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Today’s Learning Outcomes

After this lecture you should be able to …
1. Describe neural networks as continuous functions and takes inputs and generates

outputs
2. Describe how neural networks are trained and reason about training neural networks

with respect to gradient flow
3. Statically represent words and tell how to neural networks represent words in context
4. Describe pre-training of neural networks for NLP
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Deep Learning in NLP

• NLP tasks learn end-to-end using deep learning — the number-one approach in current
research

• State of the art in POS tagging, parsing, named-entity recognition, machine translation,
…

, Good news: training without almost any linguistic insight
although it is not always a good idea

/ Bad news: requires enormous amount of training data and really big
computational resources
although that changes with pre-trained models
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Neural Networks Basics



What is deep learning?

• Buzzword for machine learning using neural networks with many layers using
back-propagation

• Learning of a real-valued function with millions of parameters that solves a particular
problem

• Learning more and more abstract representation of the input data until we reach
such a suitable representation for our problem
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Single Neuron (Perceptron)

activation
functioninput x weights w output

∑ x⊤w > 0? 𝑦𝑥𝑖 ⋅𝑤𝑖

𝑥1
⋅𝑤1𝑥2 ⋅𝑤2⋮

⋮

𝑥𝑛

⋅𝑤𝑛

The old view:

a network of artificial neurons

• simplistic model of a neuron from the
1940’s

• a neuron has some (weighted) inputs,
when the input is high enough, it fires a
signal

• focus on single neurons does not allow
thinking about layers as vector
representations
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Neural Network
The current view: a network of layers

input vector •••••••••••• 𝑥
↓ ↑ ↓

𝑛 hidden layers

•••••••••••••••• ℎ1 = 𝑓(𝑊1𝑥 + 𝑏1)
↓ ↑ ↓ ↑

•••••••••••••••• ℎ2 = 𝑓(𝑊2ℎ1 + 𝑏2)
↓ ↑ ↓ ↑
⋮ ⋮ ⋮

↓ ↑ ↓ ↑
•••••••••••••••• ℎ𝑛 = 𝑓(𝑊𝑛ℎ𝑛−1 + 𝑏𝑛)

↓ ↑ ↓ ↑
output vector ••• 𝑜 = 𝑔(𝑊𝑜ℎ𝑛 + 𝑏𝑜) ∂𝐸

∂𝑊𝑜
= ∂𝐸

∂𝑜 ⋅ ∂𝑜
∂𝑊𝑜

↓ ↓ ↑
error • 𝐸 = 𝑒(𝑜, 𝑡) → ∂𝐸

∂𝑜
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Implementation: Computation graph
Logistic regression:

𝑦 = 𝜎 (𝑊𝑥 + 𝑏) (1)

Computation graph:

𝑥

𝑊
×

𝑏

+ 𝜎ℎ

forward graph

loss

𝑦∗

𝑜 𝜎′𝑜′
+

𝑏′

ℎ′
×

𝑊 ′

backward graph

Deep learning frameworks – TensorFlow, Pytorch – do it automatically.
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General Architecture Overview

1.
Embed input words.

Get a sequence of
continuous vectors

2.
Contextualize input.

Apply a sequence
processing architecture
and get contextual
representation.

3.
Get some output.

Typically classification or
labeling.
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The problem of representing words

Problem:

Words (and characters)
are discrete

× Inputs to neural nets
must be continuous

Spoiler: The solution is called embeddings

Let’s discuss it on the problem of language modeling
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Language Modeling

• estimate probability of a next word in a text

P(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, … , 𝑤1)
• standard approach: 𝑛-gram models with Markov assumption

≈ P(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, … , 𝑤𝑖−𝑛) ≈
𝑛

∑
𝑗=0

𝜆𝑗
𝑐(𝑤𝑖|𝑤𝑖−1, … , 𝑤𝑖−𝑗)

𝑐(𝑤𝑖|𝑤𝑖−1, … , 𝑤𝑖−𝑗+1)
• Let’s simulate it with a neural network:

… ≈ 𝐹(𝑤𝑖−1, … , 𝑤𝑖−𝑛|𝜃)
𝜃 is a set of trainable parameters.
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Simple Neural Language Model

1𝑤𝑛−3

⋅𝑊𝑒

1𝑤𝑛−2

⋅𝑊𝑒

1𝑤𝑛−1

⋅𝑊𝑒

tanh

⋅𝑉3 ⋅𝑉2 ⋅𝑉1 + 𝑏ℎ

softmax

⋅𝑊 + 𝑏

P(𝑤𝑛|𝑤𝑛−1, 𝑤𝑛−2, 𝑤𝑛−3)

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model. The Journal of Machine Learning Research, 3
(Feb):1137–1155, 2003. ISSN 1532-4435
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Neural LM: Word Representation
• limited vocabulary (hundred thousands words): indexed set of words
• words are initially represented as one-hot-vectors 1𝑤 = (0, … , 0, 1, 0, … 0)

⋯ 0 0 0 1 0 ⋯

do
ct

or

wo
nd

er

ea
rth

ha
pp

y

ex
clu

siv
e

• projection 1𝑤 ⋅ 𝑉 corresponds to selecting one row from matrix 𝑉
• 𝑉 : is a table of learned word vector representations

so-called word embeddings

The first hidden layer is then (matrix 𝑉 is shared for all words):
ℎ1 = 𝑉𝑤𝑖−𝑛

⊕ 𝑉𝑤𝑖−𝑛+1
⊕ … ⊕ 𝑉𝑤𝑖−1
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Neural LM: Next Word Estimation

• optionally add extra hidden layer:

ℎ2 = 𝑓(ℎ1𝑊1 + 𝑏1)

• last layer: probability distribution over vocabulary

𝑦 = softmax(ℎ2𝑊2 + 𝑏2) = exp(ℎ2𝑊2 + 𝑏2)
∑ exp(ℎ2𝑊2 + 𝑏2)

• training objective: cross-entropy between the true (i.e., one-hot) distribution and
estimated distribution

𝐸 = − ∑
𝑖

𝑝true(𝑤𝑖) log 𝑦(𝑤𝑖) = ∑
𝑖

− log 𝑦(𝑤𝑖)

• learned by error back-propagation
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Learned Representations
• word embeddings from LMs have interesting properties
• cluster according to POS & meaning similarity

Table taken from Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing

(almost) from scratch. The Journal of Machine Learning Research, 12(Aug):2493–2537, 2011. ISSN 1533-7928

• in IR: query expansion by nearest neighbors
• in deep learning models: embeddings initialization speeds up training / allows complex

model with less data
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Implementation in PyTorch I

import torch
import torch.nn as nn

class LanguageModel(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim):

super().__init__()

self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.hidden_layer = nn.Linear(3 * embedding_dim, hidden_dim)
self.output_layer = nn.Linear(hidden_dim, vocab_size)
self.loss_function = nn.CrossEntropyLoss()

def forward(self, word_1, word_2, word_3, target=None):
embedded_1 = self.embedding(word_1)
embedded_2 = self.embedding(word_2)
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Implementation in PyTorch II

embedded_3 = self.embedding(word_3)

hidden = torch.tanh(self.hidden_layer(
torch.cat(embedded_1, embedded_2, embedded_3)))

logits = self.output_layer(hidden)

loss = None
if target is not None:

loss = self.loss_function(logits, targets)

return logits, loss

Deep Learning for Natural Language Processing NN Basics Representing Words Representing Sequences Classification & Labeling Pre-training 18/ 58



Representing Sequences



Representing Sequences

Neural Networks Basics

Representing Words

Representing Sequences

Classification and Labeling

Pre-training Representations
Word2Vec & FastText
BERT

Deep Learning for Natural Language Processing NN Basics Representing Words Representing Sequences Classification & Labeling Pre-training 19/ 58



General Architecture Overview

1.
Embed input words.

Get a sequence of
continuous vectors

2.
Contextualize input.

Apply a sequence
processing architecture
and get contextual
representation.

