Deep Learning for Natural Language Processing

Jindřich Helcl

🖬 April 14, 2020

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Outline

Neural Networks Basics

Representing Words

Representing Sequences Recurrent Networks Convolutional Networks Self-attentive Networks

Classification and Labeling

Generating Sequences

Pre-training Representations Word2Vec ELMo BERT

NLP tasks learn end-to-end using deep learning — the number-one approach in current research

- NLP tasks learn end-to-end using deep learning the number-one approach in current research
- State of the art in POS tagging, parsing, named-entity recognition, machine translation, ...

- NLP tasks learn end-to-end using deep learning the number-one approach in current research
- State of the art in POS tagging, parsing, named-entity recognition, machine translation, ...
- Good news: training without almost any linguistic insight

- NLP tasks learn end-to-end using deep learning the number-one approach in current research
- State of the art in POS tagging, parsing, named-entity recognition, machine translation, ...
- Good news: training without almost any linguistic insight
- Bad news: requires enormous amount of training data and really big computational power

What is deep learning?

Buzzword for machine learning using neural networks with many layers using back-propagation

What is deep learning?

- Buzzword for machine learning using neural networks with many layers using back-propagation
- Learning of a real-valued function with millions of parameters that solves a particular problem

What is deep learning?

- Buzzword for machine learning using neural networks with many layers using back-propagation
- Learning of a real-valued function with millions of parameters that solves a particular problem
- Learning more and more abstract representation of the input data until we reach such a suitable representation for our problem

Neural Networks Basics

Neural Networks Basics

Neural Networks Basics

Representing Words

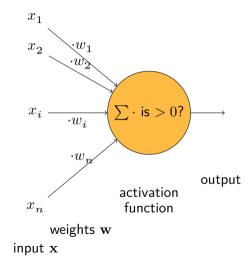
Representing Sequences Recurrent Networks Convolutional Networks Self-attentive Networks

Classification and Labeling

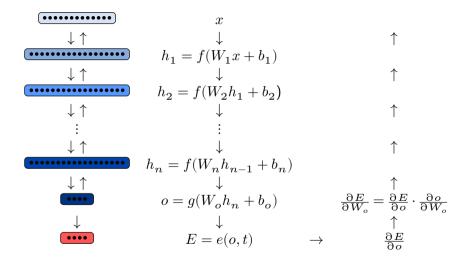
Generating Sequences

Pre-training Representations Word2Vec ELMo BERT

Single Neuron



Neural Network



Implementation

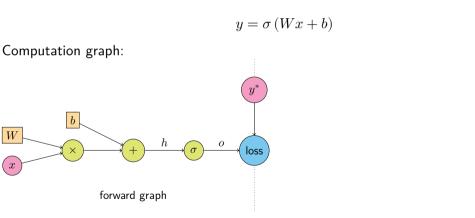
Logistic regression:

$$y = \sigma \left(Wx + b \right) \tag{1}$$

Computation graph:

Implementation

Logistic regression:

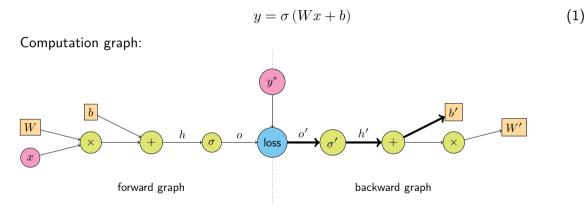


x

(1)

Implementation

Logistic regression:



Frameworks for Deep Learning

research and prototyping in Python

- graph statically constructed, symbolic computation
- computation happens in a session
- allows graph export and running as a binary

PYTÖRCH

- computations written dynamically as normal procedural code
- easy debugging: inspecting variables at any time of the computation

Representing Words

Representing Words

Neural Networks Basics

Representing Words

Representing Sequences Recurrent Networks Convolutional Networks Self-attentive Networks

Classification and Labeling

Generating Sequences

Pre-training Representations Word2Vec ELMo BERT

Language Modeling

estimate probability of a next word in a text

 $\mathsf{P}(w_i|w_{i-1},w_{i-2},\ldots,w_1)$

Language Modeling

estimate probability of a next word in a text

$$\mathsf{P}(w_i|w_{i-1},w_{i-2},\ldots,w_1)$$

• standard approach: *n*-gram models with Markov assumption

$$\approx \mathsf{P}(w_{i}|w_{i-1}, w_{i-2}, \dots, w_{i-n}) \approx \sum_{j=0}^{n} \lambda_{j} \frac{c(w_{i}|w_{i-1}, \dots, w_{i-j})}{c(w_{i}|w_{i-1}, \dots, w_{i-j+1})}$$

Language Modeling

estimate probability of a next word in a text

$$\mathsf{P}(w_i|w_{i-1},w_{i-2},\ldots,w_1)$$

• standard approach: *n*-gram models with Markov assumption

.

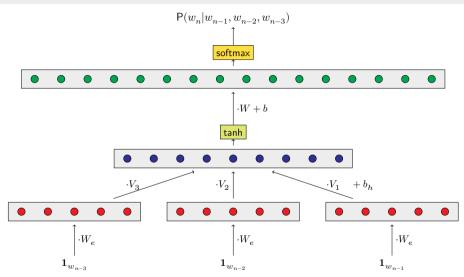
$$\approx \mathsf{P}(w_{i}|w_{i-1}, w_{i-2}, \dots, w_{i-n}) \approx \sum_{j=0}^{n} \lambda_{j} \frac{c(w_{i}|w_{i-1}, \dots, w_{i-j})}{c(w_{i}|w_{i-1}, \dots, w_{i-j+1})}$$

• Let's simulate it with a neural network:

$$..\approx F(w_{i-1},\ldots,w_{i-n}|\theta)$$

 θ is a set of trainable parameters.

Simple Neural Language Model



Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model. The Journal of Machine Learning Research, 3 (Feb):1137–1155, 2003. ISSN 1532-4435

- limited vocabulary (hundred thousands words): indexed set of words

- limited vocabulary (hundred thousands words): indexed set of words
- words are initially represented as one-hot-vectors $\mathbf{1}_w = (0, \dots, 0, 1, 0, \dots 0)$

- limited vocabulary (hundred thousands words): indexed set of words
- words are initially represented as one-hot-vectors $\mathbf{1}_w = (0, \dots, 0, 1, 0, \dots 0)$
- projection $\mathbf{1}_w\cdot V$ corresponds to selecting one row from matrix V

- limited vocabulary (hundred thousands words): indexed set of words
- words are initially represented as one-hot-vectors $\mathbf{1}_w = (0, \dots, 0, 1, 0, \dots 0)$
- projection $\mathbf{1}_w \cdot V$ corresponds to selecting one row from matrix V
- V: is a table of learned word vector representations so-called *word embeddings*

- limited vocabulary (hundred thousands words): indexed set of words
- words are initially represented as one-hot-vectors $\mathbf{1}_w = (0, \dots, 0, 1, 0, \dots 0)$
- projection $\mathbf{1}_w \cdot V$ corresponds to selecting one row from matrix V
- V: is a table of learned word vector representations so-called *word embeddings*
- dimension typically 100 300

- limited vocabulary (hundred thousands words): indexed set of words
- words are initially represented as one-hot-vectors $\mathbf{1}_w = (0, \dots, 0, 1, 0, \dots 0)$
- projection $\mathbf{1}_w \cdot V$ corresponds to selecting one row from matrix V
- V: is a table of learned word vector representations so-called *word embeddings*
- dimension typically 100 300

The first hidden layer is then:

$$h_1=V_{w_{i-n}}\oplus V_{w_{i-n+1}}\oplus\ldots\oplus V_{w_{i-1}}$$

Matrix V is shared for all words.

