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Abstract

Neural networks became the dominant ap-
proach to solving many statistical modeling
problems, reaching or surpassing human-level
performance on several tasks. Even though
they were originally inspired by the neural
interactions inside the biological brain, their
learning process is very different from that of
a human. For this reason, there are several as-
pects of human-like learning that the current
state-of-the-art networks cannot capture. This
thesis proposal focuses on describing crucial
problems of a sequential learning in the neural
natural language processing. Furthermore, we
look into possible approaches to solving these
problems and the results of the research we’ve
done so far. Lastly, we provide a proposal for
directing our future thesis work.

1 Introduction

In recent years, deep learning became the state-
of-the-art approach to solving various natural lan-
guage processing (NLP) tasks (Graves and Jaitly,
2014; Xu et al., 2015; Anderson et al., 2018) in-
cluding machine translation (MT, Bahdanau et al.,
2014; Vaswani et al., 2017) slowly getting close
to human-level performance on several of these
tasks.

Being inspired by the interactions between the
real biological neurons, it would seem logical
that neural networks (NN) should be an important
component when building a general purpose artifi-
cial intelligence (AI) systems. On the other hand,
these similarities to human brain vanish when we
take a closer look at their learning process. Using
gradient-based methods, NN often require large
numbers of training examples or various regular-
ization techniques to learn proper generalizations.
These methods are usually successful when the
network tries to learn a single specific task, how-
ever, the difference from the human-like learning

becomes more apparent when we consider learn-
ing multiple heterogeneous tasks, especially in a
continual manner, i.e. learning one task after an-
other. While being quite simple for humans, NN
manifest difficulties with such learning scenarios.

Generally speaking, there are three main prob-
lems related to the continual multi-task learning in
NN:

1. Catastrophic forgetting. A problem of over-
writing (forgetting) network weights opti-
mized for the initial task when training on a
new task.

2. Knowledge composition. A problem of
solving a complex task by breaking it down
to simpler problems that the network can al-
ready solve and combining the knowledge
about solving these tasks to solve the origi-
nal task.

3. Low-resource learning. An ability to learn
new task from a very small number of ex-
amples possibly by leveraging the knowl-
edge about similar patterns from previously
learned tasks.

Furthermore, if we consider the multi-modal as-
pects of the human condition we must also in-
clude the problem of multi-modal representation
learning. When processing inputs from different
modalities (e.g. language and vision), it is natural
for human brain to properly connect concepts that
are related across these modalities. This is usually
achieved with NN by jointly learning tasks using
inputs from these modalities. One problem is that
it is not always clear whether the network learned
a unified concept across the modalities of if two
independent task solvers simply live “next to each
other”. Another problem is that this can be more
challenging in the continual learning scenarios.



In this text, we focus on these problems in
the context of single-source and multi-source
MT models and their unsupervised (or semi-
supervised) initialization. Our aim is to investigate
methods for effective transfer of knowledge about
previously learned tasks without losing this prior
knowledge. If possible, we also plan to adapt our
findings to the multi-modal (text with images as an
input) translation scenario.

We also present our experimental results so far.
We show our initial results in the task of auto-
matic post-editing (APE) together with a discus-
sion of the task challenges. Then, we discuss our
previous work on the multi-modal machine trans-
lation (MMMT) task. Also, we present the re-
sults of our experiments tackling the problem of
catastrophic forgetting during unsupervised neu-
ral machine translation (NMT) initialization. Fur-
thermore, we discuss our unpublished results in
the area of visual object representation (VOR)
grounding in the context of image captioning (IC).

Lastly, we propose our plans for the future
work. While discussing alternative approaches to
the problems we already investigated, we will fo-
cus mainly on knowledge composition (discussed
in more detail in Section 2.2). We plan to ex-
plore the effects of the current state-of-the-art
techniques on the multi-source and multi-lingual
translation and whether they are complementary
with the methods related to catastrophic forget-
ting.

This proposal is structured as follows. In Sec-
tion 2 we describe the problems of continual learn-
ing in more detail together with the current state-
of-the-art. In Section 3, we describe our experi-
ment methodology. Section 4 summarizes our ex-
periments so far. We describe our future research
plans in more detail in Section 5.

2 Related Work

There has been an extensive work on problems re-
lated to the continual learning in neural networks,
often related to the findings in the field of cogni-
tive psychology. In this section, we take a closer
look at the recent research related to the problems
listed in the previous section.

2.1 Catastrophic Forgetting

One of the key requirements when developing a
general AI is the ability to solve multiple tasks
learned in a sequential manner (Legg and Hutter,

Figure 1: Illustration of catastrophic forgetting during
continual training. Even though there exists an overlap
of weight configurations with low error for both task A
and B, optimization only for task B without any weight
restriction can lead to leaving the low error weight con-
figuration for the initial task A. The figure was taken
from Kirkpatrick et al. (2017).

