

put sequence and e
(k)
ij is the attention energy of

the j-th state of the k-th encoder in the i-th decod-
ing step. These attention energies are computed
according to Equation 9 – the parameters va and
Wa in the equation are common for all the en-
coders, whereas the matrix Ua is encoder-specific
and serves as a projection matrix from each en-
coder state space into a single shared vector space.

Since the states of the encoders occupy different
vector spaces, they can have different dimension-
ality. Hence, the context vector cannot be com-
puted as their weighted sum (Equation 11). There-
fore, we project the encoder states into a single



space using linear projections:

ci =
N∑
k=1

T
(k)
x∑

j=1

α
(k)
ij U

(k)
c h

(k)
j (16)

where U (k)
c are additional trainable parameters.

The projection matrices U (k)
a and U (k)

c project
the states of one encoder into vector spaces with
equal dimensionality. In our experiments, we tried
both setting these projection matrices equal and
training them separately.

Hierarchical attention combination This com-
bination strategy divides the computation of the at-
tention distribution into two steps: First, it com-
putes the context vector for each encoder in-
dependently using Equations 9–11. Second, it
projects the context vectors into a shared vec-
tor space (Equation 17), computes another distri-
bution over the projected context vectors (Equa-
tion 18), and their corresponding weighted aver-
age (Equation 19):

e
(k)
i = v>b tanh(Wbsi + U

(k)
b c

(k)
i ), (17)

β
(k)
i =

exp(e
(k)
i )∑N

n=1 exp(e
(n)
i )

, (18)

ci =

N∑
k=1

β
(k)
i U (k)

c c
(k)
i (19)

where c(k)i is the context vector of the k-th en-
coder, additional trainable parameters vb and Wb

are shared for all encoders, and U (k)
b and U (k)

c are
encoder-specific projection matrices, that can be
set either equal or trained independently, similarly
to the case of flat attention combination.

From all the proposed methods, the best per-
forming was the hierarchical attention combina-
tion with independently trained encoder projec-
tions (matrices Ua and Uc). In this setting, we
were able to significantly outperform the concate-
nation baseline.

Both the hierarchical and the flat combination
strategies provide an explicit way to interpret dif-
ferent importances of each inputs. In Figure 4,
you can see the hierarchical attention distribution.
The image also include the sentinel gate (Lu et al.,
2016), which allows the decoder not to attend to
any of the input encoders. Experimenting with the
sentinel gate, however, did not bring any improve-
ments and the details are out of the scope of this
proposal.

Source: a man sleeping in a green room on a
couch .
Reference: ein Mann schläft in einem grünen
Raum auf einem Sofa .
Output with attention:
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Figure 4: Visualization of hierarchical attention in
MMT. Each column in the diagram corresponds
to the weights of the encoders and sentinel. Note
that the despite the overall low importance of the
image encoder, it gets activated for the content
words.

4.4 WMT 17 Multimodal Translation Task

Our submission to this year’s WMT multimodal
shared task (Helcl and Libovický, 2017) employs
the hierarchical attention combination described
above. Figure 5 shows the diagram of the model.

We expanded the training dataset using addi-
tional data acquired from several sources. First,
we back- translated German descriptions that were
part of the Multi30k dataset (Elliott et al., 2016).
This gave us six times more training data because
beside the German translations of the image de-
scriptions, the Multi30k dataset also contains five
independent German descriptions for each image.
Second, using a language model trained on the
image descriptions, we selected similar sentence
pairs from the parallel SDEWAC corpus (Faaß and
Eckart, 2013) and German parts of WMT paral-
lel corpora, such as EU Bookshop (Skadiņš et al.,
2014), News Commentary (Tiedemann, 2012),
and CommonCrawl (Smith et al., 2013).

We also reported a number of negative results.
First, we tried to rescore the top-k best hypothe-
ses using a multimodal classifier. Second, we
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Figure 5: An overall picture of the multimodal model using hierarchical attention combination on the
input. Here, α and β are normalized coefficients computed by the attention models, wi is the i-th input
to the decoder.

switch the optimization criterion from negative
log-likelihood to optimize directly towards BLEU
using self-critical training (Rennie et al., 2016).
Despite the current negative result, we believe that
these methods may be relevant for future develop-
ment in the field.

5 Future Work

In the following paragraphs, we outline the pro-
posal of the future work. The main topic of the
research is to explore ways of using external infor-
mation in order to improve neural machine trans-
lation.

Explore multi-task learning solutions. In our
future work, we aim to explore more multi-task
learning schemes, which will serve as a platform
for models that learn to predict target-side linguis-
tic features. Not only this has the potential to be
beneficial for the primary task (i.e. translation),
but it can also show which architectures are able
to capture the linguistic information implicitly and
which architectures need supervision from human
annotation.

Specialize on Czech annotated data. We will
focus our experiments on exploiting the abun-
dance of high-quality annotated corpora available
at our institute. As we see in the literature, for
the English language, including the linguistic an-
notation to the model has a great potential of im-
proving the performance. We believe that the scale

of the improvement will be even higher for a lan-
guage with rich morphology and non-projective
dependency structures, such as Czech. Moreover,
the Czech language is a perfect candidate, since
large amounts of data are essential to conduct
state-of-the-art deep learning experiments.

6 Conclusions

In this text, we explained the principles of neu-
ral machine translation. We further categorized
the related work exploits external information in
the translation architectures. We presented the ex-
periments we conducted in the past and suggested
ideas for future work.

In the future work proposal, we put accent
on harnessing manually annotated datasets which
were created at our institute in order to explore
their potential in improving the translation quality.
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monkey: An open-source tool for sequence learn-
ing. The Prague Bulletin of Mathematical Lin-
guistics (107):5–17. https://doi.org/10.1515/pralin-
2017-0001.
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