• optionally add extra hidden layer:

$$h_2 = f(h_1 W_1 + b_1)$$

• optionally add extra hidden layer:

$$h_{2} = f(h_{1}W_{1} + b_{1})$$

• last layer: probability distribution over vocabulary

$$y = \text{softmax}(h_2 W_2 + b_2) = \frac{\exp(h_2 W_2 + b_2)}{\sum \exp(h_2 W_2 + b_2)}$$

• optionally add extra hidden layer:

$$h_{2} = f(h_{1}W_{1} + b_{1})$$

last layer: probability distribution over vocabulary

$$y = \text{softmax}(h_2 W_2 + b_2) = \frac{\exp(h_2 W_2 + b_2)}{\sum \exp(h_2 W_2 + b_2)}$$

 training objective: cross-entropy between the true (i.e., one-hot) distribution and estimated distribution

$$E = -\sum_i p_{\mathsf{true}}(w_i) \log y(w_i) = \sum_i -\log y(w_i)$$

• optionally add extra hidden layer:

$$h_{2} = f(h_{1}W_{1} + b_{1})$$

last layer: probability distribution over vocabulary

$$y = \text{softmax}(h_2 W_2 + b_2) = \frac{\exp(h_2 W_2 + b_2)}{\sum \exp(h_2 W_2 + b_2)}$$

 training objective: cross-entropy between the true (i.e., one-hot) distribution and estimated distribution

$$E = -\sum_i p_{\mathsf{true}}(w_i) \log y(w_i) = \sum_i -\log y(w_i)$$

learned by error back-propagation

Learned Representations

word embeddings from LMs have interesting properties

Learned Representations

- word embeddings from LMs have interesting properties
- cluster according to POS & meaning similarity

FRANCE 454	JESUS 1973	XBOX 6909	REDDISH 11724	SCRATCHED 29869	MEGABITS 87025
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	BIT/S
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	psNUMBER	GREYISH	SCRAPED	$_{\rm KBIT/S}$
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	$_{\rm GBIT/S}$
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1 trained with a dictionary of size 100,000. For each column the queried word is followed by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using the Euclidean metric, which was chosen arbitrarily).

Table taken from Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing

(almost) from scratch. The Journal of Machine Learning Research, 12(Aug):2493-2537, 2011. ISSN 1533-7928

Learned Representations

- word embeddings from LMs have interesting properties
- cluster according to POS & meaning similarity

FRANCE 454	JESUS 1973	XBOX 6909	REDDISH 11724	SCRATCHED 29869	MEGABITS 87025
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	BIT/S
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	psNUMBER	GREYISH	SCRAPED	$_{\rm KBIT/S}$
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	$_{\rm GBIT/S}$
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1 trained with a dictionary of size 100,000. For each column the queried word is followed by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using the Euclidean metric, which was chosen arbitrarily).

Table taken from Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing

(almost) from scratch. The Journal of Machine Learning Research, 12(Aug):2493-2537, 2011. ISSN 1533-7928

in IR: query expansion by nearest neighbors

Learned Representations

- word embeddings from LMs have interesting properties
- cluster according to POS & meaning similarity

FRANCE 454	JESUS 1973	XBOX 6909	REDDISH 11724	SCRATCHED 29869	MEGABITS 87025
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	4 SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMAN	Y CHRIST	MSX	PINKISH	PUNCHED	BIT/S
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	psNUMBER	GREYISH	SCRAPED	$_{\rm KBIT/S}$
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGAR	Y PARVATI	GEFORCE	SILVERY	SLASHED	$_{\rm GBIT/S}$
SWITZERLA	AND GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1 trained with a dictionary of size 100,000. For each column the queried word is followed by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using the Euclidean metric, which was chosen arbitrarily).

Table taken from Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing

(almost) from scratch. The Journal of Machine Learning Research, 12(Aug):2493-2537, 2011. ISSN 1533-7928

- in IR: query expansion by nearest neighbors
- in deep learning models: embeddings initialization speeds up training / allows complex model with less data

Implementation in PyTorch I

```
import torch
import torch.nn as nn
class LanguageModel(nn.Module):
   def __init__(self, vocab_size, embedding_dim, hidden_dim):
      super().__init__()
      self.embedding = nn.Embedding(vocab_size, embedding_dim)
       self.hidden laver = nn.Linear(3 * embedding dim, hidden dim)
       self.output layer = nn.Linear(hidden dim, vocab size)
       self.loss function = nn.CrossEntropyLoss()
   def forward(self, word_1, word_2, word_3, target=None):
      embedded_1 = self.embedding(word_1)
      embedded 2 = self.embedding(word 2)
      embedded_3 = self.embedding(word_3)
```

Implementation in PyTorch II

```
hidden = torch.tanh(self.hidden_layer(
    torch.cat(embedded_1, embedded_2, embedded_3)))
logits = self.output_layer(hidden)
loss = None
if target is not None:
    loss = self.loss_function(logits, targets)
```

return logits, loss

Implementation in TensorFlow I

import tensorfow as tf

```
input_words = [tf.placeholder(tf.int32, shape=[None]) for _ in range(3)]
target_word = tf.placeholder(tf.int32, shape[None])
```

```
embeddings = tf.get_variable(tf.float32, shape=[vocab_size, emb_dim])
embedded_words = tf.concat([tf.nn.embedding_lookup(w) for w in input_words])
```

hidden_layer = tf.layers.dense(embedded_words, hidden_size, activation=tf.tanh)
output_layer = tf.layers.dense(hidden_layer, vocab_size, activation=None)
output_probabilities = tf.nn.softmax(output_layer)

loss = tf.nn.cross_entropy_with_logits(output_layer, target_words)

```
optimizer = tf.optimizers.AdamOptimizers()
train_op = optimizer.minimize(loss)
```

Implementation in TensorFlow II

```
session = tf.Session()
# initialize variables
```

```
Training given batch
```

```
_, loss_value = session.run([train_op, loss], feed_dict={
    input_words[0]: ..., input_words[1]: ..., input_words[2]: ...,
    target_word: ...
})
```

Inference given batch

```
probs = session.run(output_probabilities, feed_dict={
    input_words[0]: ..., input_words[1]: ..., input_words[2]: ...,
})
```

Representing Sequences

Representing Sequences

Neural Networks Basics

Representing Words

Representing Sequences Recurrent Networks Convolutional Networks Self-attentive Networks

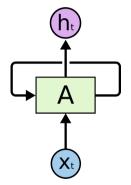
Classification and Labeling

Generating Sequences

Pre-training Representations Word2Vec ELMo BERT Representing Sequences Recurrent Networks

Recurrent Networks (RNNs)

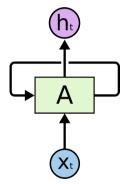
...the default choice for sequence labeling



• inputs: x_1, \ldots, x_T

Recurrent Networks (RNNs)

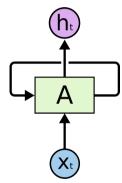
...the default choice for sequence labeling



- inputs: $x_{,} \dots, x_{T}$
- initial state $h_0 = 0$, a result of previous computation, trainable parameter

Recurrent Networks (RNNs)

...the default choice for sequence labeling

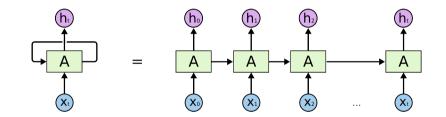


- inputs: $x_{,} \dots, x_{T}$
- initial state $h_0 = \mathbf{0}$, a result of previous computation, trainable parameter
- recurrent computation: $h_t = A(h_{t-1}, x_t)$

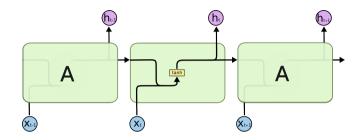
RNN as Imperative Code

```
def rnn(initial_state, inputs):
    prev_state = initial_state
    for x in inputs:
        new_state, output = rnn_cell(x, prev_state)
        prev_state = new_state
        yield output
```