2007). However, it has been observed that the cur-
rent state-of-the-art networks suffer from catas-
trophic forgetting (French, 1999; McCloskey and
Cohen, 1989). This occurs when a neural network
trained to solve one task (e.g. task A) is used to
learn a new task (e.g. task B). Without any con-
straints, the network adjusts its weights to solve
task B while forgetting its original weight config-
uration for task A. However in practice, if we train
the network jointly to solve both tasks A and B,
we can still find a weight configuration that is per-
forming well for both tasks (Luong et al., 2016).

Learning a task requires searching for a con-
figuration network weights which results in low-
error performance on that particular task, usually
defined by a loss function relevant to the task. In
general, many weight configurations can result in
a same performance (Hecht-Nielsen, 1992; Suss-
mann, 1992). Learning a to solve multiple tasks
therefore requires finding a intersection between
the low-error weight configurations for both task
A and task B. In continual learning, this usually
means shifting original solution θA for task A to
a low-error area of the task B. If we assume no
access to the original data for task A, optimization
for task B without any constraints can lead to com-
pletely missing the desired low-error weight space
intersection as illustrated by Figure 1. Network
weight regularization is therefore required.

While joint task learning (or multi-task learn-
ing, Luong et al., 2016; Hashimoto et al., 2017)
avoids catastrophic forgetting, it assumes that data
for both task A and B will be available at the same
time which may not be true in practice. Another
option is storing network weights from the previ-
ous task separately and learning weight configura-



tion for the new task by fine-tuning the previous
model. This however, can lead to a weaker gen-
eralization since the model forgets (possibly rele-
vant) knowledge from the previous task by over-
fitting to the new task. In addition, the storage re-
quirements needed to keep weight configurations
for each task can be limiting. Hence, we are inter-
ested in methods that aim to restrict the network
in a way that it does not completely override its
knowledge about the previously learned tasks.1

The main idea behind restricting weights of the
network is to force the network to minimize up-
dates to weights that are important for the task A
when learning task B. Pasunuru and Bansal (2019)
achieve this by introducing two additional weight
constraints. They force each weight matrix of the
network to be block-sparse, using only a subset of
the matrix weight for computation. After learn-
ing network weights θA for task A the network
learns weight shift ψB such as θB = θA + ψB .
To avoid forgetting task A, they again apply block-
sparsity constraint on ψB and add a regularization
term that forces orthogonality between θA andψB .
This helps the network to learn θB that performs
well on both tasks.

Instead of separating weights for each task ex-
plicitly by the block-sparsity constraint, Kirk-
patrick et al. (2017) introduce a regularization
called elastic weight consolidation (EWC). They
penalize the difference between the original and
updated network weight, each scaled by its im-
portance with respect to the original task. They
derive this weight importance from a curvature of
the loss function near the local minimum at the end
of the training of the given task. To approximate
this this, they use diagonal of a Fisher informa-
tion matrix (FIM, MacKay, 1992) assuming that
network weights are mutually independent. Com-
puting FIM requires expected value of a gradient
over all possible outputs for each data point, which
is intractable. In practice empirical FIM is used as
an approximation instead.

Another way of estimating importance of the
network weights is path integral (PI, (Zenke et al.,
2017)), focusing on their influence on the loss sur-
face over the whole optimization path. They de-
fine a surrogate loss using a similar regulariza-
tion term as Kirkpatrick et al. (2017), however,
they increment weight importance during each

1By referring to knowledge we mostly mean information
stored in the network weight configuration.

mini-batch update, accumulating it throughout the
whole task training. Furthermore, they define the
weight importance as a ratio of its contribution to
the drop in loss and the size of its change after the
update.

Recently, a generalization of EWC and PI, theo-
retically grounded in KL-divergence has been pro-
posed (Chaudhry et al., 2018). Still using FIM,
they introduce an efficient way to store and update
the FIM diagonal using a moving average. Addi-
tionally, they propose a methodology for evaluat-
ing continual learning capabilities, measuring for-
getfulness and intransigence of a model across the
examined sequence of tasks.

Alternatively, methods focusing on regulariza-
tion of the network activations (outputs) can by
used instead (Li and Hoiem, 2016; Rebuffi et al.,
2016). Although they offer a better flexibility
when updating network weights, they can become
memory inefficient with the increasing number of
network activations.

2.2 Knowledge Composition

Knowledge composition and problem decomposi-
tion are key aspects of human learning. For ex-
ample, a popular hypothesis in cognitive linguis-
tics postulates that humans are able to produce po-
tentially infinite number of sentences while only
learning a finite set of production rules (Chom-
sky, 1965). On the other hand, current neural net-
works are generally very data-hungry, requiring
huge number of training examples, which makes
model scaling troublesome.

