
XML and JSON in Python
Zdeněk Žabokrtský, Rudolf Rosa

February 18, 2023

NPFL125 Introduction to Language Technologies

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics unless otherwise stated

XML in Python

• the two standard approaches for XML processing are supported in the standard library:
• xml.dom.* – a standard DOM API (Document Object Model)
• xml.sax.* – a standard SAX API (Simple Api for Xml)

• but there’s xml.etree.ElementTree (ET for short)
• a lightweight Pythonic API
• supports both DOM-like (but ET faster than DOM) and SAX-like processing (i.e.

event-based, streaming i.e. all-in-memory)
• fast C implementation used by default whenever possible in Python3 (no need for

xml.etree.cElementTree as in Python 2)

Credit: The following slides are based on an ElementTree intro by Eli Bendersky.

1/ 20

An XML file as a tree

credit: geeksforgeeks.org

2/ 20

ET: loading an XML doc

loading from a file:

import xml.etree.ElementTree as ET
tree = ET.ElementTree(file='sample.xml')

or from a string:

root = ET.fromstring('<my><own><xmlcontent/></own></my>')

3/ 20

ET: traversing the tree

root = tree.getroot()

for child in root:
print(child.tag, child.attrib, child.text)

for descendant in root.iter():
....

4/ 20

Time for exercise

write a recursive function drawxmltree that visualizes the tree structure of an XML element
by space indentation (one element per line, only tag displayed, two-space indentation per
level), so that
drawxmltree(ET.fromstring('<root><child><grandchild/><grandchild/><grandchild/><child/></root>')

results in

root
child
grandchild
grandchild

child

5/ 20

ET: accessing attribute values

root = ET.fromstring('<koren id="x15" name="John"/>')
for attr in root.attrib:

print(attr+"="+root.attrib[attr])

6/ 20

ET: simple searching

for elem in tree.iter(tag='surname'):
....

7/ 20

ET: complex searching using XPath

for elem in tree.iterfind('*/section/figure[@id="f15"]'):
....

8/ 20

ET: creating+storing an XML doc

root = ET.Element('root')
newelem = ET.SubElement(root, 'data')
ET.dump(root)

9/ 20

JSON

• JavaScript Object Notation
• a simple text-oriented format for data exchange between a browser and a server
• inspired by JavaScript object literal syntax, but nowadays used well beyond the

JavaScript world
• became one of the most popular data exchange formats in the last years

10/ 20

XML vs. JSON – a first glimpse

<?xml version="1.0"?>
<book id="123">
<title>Object Thinking</title>
<author>David West</author>
<published>

<by>Microsoft Press</by>
<year>2004</year>

</published>
</book>

{
"id": 123,
"title": "Object Thinking",
"author": "David West",
"published": {
"by": "Microsoft Press",
"year": 2004

}
}

11/ 20

JSON – a quick syntax tour

• data – hierarchical structures
• curly braces hold objects

• name and value separated by colon
• name-value pairs separated by comma

• square brackets hold arrays
• values separated by comma

• whitespaces (space, tab, LF, CR) around syntactic elements ignored
• BOM not allowed
• no syntax for comments

12/ 20

JSON – data types

• number
• string
• boolean
• array
• object
• null

13/ 20

JSON in Python

• json – JSON API in available the standard library
• API similar to that of pickle

14/ 20

json: Implicit type conversions

• A JSON object goes to Python dict
• a JSON array goes to Python list
• a JSON string goes to Python unicode
• a JSON number goes to Python int or long
• a JSON true goes to Python True
• etc.

and vice versa.

15/ 20

json: serializing/deserializing

import json

named_entity = {"form":"Bob", "type":"firstname", span:[0,1,2]}

serialized = json.dumps(named_entity)

restored = json.loads(serialized)

16/ 20

json: selected serialization options

There’s some space for customizing the serialization (within the limits given by the JSON
spec):

• encoding – the character encoding (utf-8 by default)
• indent – pretty-printing with the specified indent level for object members
• sort_keys – output of dictionaries sorted lexicographically by key
• separator – tuple (item_sep, key_sep)

17/ 20

XML vs. JSON – similarities

• both XML and JSON are frequently used for data interchange
• both formats are human readable (if designed properly)
• both are currently supported by many programming languages

18/ 20

XML vs. JSON – differences

• as usual, we face the trade-off of simplicity against expressiveness
• with some over-simplification: JSON is a lightweight cousin of XML
• on the other hand, XML is (almost) type-less
• JSON is slightly less verbose and simpler (and faster) to parse…
• …, but currently there’s more functionality associated with the XML standard:

namespaces, referencing, validations schemes, stylesheet transformations, query
languages etc.

• so threre’s no clear superiority of one against the other
• your final choice should depend on what you really need (and, of course, on your project

context etc.)

19/ 20

XML vs. JSON – can we estimate future from history?

• In 1990s, XML was introduced as a considerably simplified descendant of SGML.
• But 20 years later SGML is still everywhere around, incarnated basically in every web

page.
• However, does XML have such a killer app now?
• In spite of the current dominance of JSON in various web solutions, XML is still used

frequently for data exchange
• a quick glimpse into some data: XML mentioned 160x in dataset descriptions in the

LINDAT/CLARIAH-CZ repository, JSON only 17x
• Is the XML’s redundancy an advantage in the case data exchange, or do we just observe

an inertia effect in the NLP industry... who knows?

20/ 20