RNN as a Fancy Image

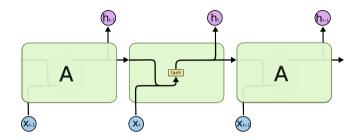


Vanilla RNN



 $h_t = \tanh\left(W[h_{t-1}; x_t] + b\right)$

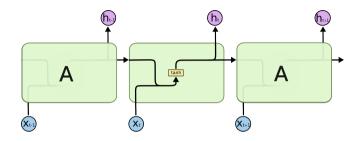
Vanilla RNN



$$h_t = \tanh\left(W[h_{t-1}; x_t] + b\right)$$

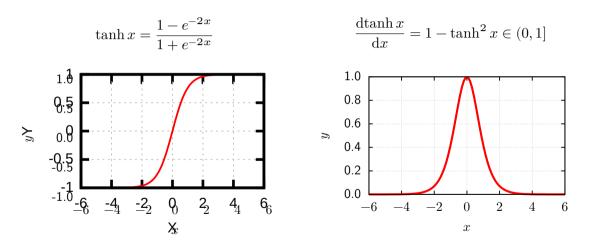
cannot propagate long-distance relations

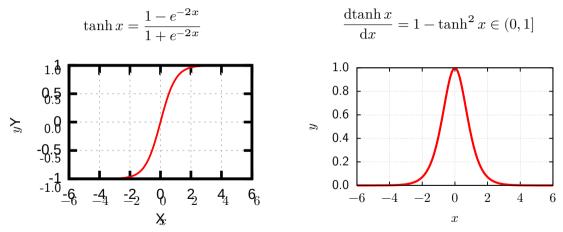
Vanilla RNN



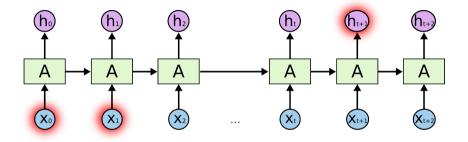
$$h_t = \tanh\left(W[h_{t-1}; x_t] + b\right)$$

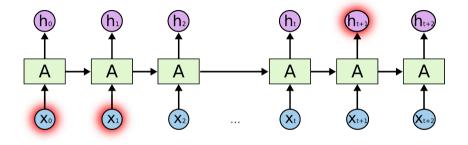
- cannot propagate long-distance relations
- vanishing gradient problem



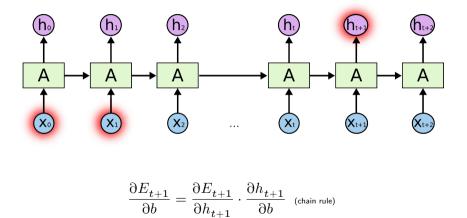


Weight initialized $\sim \mathcal{N}(0,1)$ to have gradients further from zero.





$$\frac{\partial E_{t+1}}{\partial b} =$$



$$\frac{\partial h_t}{\partial b} \ = \ % \frac{\partial h_t}{\partial b} = \frac{\partial h_$$

$$\frac{\partial h_t}{\partial b} = \frac{\partial \tanh\left(\overline{W_h h_{t-1} + W_x x_t + b}\right)}{\partial b} \quad (\tanh' \text{ is derivative of } \tanh' h_{t-1} + W_x x_t + b)}$$

$$\begin{array}{lll} \frac{\partial h_t}{\partial b} & = & \frac{\partial \tanh \overbrace{(W_h h_{t-1} + W_x x_t + b)}}{\partial b} & {}_{(\tanh' \text{ is derivative of tanh})} \\ & = & \tanh'(z_t) \cdot \left(\frac{\partial W_h h_{t-1}}{\partial b} + \frac{\partial W_x x_t}{\underline{\partial b}} + \frac{\partial b}{\underline{\partial b}} \right) \end{array}$$

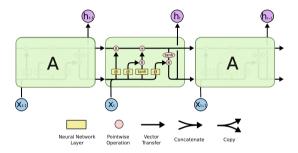
_

$$\begin{array}{lll} \displaystyle \frac{\partial h_t}{\partial b} & = & \displaystyle \frac{\partial \tanh \overbrace{(W_h h_{t-1} + W_x x_t + b)}}{\partial b} & {}_{(\mathrm{tanh'} \ \mathrm{is} \ \mathrm{derivative} \ \mathrm{of} \ \mathrm{tanh})} \\ & = & \displaystyle \tanh'(z_t) \cdot \left(\displaystyle \frac{\partial W_h h_{t-1}}{\partial b} + \displaystyle \frac{\partial W_x x_t}{\underline{\partial b}} + \displaystyle \frac{\partial b}{\underline{\partial b}} \right) \\ & = & \displaystyle \underbrace{W_h}_{\sim \mathcal{N}(0,1)} \underbrace{\tanh'(z_t)}_{\in (0;1]} \displaystyle \frac{\partial h_{t-1}}{\partial b} + \displaystyle \tanh'(z_t) \end{array}$$

 $\mathsf{LSTM} = \mathsf{Long} \mathsf{ short-term} \mathsf{ memory}$

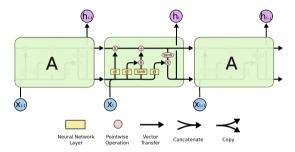
Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780, 1997. ISSN 0899-7667

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):1735–1780, 1997. ISSN 0899-7667



LSTM = Long short-term memory

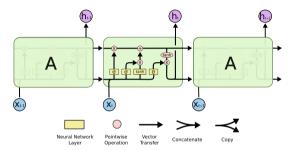
Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780, 1997. ISSN 0899-7667



Control the gradient flow by explicitly gating:

LSTM = Long short-term memory

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780, 1997. ISSN 0899-7667

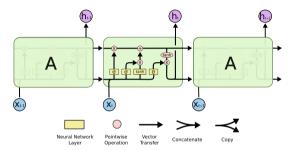


Control the gradient flow by explicitly gating:

what to use from input,

LSTM = Long short-term memory

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997. ISSN 0899-7667

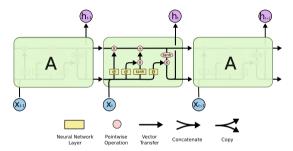


Control the gradient flow by explicitly gating:

- what to use from input,
- what to use from hidden state,

LSTM = Long short-term memory

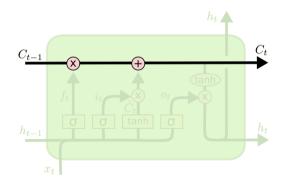
Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997. ISSN 0899-7667



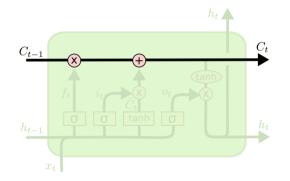
Control the gradient flow by explicitly gating:

- what to use from input,
- what to use from hidden state,
- what to put on output

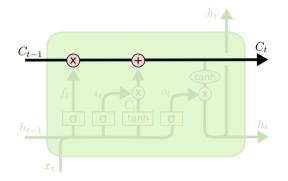
two types of hidden states



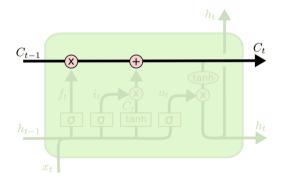
- two types of hidden states
- h_t "public" hidden state, used an output



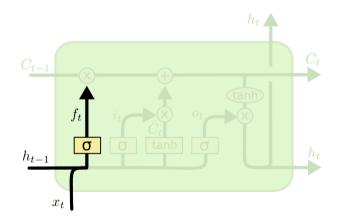
- two types of hidden states
- h_t "public" hidden state, used an output
- c_t "private" memory, no non-linearities on the way



- two types of hidden states
- h_t "public" hidden state, used an output
- c_t "private" memory, no non-linearities on the way
- direct flow of gradients (without multiplying by ≤ 1 derivatives)

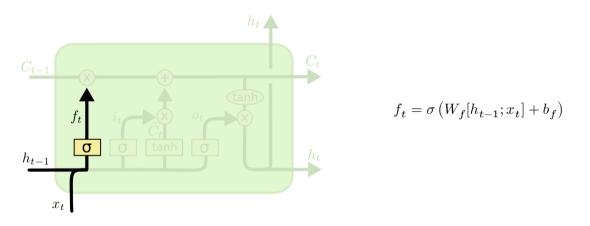


LSTM: Forget Gate



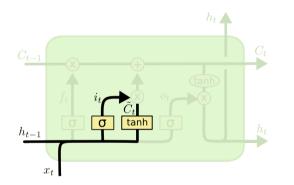
$$f_t = \sigma\left(W_f[h_{t-1}; x_t] + b_f\right)$$