Although increasing the number of network
weights, given enough training data, leads to a
better prediction accuracy (Sutskever et al., 2014;
Amodei et al., 2016; Devlin et al., 2019), it still
requires execution of the whole network together
with more training iterations. The resulting com-
putation complexity growth is quadratic with re-
spect to the number of network weights. On
the other hand, the human brain usually requires
only few of its regions to be active at the same
time (Ramezani et al., 2014). There are also hy-
potheses that a modularity of these biological neu-
ral connections leads to a more optimized energy
costs (Clune et al., 2013; Legenstein and Maass,
2002) and helps countering catastrophic forgetting
(Sporns and Betzel, 2015).

The main approach to modularity in deep learn-
ing focuses on replacing a single layer with a set



Figure 2: Illustration of a version of mixture of experts
network. Each Expert Network learns a separate trans-
formation of the input x and their outputs are combined
using a weighted sum. The weights are produced by a
Gating Network, also conditioned by the input x. The
figure was taken from Bock and Fine (2014).

of smaller blocks (of the same type) and learning
to compose them based on their learned special-
ization. This is usually accomplished using mix-
tures of experts (Jacobs et al., 1991; Jordan and
Jacobs, 1994; Eigen et al., 2014) shown in Fig-
ure 2. The model learns separate functions for
each “expert” block and a gating mechanism con-
ditioned by the layer input, combining them usu-
ally through weighted sum of their outputs. These
blocks can range from simple linear layers (Eigen
et al., 2014) to whole encoder/decoder architec-
tures similar to ensembles (Garmash and Monz,
2016).

Although it allows better computation paral-
lelism, it still requires execution of all experts
within the layer. This can be addressed by intro-
ducing sparsity, choosing only top-k scored ex-
perts (Shazeer et al., 2017). Another option is
to learn an activation-dependent policy using re-
inforcement learning that decides which expert
blocks to use for the computation (Bengio et al.,
2016). However, these methods are prone to mod-
ule collapse, lacking diversity when choosing ex-
perts during training often due to self-reinforcing
of the favored modules by training them more
rapidly (Kirsch et al., 2018). To counter this, some
form of regularization needs to be enforced during
the training.

Addressing these issues, Kirsch et al. (2018)
suggest using stochastic selection of a subset of
modules instead of mixtures. They treat the sub-
set choice as a latent variable requiring summation
over all possible subsets to generate output dis-
tribution. To avoid computational explosion dur-
ing training, they use a generalized Expectation-
Maximisation (EM, (Neal and Hinton, 1998)). In

the estimation step, they sample a small number of
module subsets based on the current module prob-
ability distribution and then choose the best candi-
date subset by maximizing output probability of
the current training label. In the maximization
step, they use the best candidate module subset to
compute the loss on several data points and up-
date both module probability and output probabil-
ity distribution by adjusting the network weights.

2.3 Low-Resource Learning

In this section, we address the low-resource learn-
ing from the MT perspective. Most of the time, the
amount of available bilingual data for a given pair
of languages is much lower then the amount of
their respective monolingual resources. The data
sparsity becomes even more evident when we in-
crease the number of languages (e.g. tri-lingual,
quad-lingual data, etc.).

Transfer learning addresses data sparsity by
reusing models trained on similar task that was
trained on a larger dataset. The model can be then
fine-tuned for a new task requiring only a smaller
amount of data. In the context of NMT, the idea
is usually to estimate network weights on a high-
resource language pair and fine-tune them on the
low-resource data (Kocmi and Bojar, 2018).

Other approaches suggest sharing either the en-
coder between multiple languages (Dong et al.,
2015) or having single shared attention mecha-
nism between different combinations of languages
(Firat et al., 2017). However, these are trained
jointly for all languages not exploring the possi-
bilities of continual training.

Another branch of research focuses on using
monolingual corpora to improve bilingual ma-
chine translation. Currently, the most popular
method is augmenting the bilingual training cor-
pus using synthetic data created by translation of
the monolingual corpora (Sennrich et al., 2016a).
Although the synthetic sentences often contain
translation mistakes, they help with generalization
leading to improvements on the validation data.

Alternatively, the NMT encoder and decoder
can be initialized with a pre-trained monolingual
language model (LM) and fine-tuned it on the
bilingual corpus (Ramachandran et al., 2017). To
address over-fitting (which arguably might be a re-
sult of catastrophic forgetting of the original LM
task) they combine the MT loss with the original
LM losses used during pre-training.



Conneau and Lample (2019) expand on the
idea of monolingual pre-training by introducing
a cross-lingual language model. They train their
model jointly on all languages at once, sampling
examples from each language according to the
size of their respective monolingual corpus. They
demonstrate its usefulness for initialization of var-
ious NLP tasks including machine translation.

An extreme case of data sparsity is unsuper-
vised machine translation, where there is no bilin-
gual data available. Recent solutions utilize only
monolingual corpora while exploiting the dual na-
ture of machine translation (Artetxe et al., 2018b;
Lample et al., 2017). They show promising re-
sults by initializing the NMT embeddings us-
ing a pre-trained cross-lingual embedding space
(Artetxe et al., 2018a) and introducing additional
de-noising and reconstruction losses. Artetxe et al.
(2019) propose a refined version of the system also
including phrase-based MT and incremental back-
translation.