3.
Get some output.

Typically classification or
labeling.
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Contextual representation

Word embeddings represent words in isolation.

Meaning is context-dependent —
We need an encoder providing contextual representation
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Transformers: Complete graph metaphor

RNN = information
pipeline

CNN = information in
tree-like data structure

1
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Self-attentive = Transformers =
Information flow in a weighted complete bipartite graph
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Transformers

• In some layers: states are linear combination of previous layer states
• Originally for the Transformer model for machine translation

⇐ attention weights = similarity matrix between
all pairs of states

• 𝑂(𝑛2) memory, 𝑂(1) time (when paralelized)
• next layer: sum by rows

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems 30, pages 6000–6010, Long Beach, CA, USA, December 2017. Curran Associates, Inc
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Multi-head scaled dot-product attention

Scaled dot-production attention
𝑄 = (𝑞1, … , 𝑞𝑛): queries, 𝐾: keys, 𝑉 : values

Attn(𝑄, 𝐾, 𝑉 ) = softmax

similarity matrix
⏞⏞⏞⏞⏞
(𝑄𝐾⊤

√
𝑑

) 𝑉

Multi-head setup

Multihead(𝑄, 𝑉 ) =
concatenate head outputs

⏞⏞⏞⏞⏞⏞⏞(𝐻1 ⊕ ⋯ ⊕ 𝐻ℎ) 𝑊 𝑂

𝐻𝑖 = Attn(𝑄𝑊 𝑄
𝑖 , 𝑉 𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 )

𝑊 𝑄
𝑖 , 𝑊 𝐾

𝑖 , 𝑊𝑖𝑉 head-specific projections keys & values ?= queries

linear 𝑊 𝐾 linear 𝑊 𝑉 linear 𝑊 𝑄

split split split

concat

linear 𝑊 𝑂

scaled dot-product attentionscaled dot-product attentionscaled dot-product attentionscaled dot-product attentionscaled dot-product attention
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Dot-Product Attention in PyTorch

def attention(query, key, value, mask=None):
d_k = query.size(-1)
scores = (

torch.matmul(query, key.transpose(-2, -1)) /
math.sqrt(d_k))

p_attn = F.softmax(scores, dim = -1)
return torch.matmul(p_attn, value), p_attn
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Feed-forward Layer

FeedForward(𝑋) = 𝑊2 ⋅ 𝑎(𝑊1 ⋅ 𝑋 + 𝑏1) + 𝑏2

Compress: (𝑊2 × • + 𝑏2)

Activation: 𝑎(•)

Expand: (𝑊1 × • + 𝑏1)

• Applied element-wise
• 𝑊1, 𝑊2 are learned; 𝑏1, 𝑏2 are bias terms
• Upsample to 4× model dimension

⇒ Many parameters here
• Place to store knowledge about the data
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Activation: Rectified Linear Units

ReLU:

0.0
1.0
2.0
3.0
4.0
5.0
6.0

−6 −4 −2 0 2 4 6

𝑦

𝑥

Derivative of ReLU:

0.0
0.2
0.4
0.6
0.8
1.0

−6 −4 −2 0 2 4 6

𝑦

𝑥
faster, suffer less with vanishing gradient

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on
Machine Learning, pages 807–814, Haifa, Israel, June 2010. JMLR.org
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Stacking self-attentive Layers

input embeddings

⊕position
encoding

self-attentive
sublayer

multihead
attention

keys &
values

queries

⊕

layer normalization

feed-forward
sublayer

non-linear layer

linear layer

⊕

layer normalization

𝑁×

• several layers (original paper 6)
• each layer 2 sub-layers: self-attention and

feed-forward layer
• everything inter-connected with residual

connections
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Residual Connections

Input 𝑥

Block of layers ℱ

Sum

𝑥
𝑥

ℱ(𝑥)
𝑥 + ℱ(𝑥)

ℋ(𝑥) = ℱ(𝑥) + 𝑥

Make sure there is always a path for the
gradient to flow through the network.