LSTM: Forget Gate



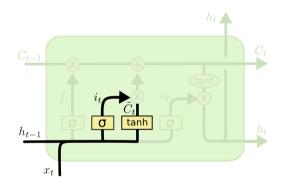
- based on input and previous state, decide what to forget from the memory

LSTM: Input Gate



$$\begin{split} i_t &= \sigma\left(W_i \cdot [h_{t-1}; x_t] + b_i\right) \\ \tilde{C}_t &= \tanh\left(W_c \cdot [h_{t-1}; x_t] + b_C\right) \end{split}$$

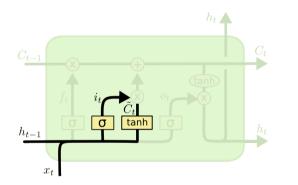
LSTM: Input Gate



$$\begin{split} i_t &= \sigma\left(W_i \cdot [h_{t-1}; x_t] + b_i\right) \\ \tilde{C}_t &= \tanh\left(W_c \cdot [h_{t-1}; x_t] + b_C\right) \end{split}$$

• \tilde{C} — candidate what may want to add to the memory

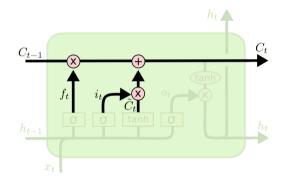
LSTM: Input Gate



$$\begin{split} i_t &= \sigma\left(W_i \cdot [h_{t-1}; x_t] + b_i\right) \\ \tilde{C}_t &= \tanh\left(W_c \cdot [h_{t-1}; x_t] + b_C\right) \end{split}$$

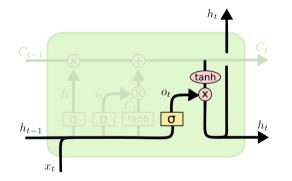
- \tilde{C} candidate what may want to add to the memory
- i_t decide how much of the information we want to store

LSTM: Cell State Update



$$C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C_t}$$

LSTM: Output Gate



$$o_t = \sigma \left(W_o \cdot [h_{t-1}; x_t] + b_o \right)$$
$$h_t = o_t \odot \tanh C_t$$

Here we are, LSTM!

$$\begin{array}{lll} f_t &=& \sigma \left(W_f[h_{t-1};x_t] + b_f \right) \\ i_t &=& \sigma \left(W_i \cdot [h_{t-1};x_t] + b_i \right) \\ o_t &=& \sigma \left(W_o \cdot [h_{t-1};x_t] + b_o \right) \\ \tilde{C}_t &=& \tanh \left(W_c \cdot [h_{t-1};x_t] + b_C \right) \\ \tilde{C}_t &=& f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ h_t &=& o_t \odot \tanh C_t \end{array}$$

Here we are, LSTM!

$$\begin{array}{lll} f_t &=& \sigma \left(W_f[h_{t-1};x_t] + b_f \right) \\ i_t &=& \sigma \left(W_i \cdot [h_{t-1};x_t] + b_i \right) \\ o_t &=& \sigma \left(W_o \cdot [h_{t-1};x_t] + b_o \right) \\ \tilde{C}_t &=& \tanh \left(W_c \cdot [h_{t-1};x_t] + b_C \right) \\ C_t &=& f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ h_t &=& o_t \odot \tanh C_t \end{array}$$

Question How would you implement it efficiently?

Here we are, LSTM!

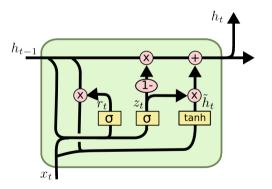
$$\begin{array}{lll} f_t &=& \sigma \left(W_f[h_{t-1};x_t] + b_f \right) \\ i_t &=& \sigma \left(W_i \cdot [h_{t-1};x_t] + b_i \right) \\ o_t &=& \sigma \left(W_o \cdot [h_{t-1};x_t] + b_o \right) \\ \tilde{C}_t &=& \tanh \left(W_c \cdot [h_{t-1};x_t] + b_C \right) \\ C_t &=& f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ h_t &=& o_t \odot \tanh C_t \end{array}$$

Question How would you implement it efficiently? Compute all gates in a single matrix multiplication.

Gated Recurrent Units

update gate remember gate candidate hidden state hidden state

$$\begin{split} z_t &= \sigma(x_t W_z + h_{t-1} U_z + b_z) \in (0,1) \\ r_t &= \sigma(x_t W_r + h_{t-1} U_r + b_r) \in (0,1) \\ \tilde{h_t} &= \tanh\left(x_t W_h + (r_t \odot h_{t-1}) U_h\right) \in (-1,1) \\ h_t &= (1-z_t) \odot h_{t-1} + z_t \cdot \tilde{h}_t \end{split}$$



GRU is smaller and therefore faster

Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014. ISSN 2331-8422;

- GRU is smaller and therefore faster
- performance similar, task dependent

Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014. ISSN 2331-8422;

- GRU is smaller and therefore faster
- performance similar, task dependent
- theoretical limitation: GRU accepts regular languages, LSTM can simulate counter machine

Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014. ISSN 2331-8422;

https://pytorch.org/docs/stable/nn.html?highlight=lstm#torch.nn.LSTM

```
inputs = ... # float tf.Tensor of shape [batch, length, dim]
lengths = ... # int tf.Tensor of shape [batch]
```

```
# Cell objects are templates
fw_cell = tf.nn.rnn_cell.LSTMCell(512, name="fw_cell")
bw_cell = tf.nn.rnn_cell.LSTMCell(512, name="bw_cell")
```

https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn

Bidirectional Networks

• simple trick to improve performance

Bidirectional Networks

- simple trick to improve performance
- run one RNN forward, second one backward and concatenate outputs

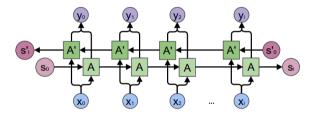


Image from: http://colah.github.io/posts/2015-09-NN-Types-FP/

Bidirectional Networks

- simple trick to improve performance
- run one RNN forward, second one backward and concatenate outputs

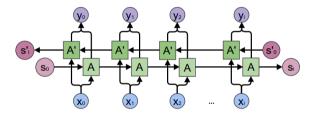


Image from: http://colah.github.io/posts/2015-09-NN-Types-FP/

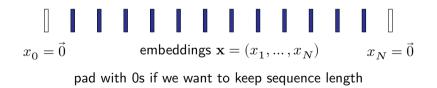
• state of the art in tagging, crucial for neural machine translation

Representing Sequences Convolutional Networks

 \approx sliding window over the sequence

embeddings $\mathbf{x} = (x_1, \dots, x_N)$

 \approx sliding window over the sequence

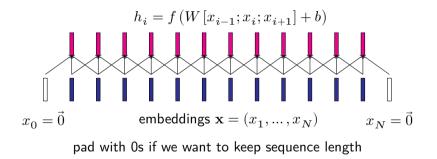


 \approx sliding window over the sequence

$$h_1 = f\left(W[x_0; x_1; x_2] + b\right)$$

$$\begin{bmatrix} & & \\ & &$$

 \approx sliding window over the sequence



1-D Convolution: Pseudocode

```
xs = ... # input sequnce
kernel size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size
W = trained_parameter(xs.shape[2] * kernel_size, filters)
b = trained parameter(filters)
window = kernel size // 2
outputs = []
for i in range(window, xs.shape[1] - window):
   h = np.mul(W, xs[i - window:i + window]) + b
   outputs.append(h)
return np.array(h)
```

1-D Convolution: Frameworks

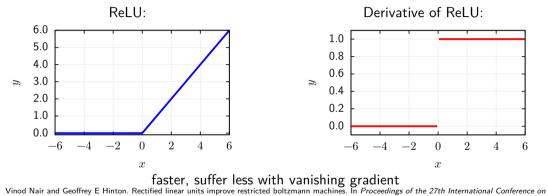
TensorFlow

https://www.tensorflow.org/api_docs/python/tf/layers/conv1d

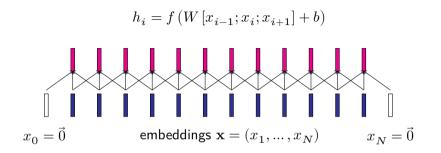
PyTorch

https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d

Rectified Linear Units



Machine Learning, pages 807-814, Haifa, Israel, June 2010. JMLR.org



Allows training deeper networks.

$$h_i = f\left(W\left[x_{i-1}; x_i; x_{i+1}\right] + b\right) + x_i$$

e (TTT [

7

1.1).