Generally, similar techniques as the ones listed
above are also explored in the multi-source trans-
lation scenarios. Synthetic data is widely used
in automatic post-editing (Junczys-Dowmunt and
Grundkiewicz, 2016; Negri et al., 2018) and us-
ing additional incomplete, text-only data is bene-
ficial in multi-modal translation (Grönroos et al.,
2018). Additionally, Nishimura et al. (2018) pro-
posed a robust multi-source MT able to translate
multi-lingual input even if one of the expected lan-
guage input is not present.

An open problem in multi-modal MT is the
effective use of the visual modality. Current
state-of-the-art systems overly rely on the tex-
tual modality only ignoring input images to a de-
gree (Elliott, 2018). Several methods have been
proposed including various attention combination
strategies (Libovický and Helcl, 2017; Libovický
et al., 2018), enhancing textual representations
with visual embeddings (Caglayan et al., 2018)
or including additional objectives to regularize
them using the visual modality (Elliott and Kádár,
2017).

2.4 Cross-modal Representation Learning

The ongoing research on multi-modal representa-
tion learning, inspired by human perception, aims
at comprehensively representing information from
different sensory inputs. In practice, these sen-
sory inputs are processed by specialized parts of

the neural network model. However, these parts
are usually either trained on different tasks or
the model lacks constraints forcing the network
to learn better semantically correlated represen-
tations between the modalities. In literature, the
latter is often referred to as the heterogeneity gap
(Guo et al., 2019).

Current research is mostly focused on combin-
ing vision with textual modality, grounding natural
language in its visual counterpart. Such grounding
is motivated by different occurrences of object and
the relations between them found in real world and
in the written text (e.g. in text, people are mur-
dered more often than they are hugged, Gordon
and Van Durme, 2013). Main focus is therefore on
reducing this divergence between text and reality.

In general, we can separate textual ground-
ing into two categories: word-level and sentence-
level grounding. Word-level methods either learn
grounded representations jointly from multiple
sources (Hill et al., 2016) or learn to combine in-
dependently learned representations from differ-
ent modalities (Silberer and Lapata, 2014; Collell
et al., 2017). Usually, word embeddings trained
with a standard objective function such as skip-
gram (Mikolov et al., 2013b) or continuous bag-
of-words (Mikolov et al., 2013a) are grounded in
the related visual features (Lazaridou et al., 2015)
or visual context (Zablocki et al., 2018) using ad-
ditional training objective.

The sentence-level grounding is mostly ac-
complished by introducing an additional objec-
tive for predicting visual features associated with
the current sentence using cross-modal projection
(Chrupała et al., 2015; Kiela et al., 2018; Elliott
and Kádár, 2017). Collell and Moens (2018) argue
that such a projection, however, does not preserve
proper structure of the original embedding space.
This constraint on the sentence embeddings can be
relaxed by using an intermediate grounded space
(Bordes et al., 2019).

In multi-modal MT, the most common method
of incorporating visual information is by condi-
tioning target-side decoder on the intermediate vi-
sual features. Usually, this conditioning is using
an attention mechanism (Xu et al., 2015; Caglayan
et al., 2016a). These mediated features can ei-
ther come from the output of an intermediate
layer of a image recognition network (Caglayan
et al., 2016b, 2017) or from the representations
of objects detected by an object detection network



(Grönroos et al., 2018). Still, it seems that cur-
rent state-of-the-art systems only exploit distribu-
tional similarity in the visual feature space, gen-
erating outputs closest to the training examples
(Madhyastha et al., 2018).

3 Methodology

In this section, we describe in a closer detail the
tasks we focus on with respect to the MT-related
continual learning research. In general, we make a
distinction between two sets of continual learning:

• Language-based. The difference between
tasks is in their language or languages. Our
goal is training a single multi-task model with
performance similar to its single-task coun-
terparts.

• Complexity-based. We make a distinction
between tasks based on the complexity of
the conditioning of the probability distribu-
tion the model is trained to estimate. For
instance, consider MT vs. automatic post-
editing. In MT, the output is conditioned
on the source sentence only whereas in post-
editing, the model has to consider both the
source and the candidate translation from the
baseline MT model. The conditioning of the
post-editing task is thus more complex. It is
important to note that this enlarged source in-
formation need not be useful in practice; the
post-editing model can operate as an inde-
pendent MT model, fully ignoring the base-
line MT it received in the input. However,
the model setup is nevertheless more com-
plex, because an untrained network does not
know that the baseline MT is not relevant

From the language-based perspective, our main
concern is transfer learning from a high-resource
task A to a low-resource task B. Generally, we
are interested in the relationship between avoid-
ing catastrophic forgetting and network regular-
ization, e.g. how much remembering task A can
help reduce over-fitting on the small training data
for task B. Additionally, we would like to explore
possibilities of an implicit knowledge decomposi-
tion, i.e. how the neural network represents vari-
ous aspects of language (e.g. syntax, semantics)
and whether is this knowledge reused (e.g. ex-
ploiting similar properties of two and more lan-
guages). Contrary to transfer learning, we aim to

be able to perform well for both task A and task B.
We also assume that data available during training
on task A are no longer available during the task B
training.

