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XML in Python

• the two standard approaches for XML processing are supported in the standard library:
• xml.dom.* – a standard DOM API (Document Object Model)
• xml.sax.* – a standard SAX API (Simple Api for Xml)

• but there’s xml.etree.ElementTree (ET for short)
• a lightweight Pythonic API
• supports both DOM-like (but ET faster than DOM) and SAX-like processing (i.e.

event-based, streaming i.e. all-in-memory)
• fast C implementation used by default whenever possible in Python3 (no need for

xml.etree.cElementTree as in Python 2)

Credit: The following slides are based on an ElementTree intro by Eli Bendersky.
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An XML file as a tree

credit: geeksforgeeks.org
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ET: loading an XML doc

loading from a file:

import xml.etree.ElementTree as ET
tree = ET.ElementTree(file='sample.xml')

or from a string:

root = ET.fromstring('<my><own><xmlcontent/></own></my>')
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ET: traversing the tree

root = tree.getroot()

for child in root:
print(child.tag, child.attrib, child.text)

for descendant in root.iter():
....
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Time for exercise

write a recursive function drawxmltree that visualizes the tree structure of an XML element
by space indentation (one element per line, only tag displayed, two-space indentation per
level), so that
drawxmltree(ET.fromstring('<root><child><grandchild/><grandchild/><grandchild/><child/></root>')

results in

root
child
grandchild
grandchild

child
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ET: accessing attribute values

root = ET.fromstring('<koren id="x15" name="John"/>')
for attr in root.attrib:

print(attr+"="+root.attrib[attr])
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ET: simple searching

for elem in tree.iter(tag='surname'):
....
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ET: complex searching using XPath

for elem in tree.iterfind('*/section/figure[@id="f15"]'):
....
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ET: creating+storing an XML doc

root = ET.Element('root')
newelem = ET.SubElement(root, 'data')
ET.dump(root)
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JSON

• JavaScript Object Notation
• a simple text-oriented format for data exchange between a browser and a server
• inspired by JavaScript object literal syntax, but nowadays used well beyond the

JavaScript world
• became one of the most popular data exchange formats in the last years
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XML vs. JSON – a first glimpse

<?xml version="1.0"?>
<book id="123">
<title>Object Thinking</title>
<author>David West</author>
<published>

<by>Microsoft Press</by>
<year>2004</year>

</published>
</book>

{
"id": 123,
"title": "Object Thinking",
"author": "David West",
"published": {
"by": "Microsoft Press",
"year": 2004

}
}
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JSON – a quick syntax tour

• data – hierarchical structures
• curly braces hold objects

• name and value separated by colon
• name-value pairs separated by comma

• square brackets hold arrays
• values separated by comma

• whitespaces (space, tab, LF, CR) around syntactic elements ignored
• BOM not allowed
• no syntax for comments
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JSON – data types

• number
• string
• boolean
• array
• object
• null
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JSON in Python

• json – JSON API in available the standard library
• API similar to that of pickle
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json: Implicit type conversions

• A JSON object goes to Python dict
• a JSON array goes to Python list
• a JSON string goes to Python unicode
• a JSON number goes to Python int or long
• a JSON true goes to Python True
• etc.

and vice versa.
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json: serializing/deserializing

import json

named_entity = {"form":"Bob", "type":"firstname", span:[0,1,2]}

serialized = json.dumps(named_entity)

restored = json.loads(serialized)
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json: selected serialization options

There’s some space for customizing the serialization (within the limits given by the JSON
spec):

• encoding – the character encoding (utf-8 by default)
• indent – pretty-printing with the specified indent level for object members
• sort_keys – output of dictionaries sorted lexicographically by key
• separator – tuple (item_sep, key_sep)
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XML vs. JSON – similarities

• both XML and JSON are frequently used for data interchange
• both formats are human readable (if designed properly)
• both are currently supported by many programming languages

18/ 20



XML vs. JSON – differences

• as usual, we face the trade-off of simplicity against expressiveness
• with some over-simplification: JSON is a lightweight cousin of XML
• on the other hand, XML is (almost) type-less
• JSON is slightly less verbose and simpler (and faster) to parse…
• …, but currently there’s more functionality associated with the XML standard:

namespaces, referencing, validations schemes, stylesheet transformations, query
languages etc.

• so threre’s no clear superiority of one against the other
• your final choice should depend on what you really need (and, of course, on your project

context etc.)
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XML vs. JSON – can we estimate future from history?

• In 1990s, XML was introduced as a considerably simplified descendant of SGML.
• But 20 years later SGML is still everywhere around, incarnated basically in every web

page.
• However, does XML have such a killer app now?
• In spite of the current dominance of JSON in various web solutions, XML is still used

frequently for data exchange
• a quick glimpse into some data: XML mentioned 160x in dataset descriptions in the

LINDAT/CLARIAH-CZ repository, JSON only 17x
• Is the XML’s redundancy an advantage in the case data exchange, or do we just observe

an inertia effect in the NLP industry... who knows?
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