Allows training deeper networks.

$$n_i = f\left(W\left[x_{i-1}; x_i; x_{i+1}\right] + b\right) + x_i$$

1,1),

C (TTTT

7

Allows training deeper networks. Why do you think it helps?

1.

$$n_i = f\left(W\left[x_{i-1} ; x_i ; x_{i+1} \right] + b \right) + x_i$$

 $f(\mathbf{W}_{1}) = (\mathbf{W}_{1}) = (\mathbf{W}_{1})$

Allows training deeper networks. Why do you think it helps? Better gradient flow – the same as in RNNs.

Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale \Rightarrow layer normalization. Activation before non-linearity is normalized:

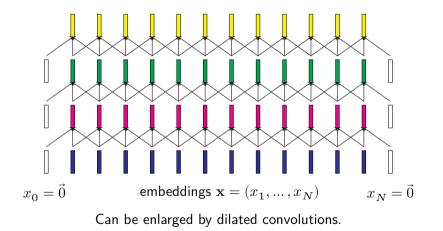
$$\overline{a}_i = \frac{g_i}{\sigma_i} \left(a_i - \mu_i \right)$$

...g is a trainable parameter, $\mu,\,\sigma$ estimated from data.

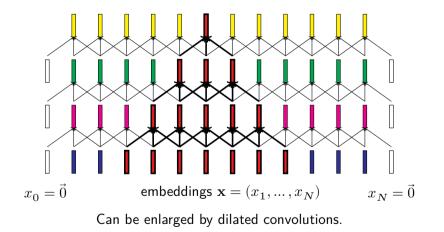
$$\begin{split} \mu &= \frac{1}{H}\sum_{i=1}^{H}a_i\\ \sigma &= \sqrt{\frac{1}{H}\sum_{i=1}^{H}(a_i-\mu)^2} \end{split}$$

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E Hinton. Layer normalization. CoRR, abs/1607.06450, 2016. ISSN 2331-8422

Receptive Field



Receptive Field



Convolutional architectures

+

extremely computationally efficient

- limited context
- by default no aware of *n*-gram order

• max-pooling over the hidden states = element-wise maximum over sequence

Convolutional architectures

T

extremely computationally efficient

- limited context
- by default no aware of *n*-gram order

- max-pooling over the hidden states = element-wise maximum over sequence
- can be understood as an \exists operator over the feature extractors

Representing Sequences Self-attentive Networks

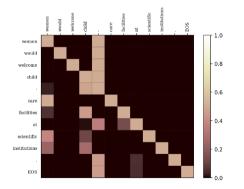
Self-attentive Networks

In some layers: states are linear combination of previous layer states

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems 30, pages 6000–6010, Long Beach, CA, USA, December 2017. Curran Associates, Inc

Self-attentive Networks

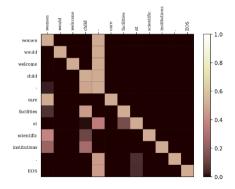
- In some layers: states are linear combination of previous layer states
- Originally for the Transformer model for machine translation



Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems 30, pages 6000–6010, Long Beach, CA, USA, December 2017. Curran Associates, Inc

Self-attentive Networks

- In some layers: states are linear combination of previous layer states
- Originally for the Transformer model for machine translation



- similarity matrix between all pairs of states
- $O(n^2)$ memory, O(1) time (when paralelized)
- next layer: sum by rows

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems 30, pages 6000–6010, Long Beach, CA, USA, December 2017. Curran Associates, Inc

Multi-head scaled dot-product attention

Single-head setup

$$\begin{split} \operatorname{Attn}(Q,K,V) &= \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d}}\right)V\\ h_{i+1} &= \sum \operatorname{softmax}\left(\frac{h_i h_i^{\top}}{\sqrt{d}}\right) \end{split}$$

Multi-head scaled dot-product attention

Single-head setup

$$\begin{split} \operatorname{Attn}(Q,K,V) &= \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d}}\right)V\\ h_{i+1} &= \sum \operatorname{softmax}\left(\frac{h_ih_i^{\top}}{\sqrt{d}}\right) \end{split}$$

Multi-head setup

$$\begin{split} \text{Multihead}(Q,V) &= (H_1 \oplus \cdots \oplus H_h) W^O \\ H_i &= \text{Attn}(QW^Q_i,VW^K_i,VW^V_i) \end{split}$$

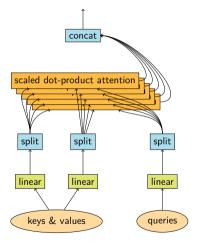
Multi-head scaled dot-product attention

Single-head setup

$$\begin{split} \operatorname{Attn}(Q,K,V) &= \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d}}\right)V\\ h_{i+1} &= \sum \operatorname{softmax}\left(\frac{h_i h_i^{\top}}{\sqrt{d}}\right) \end{split}$$

Multi-head setup

$$\begin{split} \text{Multihead}(Q,V) &= (H_1 \oplus \cdots \oplus H_h) W^O \\ H_i &= \text{Attn}(QW^Q_i,VW^K_i,VW^V_i) \end{split}$$



Dot-Product Attention in PyTorch

Dot-Product Attention in TensorFlow

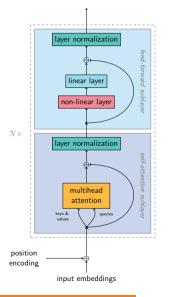
```
def scaled_dot_product(self, queries, keys, values):
    o1 = tf.matmul(queries, keys, transpose_b=True)
    o2 = o1 / (dim**0.5)
```

```
o3 = tf.nn.softmax(o2)
return tf.matmul(o3, values)
```

Model is not aware of the position in the sequence.

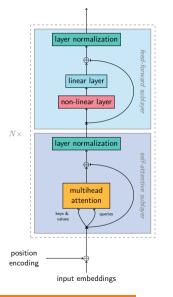
$$pos(i) = \begin{cases} \sin\left(\frac{t}{10^4}^{\frac{i}{d}}\right), & \text{if } i \mod 2 = 0\\ \cos\left(\frac{t}{10^4}^{\frac{i-1}{d}}\right), & \text{otherwise} \end{cases}$$

Stacking self-attentive Layers



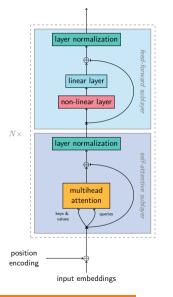
several layers (original paper 6)

Stacking self-attentive Layers



- several layers (original paper 6)
- each layer: 2 sub-layers: self-attention and feed-forward layer

Stacking self-attentive Layers



- several layers (original paper 6)
- each layer: 2 sub-layers: self-attention and feed-forward layer
- everything inter-connected with residual connections

Architectures Comparison

	computation	sequential operations	memory
Recurrent Convolutional Self-attentive	$\begin{array}{c} O(n \cdot d^2) \\ O(k \cdot n \cdot d^2) \\ O(n^2 \cdot d) \end{array}$	$O(n) \ O(1) \ O(1)$	$\begin{array}{c} O(n \cdot d) \\ O(n \cdot d) \\ O(n^2 \cdot d) \end{array}$

d model dimension, n sequence length, k convolutional kernel

Classification and Labeling

Classification and Labeling

Neural Networks Basics

Representing Words

Representing Sequences Recurrent Networks Convolutional Networks Self-attentive Networks

Classification and Labeling

Generating Sequences

Pre-training Representations Word2Vec ELMo BERT

Sequence Classification

• tasks like sentiment analysis, genre classification

Sequence Classification

- tasks like sentiment analysis, genre classification
- need to get one vector from sequence \rightarrow average or max pooling

Sequence Classification

- tasks like sentiment analysis, genre classification
- need to get one vector from sequence \rightarrow average or max pooling
- optionally hidden layers, at the end softmax for probability distribution over classes