In the complexity-based experiments, we aim
to study possibilities of an explicit knowledge
decomposition defined beforehand, e.g. how to
leverage monolingual knowledge (learned from
data) about languages when learning the mapping
between them. Again, we are interested in the
high-resource to low-resource scenarios because
the amount of available parallel data generally de-
creases with the increasing number of languages
involved.

We give a brief description of the examined
tasks and the relationships between them in the
rest of this section. We list the tasks based on the
perceived complexity, from least complex to most.
If not stated otherwise, the following description
should be general and independent of the underly-
ing network architecture.

Language modelling. The goal is to learn a
probability distribution over the sentences in a lan-
guage based on the monolingual training corpus.
Given that each sentence can be represented as a
sequence of N tokens y = {y0, .., yN−1}, we aim
to minimize the cross-entropy between the model
probability distribution pθ and the true distribution
p∗ given the training data D.

H(pθ, p
∗) =

∑
y∈D

pθ(y)p
∗(y) (1)

In practice, due to intractability of the probabil-
ity distribution over all possible sentences, pθ is
factorized over the sentence tokens, for example:

pθ(y) =
N−1∏
i=0

pθ(yi|y<i) (2)

Equation 2 assumes that probability of each to-
ken only depends on the previous tokens in the
sentence. In practice, prediction of the token se-
quence y is based on intermediate representations
h = {h0, .., hN−1} containing information about
the previous predictions. Although such factor-
ization assumes independence on the following
tokens, it allows a simple auto-regressive (left-
to-right) sequence generation. Figure 3 shows a
schematic of such prediction model.

Other ways of factorization have been also sug-
gested, e.g. masked language models for sequence
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Figure 3: Simplified schematic of the auto-regressive
decoding. At each decoding step, a current input is en-
coded by the input layer and then processed by the net-
work (a circle node) using previous state hi−1, produc-
ing next hidden state hi. The hidden state hi is further
processed, producing yi which is passed as the next in-
put to the decoder. Although the actual production of
the hidden state hi may vary between network archi-
tectures, the underlying principle (conditioning on the
previous outputs) remains the same.

classification (Devlin et al., 2019) or sequence
models incorporating syntax (Zhang et al., 2016).
Their main difference is in the method of model-
ing the hidden state sequence h.

Machine translation. Similar to language mod-
eling, the goal is to generate target-language sen-
tence y = {y0, .., yN−1} given a source-language
sentence x = {x0, .., xM−1} by learning the fol-
lowing conditional probability:

pθ(y|x) =
N−1∏
i=0

pθ(yi|y<i,x) (3)

Similarly to previous paragraph, Equation 3
is already the most common factorization, pro-
ducing one target token at a time. In prac-
tice, instead of using input sequence x, we
condition the output generation on the hidden
states h = {h0, .., hN−1} produced by sentence
encoder. We assume that these hidden states
should capture similar information as the hid-
den states learned during language modeling, thus
making knowledge between these two tasks trans-
ferable.

The output sequence y is then produced by
a sentence decoder. With some simplifications,
the decoder is a language model explicitly condi-
tioned on the hidden states h. Therefore, we can
also assume that the weights of the decoder and the

language model can be transferred. Given these
assumptions, we can further modify Equation 3 as:

pθ(y|x) =
(
N−1∏
i=0

pθdec(yi|y<i,h)

)
pθenc(h|x))

(4)
where θenc ∪ θdec ⊆ θ are the respective encoder
and decoder weights.

Based on these assumptions, we define an ex-
plicit decomposition within the MT task as learn-
ing structure of a language (for both source and
target language) and finding relationship between
these structures. Whether monolingual structure
learning should be modelled by a single multi-
lingual network or multiple language-specific net-
works is currently an open research question.

Multi-source translation. We generalized MT
task to k sources of input in the following
way. Let us assume K different input sources
X = {x(j)|0 ≤ j < K} and an output sequence y.
Given that at least one of the inputs is in language
L1, the output is in language L2 and L1 6= L2,
multi-source MT estimates the following distribu-
tion:

pθ(y|X) =
N−1∏
i=0

pθ(yi|y<i,X) (5)

Generally, each input x(j) can be processed by a
specialized encoder, producing a hidden represen-
tation h(j). Let us define H = {h(j)|0 ≤ j < K}.
In practice, we usually assume a mutual indepen-
dence between the inputs X, leading to a more ef-
fective training process. Thanks to this assump-
tion, we can process each input x(j) with a separate
encoder with weights θ(j)enc, leading to the follow-
ing factorization:

pθ =

(
N−1∏
i=0

pθdec(yi|y<i,H)

)
K−1∏
j=0

p
θ
(j)
enc

(h(j)|x(j)))

(6)
Equation 6 leads again to an explicit decompo-

sition where, for example, a single-source MT sys-
tem can be adapted to multi-source MT reusing
weights from the original task of bilingual MT and
an additional encoder for the new input. Also note
that the inputs do not have to be explicitly textual,
for example, this decomposition can be applied
to multi-modal translation initializing the multi-
modal system with an image captioning model (vi-
sual input, textual output) and a language model as
a source language encoder, etc.