Because summation is linear w.r.t. the
gradient.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, Las Vegas, NV, USA, June 2016. IEEE Computer Society. ISBN 9781467388511
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Residual Connections: Numerical Stability
Numerically unstable, we need activation to be in similar scale ⇒ layer normalization.
Activation before non-linearity is normalized:

𝑎𝑖 = 𝑔𝑖
𝜎𝑖

(𝑎𝑖 − 𝜇𝑖)

…𝑔 is a trainable parameter, 𝜇, 𝜎 estimated from data.

𝜇 = 1
𝐻

𝐻
∑
𝑖=1

𝑎𝑖

𝜎 =
√√√
⎷

1
𝐻

𝐻
∑
𝑖=1

(𝑎𝑖 − 𝜇)2

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E Hinton. Layer normalization. CoRR, abs/1607.06450, 2016. ISSN 2331-8422
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Pre- vs. Post-Layer Normalization

Original: Post-normalization

Input

Multi-head
attention

Dropout

Sum

Layer norm.

Feed-forward
layer

Dropout

Sum

Layer norm.

Now more common: Pre-normalization
(Xiong et al., 2020)

Input

Layer norm.

Multi-head
attention

Dropout

Sum

Layer norm.

Feed-forward
layer

Dropout

Sum
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Position Encoding

Model is not aware of the position in the sequence.

pos(𝑖) =
⎧{
⎨{⎩

sin( 𝑡
104

𝑖
𝑑 ) , if 𝑖 mod 2 = 0

cos( 𝑡
104

𝑖−1
𝑑 ) , otherwise

0 20 40 60 80
Text length

0

100

200

300

Di
m

en
sio

n

−0.5

0.0

0.5

1.0

• Just summed with the token embeddings
• More recent alternatives: learned position embeddings (for fixed max length)
• Rotary position embeddings: encode relative distances
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General Architecture Overview

1.
Embed input words.

Get a sequence of
continuous vectors

2.
Contextualize input.

Apply a sequence
processing architecture
and get contextual
representation.

3.
Get some output.

Typically classification or
labeling.
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Text classification

Tasks such as: sentiment analysis, genre classification, fake news detection, spam detection.

RNN/CNN/Transformer

Embeddings

Encoder

Hidden states
(ℎ1, … , ℎ𝑛)

get
single
vector cla

ss
ifi

er

Classifier = feedforward neural net with softmax at the end

Deep Learning for Natural Language Processing NN Basics Representing Words Representing Sequences Classification & Labeling Pre-training 35/ 58



Getting a single vector: Two options

1. Pooling
• Squeeze the sequence into a vector
• Usable directly for embeddings and also encoder output
• Mean pooling: 1

𝑛 ∑ ℎ𝑖
• Max pooling (intuitively existential quantifier): take max in each dimension

2. Choose one state
• In RNN the last state, i.e., after reading the whohle input
• In Transformers any (typically the first) state, self-attention will learn to move relevant

information there
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Softmax & Cross-Entropy

Output layer with softmax (with parameters 𝑊 , 𝑏) — gets categorical distribution:

𝑃𝑦 = softmax(x) = P(𝑦 = 𝑗 ∣ x) = exp x⊤𝑊𝑗 + 𝑏𝑗
∑ exp x⊤𝑊 + 𝑏

Network error = cross-entropy between estimated distribution and one-hot ground-truth
distribution 𝑇 = 1(𝑦∗) = (0, 0, … , 1, 0, … , 0):

𝐿(𝑃𝑦, 𝑦∗) = 𝐻(𝑃 , 𝑇 ) = −𝔼𝑖∼𝑇 log𝑃(𝑖)
= − ∑

𝑖
𝑇 (𝑖) log𝑃(𝑖)

= − log𝑃(𝑦∗)
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Derivative of Cross-Entropy
Let 𝑙 = x⊤𝑊 + 𝑏, 𝑙𝑦∗ corresponds to the correct one.

