Language Modeling
(and the Noisy Channel)
Part 2 of Intro NLP

2019/20

The Noisy Channel

Prototypical case:

Input
| The channel
0,1,1,1,0,1,0,1,... (adds noise)

Output (noisy)

Model: probability of error (noise):

0,1,1,Q,0,1,l,Q,...

Example: p(0|1) =.3 p(1]|1) =.7 p(1]0) =.4 p(0|0) = .6

The Task:

known: the noisy output; want to know: the input (decoding)

NPFL124 Part 2

Noisy Channel Applications
* OCR

— straightforward: text — print (adds noise), scan — image

* Handwriting recognition

— text — neurons, muscles (“noise”), scan/digitize — image

* Speech recognition (dictation, commands, etc.)

— text — conversion to acoustic signal (“noise”) — acoustic waves

®* Machine Translation

— text in target language — translation (“noise”) — source language

* Also: Part of Speech Tagging

— sequence of tags — selection of word forms — text

2019/20 NPFL124 Part 2

Noisy Channel: The Golden Rule of ...

COCR, ASR, HR@'/
* Recall:

p(A|B) =p(B|A) p(A)/p(B) (Bayes formula)
A, .. =argmax, p(B|A) p(A) (The Golden Rule)

best

p(B|A): the acoustic/image/translation/lexical model
— application-specific name
— will explore later

p(A): the language model

2019/20 NPFL124 Part 2

The Perfect Language Model

* Sequence of word forms [forget about tagging for the moment]
* Notation: A ~ W = (wW,W,,W,,...,W,)
* The big (modeling) question:
p(W) =7
* Well, we know (Bayes/chain rule —):
P(W) = p(W1,W,,W,...,Wy) =
=Pp(wW;) X p(w,y[w;) X p(Wslwy,w,) X...X p(wy
W, Wy Wy ;)

* Not practical (even short W — too many parameters)
2019/20 NPFL124 Part 2

Markov Chain

Unlimited memory (cf. previous foil):
— for w,, we know all its predecessors w,,w,,w.,...,W. ,

Limited memory:
— we disregard “too old” predecessors
— remember only k previous words: w._,,w.,,,...,W.,

— called “k™ order Markov approximation”
+ stationary character (no change over time):
P(W) = I, p(WiW, oW, g5 W), d = [W]

2019/20 NPFL124 Part 2

n-gram Language Models

* (n-1)* order Markov approximation — n-gram LM:

prediction

b

p(W) —df HiZl..dp(wi|wi—n+1’wi-n+2, ey W

In particular (assume vocabulary |V| = 60k):

* 0-gram LM: uniform model, p(w) = 1/|V|, 1 parameter
* 1-gram LM: unigram model, p(w), 6X10% parameters
* 2-gram LM: bigram model, p(w;|w,,) 3.6 X10° parameters

* 3-gram LM: trigram model, p(w;w,,,w.,) 2.16X10' parameters

2019/20 NPFL124 Part 2

Maximum Likelihood Estimate

MLE: Relative Frequency...
— ...best predicts the data at hand (the “training data™)

Trigrams from Training Data T:
— count sequences of three words in T: c,(w, ,,w. ,,w.)
[NB: notation: just saying that the three words follow each other]

— count sequences of two words in T: ¢,(w,_,w,):

either use ¢,(y,z) = 2, c,(y,z,w)

or count differently at the beginning (& end) of data!

|

P(W{{W,5W; 1) Ter. G(Wi0sW;.1sW) / G(W, W, ;) @

2019/20 NPFL124 Part 2

LM: an Example

* Training data:
<s> <s> He can buy the can of soda.
— Unigram: p,(He) = p,(buy) = p,(the) = p,(of) = p,(soda) = p,(.) = .125
p,(can) = .25
— Bigram: p,(He|<s>) = 1, p,(can/He) = 1, p,(buy|can) = .5,
p,(of|can) = .5, p,(thebuy) = 1,...
— ‘Trigram: p,(He|<s>,<s>) = 1, p,(can|<s>He) = 1,
P,(buy|He,can) = 1, p,(ofithe,can) = 1, ..., p,(.Jof,soda) = 1.
— Entropy: H(p,) =2.75, H(p,) = .25, H(p,) =0 « Great?!

2019/20 NPFL124 Part 2

LM: an Example (The Problem)

* Cross-entropy:
* S = <s> <s> [t was the greatest buy of all.

* Even H¢(p,) fails (= Hq(p,) = Hi(p,) =), because:

— all unigrams but p,(the), p,(buy), p,(of) and p,(.) are O.