3.1 Evaluation

Since human evaluation is costly and not exactly
reproducible, it is not suitable for the develop-
ment. Multiple automatic evaluation metrics were
proposed for each of the considered tasks. The
quality of a language model is usually measured
by the perplexity of its sentence-level probabil-
ity distribution with respect to the evaluation data.
For MT evaluation in general, metrics based on
n-gram precision such as BLEU (Papineni et al.,
2002) or METEOR (Banerjee and Lavie, 2005) are
commonly used.

Forgetting and Intransigence metrics were re-
cently proposed to quantify continual learning ca-
pabilities of a model (Chaudhry et al., 2018; Kim
et al., 2019). They describe Forgetting as a mea-
sure of how much knowledge of previous tasks is
preserved by a model and Intransigence as a mea-
sure of its inability to learn new tasks. Currently,
due to the nature of the studied tasks these metrics
are accuracy-based.

4 Experiments

In this section, we present both our published and
unpublished experimental results.

Our experiments so far focused mostly on
monolingual (language modeling, MT initializa-
tion) and bilingual tasks (MT, multi-modal MT,
post-editing). In the next section, we will describe
our plans for a follow-up in a more complex set-
tings.

4.1 Automatic Post-Editing

In this section, we describe our submission to au-
tomatic post-editing (APE) task at WMT17 (Variš
and Bojar, 2017). The goal of this task is to
develop a system that corrects machine transla-
tion errors produced by an unknown MT sys-
tem. Specifically, given a source language sen-
tence and a sentence translated by MT, the APE
system should produce a translated sentence of the
same or higher translation quality.

In our submission, we compared different in-
put processing strategies, and network architec-
tures. Additionally, we also tried improving our
system using synthetic post-editing data (Junczys-
Dowmunt and Grundkiewicz, 2016). For input
processing, we compared single-encoder architec-
ture with a multi-encoder architecture. A multi-
encoder architecture uses separate encoder for
source language sentence and for its translation.

Although these weights can be shared between the
encoders, we only investigated the setup with sep-
arate sets of weights. A single-encoder architec-
ture concatenates source language sentence and its
translation and treats it as a single input sequence
(Niehues et al., 2016). Although this results in a
fewer network weights, the complexity of the in-
put sequence increases.

Regarding architectures, we examined a recur-
rent neural network (Sutskever et al., 2014) and a
recurrent-over-convolutional network (Lee et al.,
2017), both combined with attention mechanism
(Bahdanau et al., 2014). We used subword to-
kenization (Sennrich et al., 2016b) in combina-
tion with the first architecture, however, recurrent-
over-convolutional architecture was designed to
work without any explicit segmentation, process-
ing the streams character by character.

In the end, we found that the addition of the
additional synthetic data had the biggest impact
on the system performance. The results also sug-
gested that using character-level architecture ben-
efits the post-editing task more than the subword
tokenization. Based on our manual examination of
the post-edited sentences, we concluded that eval-
uation by the automated metrics such as BLEU
(Papineni et al., 2002) might not be suitable for
this task.

4.2 Multi-Modal Machine Translation

This section describes our submission to multi-
modal translation task at WMT18 (Helcl et al.,
2018). The task focuses on translating a textual in-
put given an additional visual input to help resolve
possible ambiguities. The visual input is an image
and the translated sentence is a caption describing
the image.

We used a self-attentive network (Vaswani
et al., 2017) in our the submission experiments in-
stead of the recurrent neural network (Sutskever
et al., 2014). We used a multi-source approach,
combining textual representations produced by the
encoder and intermediate visual features generated
by a pre-trained image-classification network (He
et al., 2016). We combine them by first attending
over the textual representations and then over the
visual features.

Furthermore, we included additional training
objective called Imagination (Elliott and Kádár,
2017). Our aim was to learn grounded textual rep-
resentation by approximating visual features using



related textual representations.
Although the suggested methods did improve

our system over the purely textual baseline, the
biggest performance gain was again achieved by
preparing additional synthetic data. We used
the MSCOCO (Lin et al., 2014) image caption-
ing dataset and applied back-translation (Sennrich
et al., 2016a) on the captions to generate synthetic
source training sentences. We also added textual-
only data from various bilingual corpora using
perplexity-based filtering, only including exam-
ples similar to the caption translation domain.