∂𝐿(𝑃𝑦, 𝑦∗)
∂𝑙 = − ∂

∂𝑙 log
exp 𝑙𝑦∗

∑𝑗 exp 𝑙𝑗
= − ∂

∂𝑙𝑙𝑦∗ − log∑ exp 𝑙

= 1𝑦∗ + ∂
∂𝑙 − log∑ exp 𝑙 = 1𝑦∗ − ∑1𝑦∗ exp 𝑙

∑ exp 𝑙 =

= 1𝑦∗ − 𝑃𝑦(𝑦∗)

0

1

0

1

0

1

Interpretation: Reinforce the correct logit, suppress the rest.
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Sequence Labeling

• assign value / probability distribution to every token in a sequence
• morphological tagging, named-entity recognition, LM with unlimited history, answer

span selection

cla
ss
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er

cla
ss
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er

cla
ss
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er

cla
ss
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er

cla
ss
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er

cla
ss
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er

RNN/CNN/Transformer

Embeddings

Encoder

Hidden states

The same classifier
at every state
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Pre-trained Representations

• representations that emerge in models seem to carry a lot of general information about
the language

• representations pre-trained on large data can be re-used on tasks with smaller training
data

Deep Learning for Natural Language Processing NN Basics Representing Words Representing Sequences Classification & Labeling Pre-training 41/ 58



Pre-training Representations

Word2Vec & FastText



Word2Vec
• way to learn word embeddings without training the complete LM

CBOW Skip-gram

∑ 𝑤3

𝑤1

𝑤2

𝑤4

𝑤5

⋮

𝑤3

𝑤1

𝑤2

𝑤4

𝑤5

⋮

• CBOW: minimize cross-entropy of the middle word of a sliding windows
• skip-gram: minimize cross-entropy of a bag of words around a word (LM other way

round)
Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA, USA, June 2013.
Association for Computational Linguistics
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Word2Vec: sampling

1. All human beings are born free and equal in dignity … → (All, humans)
(All, beings)

2. All human beings are born free and equal in dignity … →
(human, All)

(human, beings)
(human, are)

3. All human beings are born free and equal in dignity … →
(beings, All)

(beings, human)
(beings, are)

(beings, born)

4. All human beings are born free and equal in dignity … →
(are, human)
(are, beings)
(are, born)
(are, free)
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Word2Vec: Formulas

• Training objective:

1
𝑇

𝑇
∑
𝑡=1

∑
𝑗∼(−𝑐,𝑐)

log 𝑝(𝑤𝑡+𝑐|𝑤𝑡)

• Probability estimation:

𝑝(𝑤𝑂|𝑤𝐼) =
exp (𝑉 ′⊤

𝑤𝑂
𝑉𝑤𝐼

)
∑𝑤 exp (𝑉 ′⊤

𝑤𝑉𝑤𝑖
)

where 𝑉 is input (embedding) matrix, 𝑉 ′ output matrix

Equations 1, 2. Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA,
USA, June 2013. Association for Computational Linguistics
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Word2Vec: Training using Negative Sampling

The summation in denominator is slow, use noise contrastive estimation:

log𝜎 (𝑉 ′⊤
𝑤𝑂

𝑉𝑤𝐼
) +

𝑘
∑
𝑖=1

𝐸𝑤𝑖∼𝑃𝑛(𝑤) [log𝜎 (−𝑉 ′⊤
𝑤𝑖

𝑉𝑤𝐼
)]

Main idea: classify independently by logistic regression the positive and few sampled
negative examples.

