Language Modeling (and the Noisy Channel) Part 2 of Intro NLP

The Noisy Channel

- Model: probability of error (noise):
- Example: $p(0|1) = .3 \quad p(1|1) = .7 \quad p(1|0) = .4 \quad p(0|0) = .6$
- <u>The Task</u>:

known: the noisy output; want to know: the input (*decoding*)

Noisy Channel Applications

- OCR
 - − straightforward: text → print (adds noise), scan → image
- Handwriting recognition
 - − text → neurons, muscles ("noise"), scan/digitize → image
- Speech recognition (dictation, commands, etc.)
 - − text \rightarrow conversion to acoustic signal ("noise") \rightarrow acoustic waves
- Machine Translation
 - − text in target language \rightarrow translation ("noise") \rightarrow source language
- Also: Part of Speech Tagging
 - sequence of tags \rightarrow selection of word forms \rightarrow text

Noisy Channel: The Golden Rule of ... OCR, ASR, HR, MT, ...

• Recall:

p(A|B) = p(B|A) p(A) / p(B) (Bayes formula)

 $A_{best} = argmax_A p(B|A) p(A)$ (The Golden Rule)

- p(B|A): the acoustic/image/translation/lexical model
 application-specific name
 will explore later
- p(A): *the language model*

The Perfect Language Model

- Sequence of word forms [forget about tagging for the moment]
- Notation: $A \sim W = (w_1, w_2, w_3, ..., w_d)$
- The big (modeling) question:

• Well, we know (Bayes/chain rule \rightarrow):

$$p(W) = p(w_1, w_2, w_3, ..., w_d) =$$

= $p(w_1) \times p(w_2|w_1) \times p(w_3|w_1, w_2) \times ... \times p(w_d|w_1, w_2, ..., w_{d-1})$

• Not practical (even short $W \rightarrow \text{too many parameters}$) 2019/20 NPFL124 Part 2

Markov Chain

- Unlimited memory (cf. previous foil):
 for w_i, we know <u>all</u> its predecessors w₁,w₂,w₃,...,w_{i-1}
- Limited memory:
 - we disregard "too old" predecessors
 - remember only *k* previous words: $W_{i-k}, W_{i-k+1}, \dots, W_{i-1}$
 - called "kth order Markov approximation"
- + stationary character (no change over time): $p(W) \cong \prod_{i=1..d} p(w_i | w_{i-k}, w_{i-k+1}, ..., w_{i-1}), d = |W|$

n-gram Language Models

• $(n-1)^{th}$ order Markov approximation \rightarrow n-gram LM:

- In particular (assume vocabulary |V| = 60k):
 - 0-gram LM: uniform model, p(w) = 1/|V|, 1 parameter
 - 1-gram LM: unigram model, p(w), 6×10^4 parameters
 - 2-gram LM: bigram model, $p(w_i|w_{i-1})$ 3.6×10⁹ parameters
 - 3-gram LM: trigram model, $p(w_i|w_{i-2},w_{i-1})$ 2.16×10¹⁴ parameters

Maximum Likelihood Estimate

- MLE: Relative Frequency...
 - ...best predicts the data at hand (the "training data")
- Trigrams from Training Data T:
 - count sequences of three words in T: c₃(w_{i-2},w_{i-1},w_i)
 [NB: notation: just saying that the three words follow each other]
 - count sequences of two words in T: $c_2(w_{i-1}, w_i)$:
 - either use $c_2(y,z) = \sum_w c_3(y,z,w)$
 - or count differently at the beginning (& end) of data!

$$\mathbf{p}(\mathbf{w}_{i}|\mathbf{w}_{i-2},\mathbf{w}_{i-1}) = \mathbf{c}_{st.} \mathbf{c}_{3}(\mathbf{w}_{i-2},\mathbf{w}_{i-1},\mathbf{w}_{i}) / \mathbf{c}_{2}(\mathbf{w}_{i-2},\mathbf{w}_{i-1}) \bullet$$

LM: an Example

• Training data:

<s> <s> He can buy the can of soda.

- Unigram: $p_1(He) = p_1(buy) = p_1(the) = p_1(of) = p_1(soda) = p_1(.) = .125$ $p_1(can) = .25$
- Bigram: $p_2(He|<s>) = 1$, $p_2(can|He) = 1$, $p_2(buy|can) = .5$,

 $p_2(of|can) = .5, p_2(the|buy) = 1,...$

- Trigram: $p_3(He|<s>,<s>) = 1$, $p_3(can|<s>,He) = 1$,

 $p_3(buy|He,can) = 1, p_3(of|the,can) = 1, ..., p_3(.|of,soda) = 1.$

- Entropy: $H(p_1) = 2.75$, $H(p_2) = .25$, $H(p_3) = 0 \leftarrow Great$?!