Aside from comparing our systems using stan-
dard metrics for automatic evaluation of MT, we
also provide results of the adversarial evaluation
suggested by Elliott (2018). We report that explicit
integration of the visual features into the self-
attentive model improves overall performance,
confirmed by both automatic metric and adversar-
ial evaluation.

4.3 Unsupervised MT Pre-Training
In this section, we discuss our published results
on the use of Elastic Weight Consolidation (EWC)
in machine translation (Variš and Bojar, 2019).
The main goal of these initial experiments was to
tackle regularization capabilities of the EWC in
the low-resource translation scenario.

Given two tasks, A and B, with their respec-
tive data DA ∪ DB = D, the goal of multi-task
learning is to maximize likelihood of the network
weights given the whole data D. Kirkpatrick et al.
(2017) show that this can be factored to a likeli-
hood p(DB|θ) and a prior knowledge about the
previously learned task p(θ|DA) using Bayes the-
orem:

p(θ|D) =
p(DB|θ)p(θ|DA)

p(DB)
(7)

Equation 7 assumes using identical network for
each task. We show in our work that under spe-
cific assumptions about network weight indepen-
dence, this equation can be generalized for net-
work optimization given parts of the network were
trained for different tasks. In particular, we ap-
ply a modified EWC regularization on the unsu-
pervised MT pre-training. Given two languages,
L1 and L2, we first train separate language mod-
els using available monolingual data. Next, we ini-
tialize MT encoder and decoder using L1 and L2

language model respectively and fine-tune the MT
model with the bilingual data. We use EWC to

Figure 4: Example of two images where an identical
sets of objects are detected even though the actions re-
lated to the objects differ (e.g. upper: dog jumping,
lower: dog lying down).

avoid forgetting the original language modelling
tasks, however, we only investigate the regulariza-
tion capabilities of the consolidation method.

We found minor improvements when using
EWC regularization only during MT decoder pre-
training. We also compared our method with an-
other approach using the original language model
loss as a form of regularization. While having
similar results when applied to the decoder, our
method has faster wall-time convergence possi-
bly due to less arithmetic operations need during
network updates. We suspect that the poor per-
formance when regularizing encoder is due to a
task mismatch. The pre-trained language model is
an auto-regressive decoder, however, our MT self-
attentive encoder models both left and right-side
context.

4.4 Unpublished Results

Our most recent work was focused on multi-modal
representation learning. We build upon the work
of Anderson et al. (2018) suggesting using visual
object representations (VOR) associated with ob-
jects detected within a picture by a Faster-RCNN
object detection (OD) network (Ren et al., 2015).
We study the methods of grounding these VORs
in the word embedding space of their correspond-



ing labels and their effects on the image captioning
(IC) task.

There were several proposals for using explicit
object detections for IC instead of abstract fea-
tures extracted from the intermediate layers of im-
age processing network (Wang et al., 2018; Yin
and Ordonez, 2017). However, these works treat
the set of objects detected within a picture as a
bag-of-objects (BOO), learning explicit embed-
dings of the object labels instead of directly using
VORs produced by the OD network. We argue that
BOO representation of an image is not expressive
enough since two different images can have iden-
tical representation. Some level of disambiguation
can be gained adding encoded information about
the bounding box size and location of the objects,
however, it still does not capture details about the
actions associated with the objects as illustrated in
Figure 4.

During our initial experiments we found that
even though word embeddings learned from
monolingual corpora and VOR extracted by an
OD network exhibit similar properties, they oc-
cupy different parts of the vector space. There-
fore, we tried grounding VOR in the word embed-
dings of their respective labels during IC training
by adding additional cluster loss and perceptual
loss suggested by Bordes et al. (2019) to the train-
ing objective.

Results of our experiments suggest that even
though the system learns to cluster VORs prop-
erly, it does not lead to any significant IC improve-
ments. One of the reasons might be in the limi-
tations of our label set. We only used labels de-
fined in the MSCOCO dataset (containing around
80 object classes) while Ren et al. (2015) used an
OD system fine-tuned on Visual Genome (Krishna
et al., 2017) which contains around 1600 object
classes.

Furthermore, since VORs should already con-
tain information about the context of an object,
grounding them in context-less word embeddings
might be too restrictive. We expect that using e.g.
hidden states produced by the decoder (language
model) might be more effective since they should
also encode information about the label context.

5 Future Plans

So far, we have studied each of the continual learn-
ing problems mainly in isolation. Our following
research will try to combine introduced techniques

that counter these problems. However, our main
focus will be on the problem decomposition and
knowledge composition. Other problems such as
catastrophic forgetting and low-resource learning
will be studied only on the side.

The core of our research will be based around
the self-attentive network architectures (Vaswani
et al., 2017). These architectures are currently
state-of-the-art not only in MT but also language
modeling (Devlin et al., 2019) and they seem to be
most efficient in terms of training data needed, as
observed for summarization by (Çano and Bojar,
2019)).