Equations 1, 3. Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA,

USA, June 2013. Association for Computational Linguistics
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Word2Vec: Vector Arithmetics

man

woman

uncle

aunt

king

queen

kings

queens

king

queen

Image originally from Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word representations. In Proceedings of the
2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 746–751, Atlanta, GA,
USA, June 2013. Association for Computational Linguistics
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FastText

State-of-the-art pre-trained word embeddings

• Word2Vec training treats words as independent entities
• There are regularities in how words look like — it is called morphology

FastText tackles this
1. Represent each word as a bag of character 𝑛-grams
2. Keep a table of character 𝑛-grams embeddings instead of words
3. Word embedding = average of character 𝑛-gram embeeddings

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135–146, 2017. doi: 10.1162/tacl_a_00051. URL https://www.aclweb.org/anthology/Q17-1010
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Training models

FastText — model implementation by Facebook
https://github.com/facebookresearch/fastText
Just throw in raw text.

./fasttext skipgram -input data.txt -output model

The tool allows training simple classifiers using the embeddings.
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Pre-training Representations

BERT



What is BERT
Bidirectional Encoder Representations

from Transformers
• pre-trained representation capturing

context
contextual embeddings

• Transformer with a masked language
model objective

• originally by Google, published in
November 2018

• since then better versions: e.g.,
RoBERTa by Facebook,
language-specific variants,
multilingual versions

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://www.aclweb.org/anthology/N19-1423
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Achitecture

input embeddings

⊕position
encoding

self-attentive
sublayer

multihead
attention

keys &
values

queries

⊕

layer normalization

feed-forward
sublayer

non-linear layer

linear layer

⊕

layer normalization

𝑁×

• a stack of 12 Transformer layers
• trained as sequence labeling: change some input

token, labeler guesses original tokens

masked language modeling

• being able to predict missing words: proxy for
language understanding

When trained, throw away labeling, use last layer as the
representation.
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Masked Language Model

All human being are born free free MASK hairy freeand equal in dignity and rights

1. Randomly sample a word → free
2. With 80% change replace with special MASK token.
3. With 10% change replace with random token → hairy
4. With 10% change keep as is → free

Then a classifier should predict the missing/replaced word free
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Pre-train and finetune paradigm

BERT
encoder1. Pre-training

(do once, large data, long time)

unlabeled
datal

masked LM

2. Finetuning
(small data, fast)

tasks-pecific
data

task-specific
objective
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Training data size

• BERT — 3.4B words
• RoBERTa — 30B words

← How much training data is
needed to master a task

Source: Yian Zhang, Alex Warstadt, Xiaocheng Li, and Samuel R. Bowman. When do you need billions of words of pretraining data? In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1112–1125, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.90. URL https:
//aclanthology.org/2021.acl-long.90
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Implementation: Huggingface Transformers

https://github.com/huggingface/transformers

Implements most existign pre-trained BERT-like models for both PyTorch and TensorFlow.
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Biases from Training Data

Trained on crawled web data ⇒ replicate biases from the data.

• Web is full of toxic content
• People with extreme opinions tend to write more than others
• Data is not representative of demography

Biases may leak into / influence the downsteram tasks.
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Example: Racial Bias
Being black is the same as being poor

[MASK] is an actor / actress. [MASK] is poor / rich.

Source: https://towardsdatascience.com/racial-bias-in-bert-c1c77da6b25a
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Today’s Learning Outcomes

After this lecture you should be able to …
1. Describe neural networks as continuous functions and takes inputs and generates

outputs
2. Describe how neural networks are trained and reason about training neural networks

with respect to gradient flow
3. Statically represent words and tell how to neural networks represent words in context
4. Describe pre-training of neural networks for NLP

Deep Learning for Natural Language Processing NN Basics Representing Words Representing Sequences Classification & Labeling Pre-training 57/ 58



Deep Learning for Natural Language Processing

Summary
1. Discrete symbols → continuous representation with trained

embeddings
2. Architectures to get suitable representation: recurrent,

convolutional, self-attentive
3. Output: classification, sequence labeling
4. Representations pretrained on large data helps on downstream

tasks

http://ufal.cz/courses/npfl124

http://ufal.cz/courses/npfl124
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