Softmax & Cross-Entropy

Output layer with softmax (with parameters W, b):

$$P_y = \operatorname{softmax}(\mathbf{x}) = \mathsf{P}(y = j \mid \mathbf{x}) = \frac{\exp \mathbf{x}^\top W + b}{\sum \exp \mathbf{x}^\top W + b}$$

Softmax & Cross-Entropy

Output layer with softmax (with parameters W, b):

$$P_y = \operatorname{softmax}(\mathbf{x}) = \mathsf{P}(y = j \mid \mathbf{x}) = \frac{\exp \mathbf{x}^\top W + b}{\sum \exp \mathbf{x}^\top W + b}$$

Network error = cross-entropy between estimated distribution and one-hot ground-truth distribution $T = \mathbf{1}(y^*)$:

$$\begin{split} L(P_y, y^*) &= H(P, T) &= -\mathbb{E}_{i \sim T} \log P(i) \\ &= -\sum_i T(i) \log P(i) \\ &= -\log P(y^*) \end{split}$$

Derivative of Cross-Entropy

Let $l = \mathbf{x}^\top W + b$, l_{y^*} corresponds to the correct one.

$$\begin{array}{ll} \displaystyle \frac{\partial L(P_y,y^*)}{\partial l} & = & \displaystyle -\frac{\partial}{\partial l}\log\frac{\exp l_{y^*}}{\sum_j \exp l_j} = \displaystyle -\frac{\partial}{\partial l}l_{y^*} - \log\sum \exp l \\ \\ & = & \mathbf{1}_{y^*} + \frac{\partial}{\partial l} - \log\sum \exp l = \mathbf{1}_{y^*} - \frac{\sum \mathbf{1}_{y^*} \exp l}{\sum \exp l} = \\ \\ & = & \mathbf{1}_{y^*} - P_y(y^*) \end{array}$$

Interpretation: Reinforce the correct logit, suppress the rest.

assign value / probability distribution to every token in a sequence

- assign value / probability distribution to every token in a sequence
- morphological tagging, named-entity recognition, LM with unlimited history, answer span selection

- assign value / probability distribution to every token in a sequence
- morphological tagging, named-entity recognition, LM with unlimited history, answer span selection
- every state is classified independently with a classifier

- assign value / probability distribution to every token in a sequence
- morphological tagging, named-entity recognition, LM with unlimited history, answer span selection
- every state is classified independently with a classifier
- during training, error babckpropagate form all classifiers

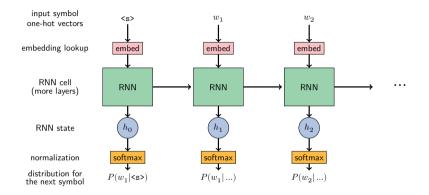
Generating Sequences

• target sequence is of different length than source

- target sequence is of different length than source
- non-trivial (= not monotonic) correspondence of source and target

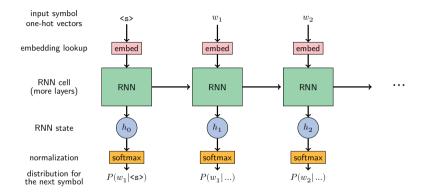
- target sequence is of different length than source
- non-trivial (= not monotonic) correspondence of source and target
- tasks like: machine translation, text summarization, image captioning

Neural Language Model



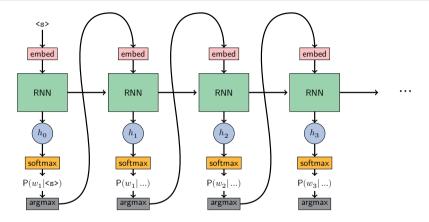
• estimate probability of a sentence using the chain rule

Neural Language Model



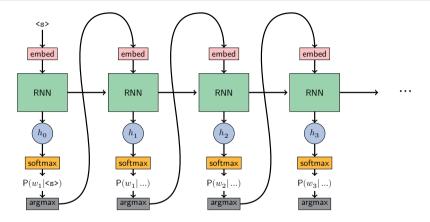
- estimate probability of a sentence using the chain rule
- output distributions can be used for sampling

Sampling from a LM



Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems 27, pages 3104–3112, Montreal, Canada, December 2014. Curran Associates, Inc

Sampling from a LM



when conditioned on input \rightarrow autoregressive decoder

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems 27, pages 3104–3112, Montreal, Canada, December 2014. Curran Associates, Inc

Autoregressive Decoding: Pseudocode

• RNN – original sequence-to-sequence learning (2015)

- RNN original sequence-to-sequence learning (2015)
 - principle known since 2014 (University of Montreal)

Architectures in the Decoder

- RNN original sequence-to-sequence learning (2015)
 - principle known since 2014 (University of Montreal)
 - made usable in 2016 (University of Edinburgh)

Architectures in the Decoder

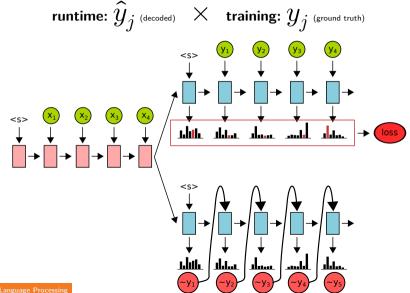
- RNN original sequence-to-sequence learning (2015)
 - principle known since 2014 (University of Montreal)
 - made usable in 2016 (University of Edinburgh)
- CNN convolution sequence-to-sequence by Facebook (2017)

Architectures in the Decoder

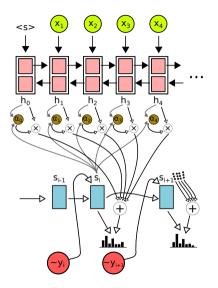
- RNN original sequence-to-sequence learning (2015)
 - principle known since 2014 (University of Montreal)
 - made usable in 2016 (University of Edinburgh)
- CNN convolution sequence-to-sequence by Facebook (2017)
- Self-attention (so called Transformer) by Google (2017)

More on the topic in the MT class.

Implementation: Runtime vs. training



Attention Model



Inputs:

decoder state s_i

encoder states $h_j = \left[\overrightarrow{h_j}\right]$

$$\vec{h}_j = \left[\overrightarrow{h_j}; \overleftarrow{h_j} \right] \quad \forall i = 1 \dots T_x$$

Inputs:

 $\begin{array}{ll} \text{decoder state} & s_i \\ \text{encoder states} & h_j = \left[\overrightarrow{h_j}; \overleftarrow{h_j}\right] & \forall i = 1 \dots T_x \end{array}$

Attention energies:

$$e_{ij} = v_a^\top \tanh\left(W_a s_{i-1} + U_a h_j + b_a\right)$$

Inputs:

 $\begin{array}{ll} \text{decoder state} & s_i \\ \text{encoder states} & h_j = \left[\overrightarrow{h_j};\overleftarrow{h_j}\right] & \forall i = 1 \dots T_x \end{array}$

Attention energies:

Attention distribution:

$$\alpha_{ij} = \frac{\exp\left(e_{ij}\right)}{\sum_{k=1}^{T_x} \exp\left(e_{ik}\right)}$$

/ \

$$e_{ij} = \boldsymbol{v}_a^\top \tanh \left(\boldsymbol{W}_a \boldsymbol{s}_{i-1} + \boldsymbol{U}_a \boldsymbol{h}_j + \boldsymbol{b}_a \right)$$

Inputs:

 $\begin{array}{ll} \text{decoder state} & s_i \\ \text{encoder states} & h_j = \left[\overrightarrow{h_j};\overleftarrow{h_j}\right] & \forall i = 1 \dots T_x \end{array}$

Attention energies:

Attention distribution:

$$e_{ij} = v_a^\top \tanh\left(W_a s_{i-1} + U_a h_j + b_a\right)$$

$$\alpha_{ij} = \frac{\exp\left(e_{ij}\right)}{\sum_{k=1}^{T_x} \exp\left(e_{ik}\right)}$$

/ \

Context vector:

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

Output projection:

$$t_i = \mathrm{MLP}\left(U_o s_{i-1} + V_o E y_{i-1} + C_o c_i + b_o\right)$$

 $\ldots attention$ is mixed with the hidden state

Output projection:

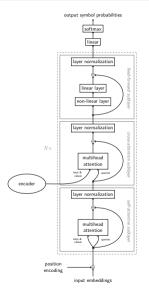
$$t_i = \mathrm{MLP}\left(U_o s_{i-1} + V_o E y_{i-1} + C_o c_i + b_o\right)$$

...attention is mixed with the hidden state

Output distribution:

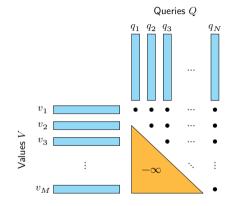
$$p\left(y_{i}=k|s_{i},y_{i-1},c_{i}\right)\propto\exp\left(W_{o}t_{i}\right)_{k}+b_{k}$$

Transformer Decoder

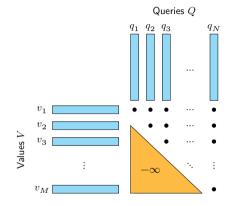


- similar to encoder, additional layer with attention to the encoder
- in every steps self-attention over complete history $\Rightarrow O(n^2)$ complexity

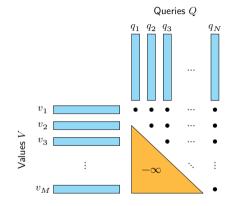
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems 30*, pages 6000–6010, Long Beach, CA, USA, December 2017. Curran Associates, Inc



analogical to encoder



- analogical to encoder
- target is known at training: don't need to wait until it's generated



- analogical to encoder
- target is known at training: don't need to wait until it's generated
- self attention can be parallelized via matrix multiplication

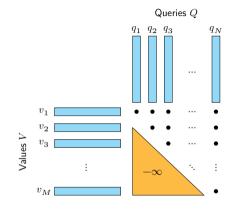


- analogical to encoder
- target is known at training: don't need to wait until it's generated
- self attention can be parallelized via matrix multiplication
- prevent attentding the future using a mask



Question 1: What if the matrix was diagonal?

- analogical to encoder
- target is known at training: don't need to wait until it's generated
- self attention can be parallelized via matrix multiplication
- prevent attentding the future using a mask



- analogical to encoder
- target is known at training: don't need to wait until it's generated
- self attention can be parallelized via matrix multiplication
- prevent attenting the future using a mask

Question 1: What if the matrix was diagonal? Question 2: How such a matrix look like for convolutional architecture?

Pre-training Representations

Pre-training Representations

Neural Networks Basics

Representing Words

Representing Sequences Recurrent Networks Convolutional Networks Self-attentive Networks

Classification and Labeling

Generating Sequences

Pre-training Representations Word2Vec ELMo BERT

Pre-trained Representations

 representations that emerge in models seem to carry a lot of information about the language

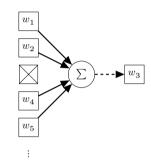
Pre-trained Representations

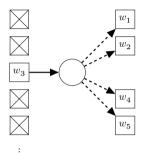
- representations that emerge in models seem to carry a lot of information about the language
- representations pre-trained on large data can be re-used on tasks with smaller training data

Pre-training Representations Word2Vec

Word2Vec

 way to learn word embeddings without training the complete LM CBOW
 Skip-gram



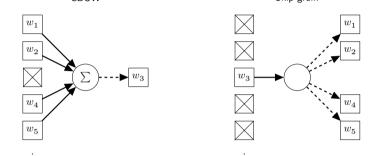


Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA, USA, June 2013. Association for Computational Linguistics

Deep Learning for Natural Language Processing

Word2Vec

way to learn word embeddings without training the complete LM
 CBOW
 Skip-gram

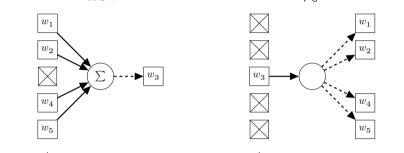


- CBOW: minimize cross-entropy of the middle word of a sliding windows

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA, USA, June 2013. Association for Computational Linguistics

Word2Vec

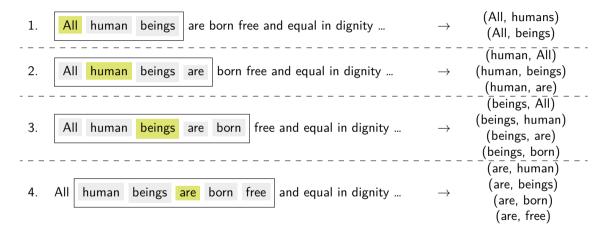
way to learn word embeddings without training the complete LM
 CBOW
 Skip-gram



- CBOW: minimize cross-entropy of the middle word of a sliding windows
- skip-gram: minimize cross-entropy of a bag of words around a word (LM other way round)

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In *Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 746–751, Atlanta, GA, USA, June 2013. Association for Computational Linguistics

Word2Vec: sampling



Word2Vec: Formulas

Training objective:

$$\frac{1}{T}\sum_{t=1}^T\sum_{j\sim (-c,c)}\log p(w_{t+c}|w_t)$$

Equations 1, 2. Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In *Proceedings of the 2013* Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA, USA, June 2013. Association for Computational Linguistics

Word2Vec: Formulas

Training objective:

$$\frac{1}{T}\sum_{t=1}^T\sum_{j\sim (-c,c)}\log p(w_{t+c}|w_t)$$

Probability estimation:

$$p(w_O|w_I) = \frac{\exp\left({V'}_{w_O}^\top V_{w_I}\right)}{\sum_w \exp\left({V'}_w^\top V_{w_i}\right)}$$

where V is input (embedding) matrix, V' output matrix

Equations 1, 2. Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In *Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 746–751, Atlanta, GA, USA, June 2013. Association for Computational Linguistics

Word2Vec: Training using Negative Sampling

The summation in denominator is slow, use noise contrastive estimation:

$$\log \sigma \left(V'_{w_{O}}^{\top} V_{w_{I}} \right) + \sum_{i=1}^{k} E_{w_{i} \sim P_{n}(w)} \left[\log \sigma \left(-V'_{w_{i}}^{\top} V_{w_{I}} \right) \right]$$

Equations 1, 3. Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA, USA, June 2013. Association for Computational Linguistics

Word2Vec: Training using Negative Sampling

The summation in denominator is slow, use noise contrastive estimation:

$$\log \sigma \left(V'_{w_O}^{\top} V_{w_I} \right) + \sum_{i=1}^{k} E_{w_i \sim P_n(w)} \left[\log \sigma \left(-V'_{w_i}^{\top} V_{w_I} \right) \right]$$

Main idea: classify independently by logistic regression the positive and few sampled negative examples.

Equations 1, 3. Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA, USA, June 2013. Association for Computational Linguistics

Word2Vec: Vector Arithmetics

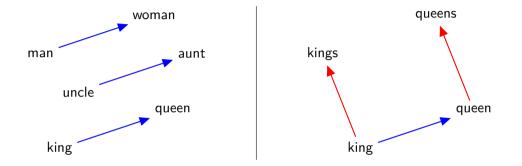


Image originally from Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA, USA, June 2013. Association for Computational Linguistics

Few More Notes on Embeddings

many method for pre-trained words embeddings (most popluar GloVe)

Few More Notes on Embeddings

- many method for pre-trained words embeddings (most popluar GloVe)
- embeddings capturing character-level properties

Few More Notes on Embeddings

- many method for pre-trained words embeddings (most popluar GloVe)
- embeddings capturing character-level properties
- multilingual embeddings

FastText - Word2Vec model implementation by Facebook
https://github.com/facebookresearch/fastText

./fasttext skipgram -input data.txt -output model

Pre-training Representations ELMo

pre-trained large language model

- pre-trained large language model
- "nothing special" combines all known tricks, trained on extremely large data

- pre-trained large language model
- "nothing special" combines all known tricks, trained on extremely large data
- improves almost all NLP tasks