Recently published results also showed cross-
lingual capabilities of these models and their ap-
plication to MT (Lample et al., 2017). Further-
more, studies of the multi-head attention mecha-
nism, a key component of the self-attentive net-
works demonstrate the capacity for specialization.
For example, it was shown in NMT that the atten-
tion heads can abstract linguistically-interpretable
structures with different levels of contribution
(Voita et al., 2019). However, deeper understand-
ing of these capabilities is required.

In a standard k-headed self-attentive layer,
each attention head computes a dot-product on a
learned transformation of the input vector space.
During training, it is hypothesised that these trans-
formations can capture different attributes of the
structure of the modeled data (Mareček and Rosa,
2019), providing a mechanism for information de-
composition. However, the currently studied ar-
chitectures are quite constrained having a fixed set
of attention heads regardless of the input.

We propose a modification to the multi-head at-
tention mechanism inspired by a work on modular
networks (Kirsch et al., 2018) called modular self-
attentive network. Similarly to the previous work,
we will use a pool of modules and a controller
mechanism to choose a subset of network modules
depending on the layer input. In our case, a mod-
ule will be single attention head. We plan on us-
ing a single controller with a single set of attention
heads. We suggest focusing mainly on the follow-
ing two controller schemes: global scheme should
distribute the modules between layers based solely
on the network input, local scheme chooses a set
of modules for each layer separately based on the
output of the previous layer. Figure 5 shows com-
parison between the original self-attentive network
architecture and our proposed modifications.
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Figure 5: Comparison of the original self-attentive network architecture with the proposed modular modification.
(a) Original network with two layers and three attention heads per layer, (b) modular network with the global head
assignment (conditioned on the network input), (c) modular network with the local head assignment (conditioned
on the output of the previous layer). The local variant allows module sharing between the network layers. We omit
the feed-forward layers of the self-attentive network for simplicity.

Initial experiments will compare the perfor-
mance of the state-of-the-art self-attentive net-
works with their modular variations. We will ex-
amine both proposed schemes. Besides hoping
for better results, we are interested in the anal-
ysis of the emergent network structure. Since
the choice of the network modules is conditioned
by its input, we can for example study the self-
attention modules using clustering methods. We
will focus mostly on the MT task in this phase,
namely German-English and Czech-English trans-
lation separate or multi-source.

As a next step, based on the results of these ini-
tial experiments, we will continue with the multi-
lingual experiments. We will study only the net-
work variation with the most promising results.
Our focus will be on machine translation with
identical target-side language and language mod-
eling using training objectives suggested by Lam-
ple et al. (2017). In these experiments, we will
be interested in the module specialization with re-
spect to the languages and their linguistic close-
ness. Given the available monolingual and bilin-
gual corpora, we plan to study mostly English,
Czech and German. If the results are promising,
we may also include Dutch-English MT. We plan
to compare both joint training and the continual
training. In the latter case, techniques that counter
catastrophic forgetting (e.g. EWC) might be nec-
essary.

In the last set of experiments, we will study the
multi-task scenario. Similarly to cross-lingual ini-
tialization (Lample et al., 2017), we plan to reuse
multi-lingual language models trained in the pre-
vious set of experiments for MT encoder/decoder

initialization similar to our EWC experiment. We
will then expand the idea to multi-source transla-
tion by either using a bi-lingual MT model trained
for multiple language pairs or combining single
MT model with an additional encoder initialized
by a language model trained on the other source
language.

We also plan several alternative experiment op-
tions in case some of the proposed settings prove
to be ineffective. First, we can try other modu-
lar network approaches and apply them mainly to
multi-source translation, for example the mixture-
of-experts methods (Shazeer et al., 2017). We
would be mainly studying different scope defini-
tions of experts (e.g. layer-wise, encoder wise,
etc.). Second, we can examine to which extent
module-specialization and per-weight regulariza-
tion methods (e.g. EWC) complement each other.
Since the per-weight regularization assigns “im-
portance” values to network weights, we can, for
example, study which weights (or modules if tak-
ing an average importance) are considered im-
portant for a certain task or language. This can
be further studied jointly with module specializa-
tion. Third, we can also apply our findings from
shared representation space learning and see how
the modular network approach benefits from such
vector space constraints.

6 Conclusion

In this proposal, we described main problems of
continual learning in the current state-of-the-art
neural networks which is a key requirement for
building general AI systems. We summarized re-
lated work with respect to each problem and pro-



vided details about the methodology related to our
experiments. We also provided a brief overview of
our experimental results so far, both published and
unpublished.

In our future work, our main focus will be on
two aspects of continual learning: task decom-
position and knowledge composition. We pro-
posed a modification to an existing state-of-the-
art architecture introducing modularity to improve
the model performance. Additionally, we plan to
study possible contributions of the modified archi-
tecture to the model analysis. We structure our
plans into several steps together with alternatives
in case the intermediate results of the original pro-
posal will stray from our expectations.
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