— all bigram probabilities are 0.
— all trigram probabilities are O.

* We want: to make all (theoretically possible®)
probabilities non-zero.

“in fact, all: remember our graph from day 1?

2019/20 NPFL124 Part 2

10

LM Smoothing
(And the EM Algorithm)

2019/20

Why do we need Nonzero Probs?

To avoid infinite Cross Entropy:

— happens when an event is found in test data which has
not been seen in training data

H(p) = o0: prevents comparing data with > 0
“errors”
To make the system more robust

— low count estimates:

* they typically happen for “detailed” but relatively rare
appearances

— high count estimates: reliable but less “detailed”

NPFL124 Part 2

13

2019/20

Eliminating the Zero Probabilities:
Smoothing

Get new p’(w) (same €2): almost p(w) but no zeros

Discount w for (some) p(w) > 0: new p’(w) < p(w)
2 cdiscomted (P(W) - P’(W)) = D

Distribute D to all w; p(w) = 0: new p’(w) > p(w)

— possibly also to other w with low p(w)

For some w (possibly): p’(w) = p(w)

Make sure 2 _, p’(w) =1

There are many ways of smoothing

NPFL124 Part 2

14

Smoothing by Adding 1

Simplest but not really usable:

— Predicting words w from a vocabulary V, training data T:
p’(wlh) = (c(h,w) + 1) / (c(h) +[V])
* for non-conditional distributions: p’(w) = (c(w) + 1) / (|T| + |V])
— Problem if |V| > c(h) (as is often the case; even >> c(h)!)

Example: Training data: ~ <s> what is it what is small ? T|=8
* V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, [V| =12
* p(it)=.125, p(what)=.25, p(.)=0 p(whatis it?) =.252X.125? = .001
p(it is flying.) = .125X.25X02 =0
* p’(it) =.1, p’(what) =.15, p’(.)=.05 p’(what is it?) = .152X.12
= .0002
p’(it is flying.) = .1X.15X.052

IR

00004
2019/20 NPFL124 Part 2 15

Adding less than 1

Equally simple:
— Predicting words w from a vocabulary V, training data T:
p’(wlh) = (c(h,w) + A) / (c(h) + A[V]), A < 1
* for non-conditional distributions: p’(w) = (c¢(w) + A) / (|T| + AlV])

EX&II]p]EZ Training data: ~ <s> what is it what is small ? I'T| =8
* V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, [V| =12
* p(it)=.125, p(what)=.25, p(.)=0 p(whatis it?) =.252X.1252 = .001
p(it is flying.) = .125X.25X02 =0

* UseA=.1:
* p’(i)= .12, p’(what)= .23, p’(.)= .01 p’(what is it?) = .232X.122
=~ .0007
p’(it is flying.) = .12X.23X.012
= .000003

2019/20 NPFL124 Part 2 16

Smoothing by Combination:
Linear Interpolation

* Combine what?

* distributions of various level of detail vs. reliability

n-gram models:

* use (n-1)gram, (n-2)gram, ..., uniform

> reliability
< detail

* Simplest possible combination:

— sum of probabilities, normalize:

* p(0[0) =.8, p(10)=.2,p(0[1) = 1, p(1]1) =0, p(0)=.4,p(1)=.6:
* p’(0[0) =.6, p’(1]0) = .4, p’(01) =.7, p’(1]1) = .3

2019/20 NPFL124 Part 2 17

Typical n-gram LM Smoothing

* Weight in less detailed distributions using A=(A,,\,,A,,\.):
P (Wil Wi, Wiy) = Ay Pa(Wy Wip,wy) +
}\'2 pZ(wi| Wi-l) T }\'1 pl(wi) T 7\’0 /|V|

* Normalize:
A >0, 3

* Estimation using MLE:
— fix the p,, p,, p, and |V| parameters as estimated from the

A, = 1 issufficient (A, =1- X

i=0.n " "i

A,) (n=3)

i=1..n

training data
— then find such {A.} which minimizes the cross entropy

(maximizes probability of data): -(1/|D|)2,_, ,log,(p’,(wilh,))