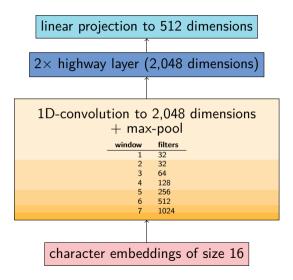
- pre-trained large language model
- "nothing special" combines all known tricks, trained on extremely large data
- improves almost all NLP tasks
- published in June 2018

ELMo Architecture: Input

linear project	tion t	o 512	dimensions
$2 \times$ highway l	ayer ((2,048	dimensions)
1D-convoluti	on to	2,048	dimensions
-	– max	x-pool	
	window	filters	
	1	32 32	
	2	52 64	
		128	
	5	256	
	6	512	
	7	1024	
character e	mbec	ldings	of size 16

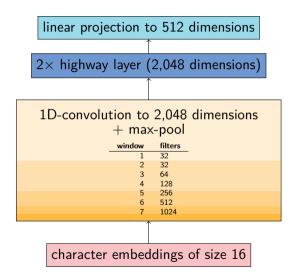
 input tokenized, treated on character level

ELMo Architecture: Input



- input tokenized, treated on character level
- 2,048 *n*-gram filters + max-pooling (~ soft search for learned *n*-grams)

ELMo Architecture: Input



- input tokenized, treated on character level
- 2,048 *n*-gram filters + max-pooling (~ soft search for learned *n*-grams)
- 2 highway layers:

$$\begin{split} g^{l+1} &= \sigma \left(W_g h^l + b_g \right) \\ h^{l+1} &= (1 - g^{l+1}) \odot h^l + \\ g^{l+1} \odot \operatorname{ReLu} \left(W h^l + b \right) \end{split}$$

contain gates that contol if projection is needed

• token representations input for 2 language models: forward and backward

- token representations input for 2 language models: forward and backward
- both LMs 2 layers with 4,096 dimensions with layer normalization and residual connections

- token representations input for 2 language models: forward and backward
- both LMs 2 layers with 4,096 dimensions with layer normalization and residual connections
- output classifier shared (only used in training, does not have to be good)

- token representations input for 2 language models: forward and backward
- both LMs 2 layers with 4,096 dimensions with layer normalization and residual connections
- output classifier shared (only used in training, does not have to be good)

Learned layer combination for downstream tasks:

$$\mathsf{ELMo}_k^{\mathsf{task}} = \gamma^{\mathsf{task}} \sum_{\mathsf{layer}L} s_L^{\mathsf{task}} h_k^{(L)}$$

 $\gamma^{\rm task}$, $s_L^{\rm task}$ trainable parameters.

Task where ELMo helps

Answer Span Selection

Find an answer to a question in a unstructured text.

Semantic Role Labeling

Detect *who* did *what* to *whom* in sentences.

Natural Language Inference

Decide whether two sentences are in agreement, contradict each other, or have nothing to do with each other.

Named Entity Recognition

Detect and classify names people, locations, organization, numbers with units, email addresses, URLs, phone numbers ...

Coreference Resolution

Detect what entities pronouns refer to.

Semantic Similarity

Measure how similar meaning two sentences have. (Think of clustering similar question on StackOverflow or detecting plagiarism.)

Improvements by Elmo

Таѕк	PREVIOUS SOTA		OUR BASELINF	ELMO + E baseline	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

How to use it

AllenNLP

 implemetned in AllenNLP framework (uses PyTorch) from allennlp.modules.elmo import Elmo,
 batch_to_ids

options_file = ...
weight_file = ...

```
sentences = [['First', 'sentence', '.'],
        ['Another', '.']]
character_ids = batch_to_ids(sentences)
```

```
embeddings = elmo(character_ids)
```

https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

How to use it

AllenNLP

- implemetned in AllenNLP framework (uses PyTorch)
- pre-trained English models available

from allennlp.modules.elmo import Elmo,
 batch_to_ids

```
options_file = ...
weight_file = ...
```

```
sentences = [['First', 'sentence', '.'],
        ['Another', '.']]
character_ids = batch_to_ids(sentences)
```

```
embeddings = elmo(character_ids)
```

https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

Pre-training Representations BERT

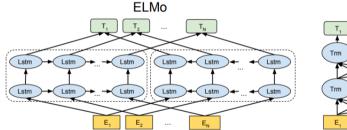
another way of pretraining sentence representations

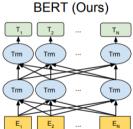
- another way of pretraining sentence representations
- uses Transformer architecture and slightly different training objective

- another way of pretraining sentence representations
- uses Transformer architecture and slightly different training objective
- even beeter than ELMo

- another way of pretraining sentence representations
- uses Transformer architecture and slightly different training objective
- even beeter than ELMo
- done by Google, published in November 2018

Achitecture Comparison





Masked Language Model

All human being are born	free and equa	al in dignity	and rights
--------------------------	---------------	---------------	------------

All human being are born free and equal in dignity and rights

1. Randomly sample a word \rightarrow free

All human being are born MASK and equal in dignity and rights

- 1. Randomly sample a word \rightarrow free
- 2. With 80% change replace with special MASK token.

All human being are born hairy and equal in dignity and rights

- 1. Randomly sample a word \rightarrow free
- 2. With 80% change replace with special MASK token.
- 3. With 10% change replace with random token \rightarrow hairy

All human being are born free and equal in dignity and rights

- 1. Randomly sample a word ightarrow free
- 2. With 80% change replace with special MASK token.
- 3. With 10% change replace with random token \rightarrow hairy
- 4. With 10% change keep as is \rightarrow free

All human being are born free and equal in dignity and rights

- 1. Randomly sample a word ightarrow free
- 2. With 80% change replace with special MASK token.
- 3. With 10% change replace with random token \rightarrow hairy
- 4. With 10% change keep as is \rightarrow free

Then a classifier should predict the missing/replaced word free

Additional Objective: Next Sentence Prediction

trained in the multi-task learning setup

Additional Objective: Next Sentence Prediction

- trained in the multi-task learning setup
- secondary objective: next sentences prediction

Additional Objective: Next Sentence Prediction

- trained in the multi-task learning setup
- secondary objective: next sentences prediction
- decide for a pair of consecuitve sentences whether they follow each other

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

Table 1: GLUE Test results, scored by the GLUE evaluation server. The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. OpenAI GPT = (L=12, H=768, A=12); BERT_{BASE} = (L=12, H=768, A=12); BERT_{LARGE} = (L=24, H=1024, A=16). BERT and OpenAI GPT are single-model, single task. All results obtained from https://gluebenchmark.com/leaderboard and https://blog.openai.com/language-unsupervised/.

System	Dev		Test	
	EM	F1	EM	F1
Leaderboard (Oct	8th, 2	018)		
Human	-	-	82.3	91.2
#1 Ensemble - nlnet	-	-	86.0	91.7
#2 Ensemble - QANet	-	-	84.5	90.5
#1 Single - nlnet	-	-	83.5	90.1
#2 Single - QANet	-	-	82.5	89.3
Publishe	ed			
BiDAF+ELMo (Single)	-	85.8	-	-
R.M. Reader (Single)	78.9	86.3	79.5	86.6
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	-	-
BERTLARGE (Single)	84.1	90.9	-	-
BERTLARGE (Ensemble)	85.8	91.8	-	-
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
BERTLARGE (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

Summary

1. Discrete symbols \rightarrow continuous representation with trained embeddings

Deep Learning for Natural Language Processing

Summary

- 1. Discrete symbols \rightarrow continuous representation with trained embeddings
- 2. Architectures to get suitable representation: recurrent, convolutional, self-attentive

Deep Learning for Natural Language Processing

Summary

- 1. Discrete symbols \rightarrow continuous representation with trained embeddings
- 2. Architectures to get suitable representation: recurrent, convolutional, self-attentive
- 3. Output: classification, sequence labeling, autoregressive decoding

Deep Learning for Natural Language Processing

Summary

- 1. Discrete symbols \rightarrow continuous representation with trained embeddings
- 2. Architectures to get suitable representation: recurrent, convolutional, self-attentive
- 3. Output: classification, sequence labeling, autoregressive decoding
- 4. Representations pretrained on large data helps on downstream tasks