2019/20 NPFL124 Part 2

18

Held-out (Cross-validation) Data

* What data to use?
— try the training data T: but we will always get A, =1
* why? (let p., be an i-gram distribution estimated using r.f. from T)
* minimizing H (p’,) over a vector A, p’, = APt APor AP A/| V|
— remember: Hy(p";) = H(py)*D(psllp,);
* (ps fixed — H(p,,) fixed, best)
— which p’, minimizes H(p’,)? ... a p’, for which D(p,,|| p’,)=0
— ...and that’s p,; (because D(p||p) = 0, as we know).
— ...and certainly p’, = p,; if A, = 1 (maybe in some other cases, t00).
— (P,lex Psr 70 X pyr +0 X p1T+0/|V|)
— thus: do not use the training data for estimation of A!
* must hold out part of the training data (heldout data, H):

...call the remaining data the (true/raw) training data, T

the test data S (e.g., for comparison purposes): still different data!
2019/20 NPFL124 Part 2 19

The Formulas

* Repeat: minimizing -(1/H))Z_, log,(p’,(wilh,)) over A

P,)\(wi| hl) = p,k(wi| Wi—2 ’Wi—l) = }¥3 p3(wi| Wi—2 ’Wi—l) T ,

7\'2 Pz(wi| Wi-l) T 7\~1 pl(wi) T 7\0 /|V| ®

* “Expected Counts (of lambdas)”: j = 0..3

E-step C()\,j) = Zi:l--IHI (ijj(WJhi) / P,x(wi|hi)) !

* “Next A”:j=0.3

M'Step 7\‘j,next = C(}\‘]) / 21{:0..3 (C(kk)) !

2019/20 NPFL124 Part 2

20

The (Smoothing) EM Algorithm

1. Start with some A, such that A, > 0 for all j € 0..3.
2. Compute “Expected Counts” for each A..
3. Compute new set of A, using the “Next A” formula.

4. Start over at step 2, unless a termination condition is
met.

* Termination condition: convergence of A.
— Simply set an ¢, and finish it [A, - A, | <€ for each j (step 3).

* Guaranteed to converge:
follows from Jensen’s inequality, plus a technical proof.

2019/20 NPFL124 Part 2 21

Remark on Linear Interpolation
Smoothing

* “Bucketed” smoothing:

— use several vectors of A instead of one, based on (the
frequency of) history: A(h)

e.g. for h = (micrograms,per) we will have

A(h) = (.999,.0009,.00009,.00001)
(because “cubic” is the only word to follow...)

— actually: not a separate set for each history, but rather a
set for “similar” histories (“bucket”):

M(b(h)), where b: V2= N (in the case of trigrams)

b classifies histories according to their reliability (~ frequency)

2019/20 NPFL124 Part 2

22

Bucketed Smoothing: The Algorithm

* First, determine the bucketing function b (use heldout!):
— decide in advance you want e.g. 1000 buckets
— compute the total frequency of histories in 1 bucket (f__(b))

— gradually fill your buckets from the most frequent bigrams so
that the sum of frequencies does not exceed f__ (b) (you might

end up with slightly more than 1000 buckets)
* Divide your heldout data according to buckets
* Apply the previous algorithm to each bucket and its data

2019/20 NPFL124 Part 2 23

Simple Example

Raw distribution (unigram only; smooth with uniform):
p(a) = .25, p(b) = .5, p(a) = 1/64 for o €{c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

* Heldout data: baby; use one set of A (».: unigram, A uniform)

* Start with A, =.5; p’,(b)= .5x.5+.5/26 =27
p’,(a)=.5x.25+.5/26=.14
p’.(y)=.5x0+.5/26=.02

c(A,) = .5x.5/.27 + .5x.25/.14 + .5x.5/.27 + .5x0/.02 = 2.72
c(A,) = .5x.04/.27 + .5x.04/.14 + .5x.04/.27 + .5x.04/.02 = 1.28
Normalize: A = .68, A =.32.

1,next 0,next

Repeat from step 2 (recompute p’, first for efficient computation, then c(), ...)

Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).

2019/20 NPFL124 Part 2 24

	Slide 1
	The Noisy Channel
	Noisy Channel Applications
	Noisy Channel: The Golden Rule of ...
	The Perfect Language Model
	Markov Chain
	n-gram Language Models
	Maximum Likelihood Estimate
	LM: an Example
	LM: an Example (The Problem)
	Slide 11
	Why do we need Nonzero Probs?
	Eliminating the Zero Probabilities: Smoothing
	Smoothing by Adding 1
	Adding less than 1
	Smoothing by Combination: Linear Interpolation
	Typical n-gram LM Smoothing
	Held-out (Cross-validation) Data
	The Formulas
	The (Smoothing) EM Algorithm
	Remark on Linear Interpolation Smoothing
	Bucketed Smoothing: The Algorithm
	Simple Example