LM: an Example (The Problem)

- Cross-entropy:
- $S = \langle s \rangle \langle s \rangle$ It was the greatest buy of all.
- Even $H_s(p_1)$ fails (= $H_s(p_2) = H_s(p_3) = \infty$), because:
 - all unigrams but p_1 (the), p_1 (buy), p_1 (of) and p_1 (.) are 0.
 - all bigram probabilities are 0.
 - all trigram probabilities are 0.
- We want: to make all (theoretically possible^{*}) probabilities non-zero.

* in fact, <u>all</u>: remember our graph from day 1?

LM Smoothing (And the EM Algorithm)

Why do we need Nonzero Probs?

- To avoid infinite Cross Entropy:
 - happens when an event is found in test data which has not been seen in training data

 $H(p) = \infty$: prevents comparing data with > 0 "errors"

- To make the system more robust
 - low count estimates:
 - they typically happen for "detailed" but relatively rare appearances
 - high count estimates: reliable but less "detailed"

Eliminating the Zero Probabilities: Smoothing

- Get new p'(w) (same Ω): almost p(w) but no zeros
- Discount w for (some) p(w) > 0: new p'(w) < p(w) $\Sigma_{w \in discounted} (p(w) - p'(w)) = D$
- Distribute D to all w; p(w) = 0: new p'(w) > p(w)

possibly also to other w with low p(w)

- For some w (possibly): p'(w) = p(w)
- Make sure $\Sigma_{w \in \Omega} p'(w) = 1$
- There are many ways of *smoothing*

Smoothing by Adding 1

- Simplest but not really usable:
 - Predicting words w from a vocabulary V, training data T:
 p'(w|h) = (c(h,w) + 1) / (c(h) + |V|)
 - for non-conditional distributions: p'(w) = (c(w) + 1) / (|T| + |V|)
 - Problem if |V| > c(h) (as is often the case; even >> c(h)!)
- **Example:** Training data: $\langle s \rangle$ what is it what is small? |T| = 8
 - $V = \{$ what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12
 - p(it)=.125, p(what)=.25, p(.)=0 $p(what is it?) = .25^2 \times .125^2 \simeq .001$

p(it is flying.) =
$$.125 \times .25 \times 0^2 = 0$$

p'(it) =.1, p'(what) =.15, p'(.)=.05 p'(what is it?) = .15²×.1²
 ≈ .0002

p'(it is flying.) = $.1 \times .15 \times .05^{2}$

≃ .00004

2019/20

NPFL124 Part 2

Adding less than 1

- Equally simple:
 - Predicting words w from a vocabulary V, training data T: p'(w|h) = (c(h,w) + λ) / (c(h) + λ |V|), λ < 1
 - for non-conditional distributions: $p'(w) = (c(w) + \lambda) / (|T| + \lambda|V|)$
- **Example:** Training data: $\langle s \rangle$ what is it what is small ? |T| = 8
 - V = { what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }, |V| = 12
 - p(it)=.125, p(what)=.25, p(.)=0 p(what is it?) = .25²×.125² ≃ .001 p(it is flying.) = .125×.25×0² = 0
 - Use $\lambda = .1$:
 - p'(it)≈ .12, p'(what)≈ .23, p'(.)≈ .01 p'(what is it?) = .23²×.12²
 ≈ .0007

p'(it is flying.) = .12×.23×.01²

 \simeq .000003

2019/20

NPFL124 Part 2

Smoothing by Combination: Linear Interpolation

- Combine what?
 - distributions of various level of detail vs. reliability
- n-gram models:
 - use (n-1)gram, (n-2)gram, ..., uniform

 \rightarrow reliability

detail

- Simplest possible combination:
 - sum of probabilities, normalize:
 - p(0|0) = .8, p(1|0) = .2, p(0|1) = 1, p(1|1) = 0, p(0) = .4, p(1) = .6:

• p'(0|0) = .6, p'(1|0) = .4, p'(0|1) = .7, p'(1|1) = .3

Typical n-gram LM Smoothing

- Weight in less detailed distributions using $\lambda = (\lambda_0, \lambda_1, \lambda_2, \lambda_3)$: $p'_{\lambda}(w_i | w_{i-2}, w_{i-1}) = \lambda_3 p_3(w_i | w_{i-2}, w_{i-1}) + \lambda_2 p_2(w_i | w_{i-1}) + \lambda_1 p_1(w_i) + \lambda_0 / |V|$
- Normalize:

 $\lambda_i > 0$, $\Sigma_{i=0..n} \lambda_i = 1$ is sufficient ($\lambda_0 = 1 - \Sigma_{i=1..n} \lambda_i$) (n=3)

- Estimation using MLE:
 - <u>fix</u> the p₃, p₂, p₁ and |V| parameters as estimated from the training data
 - then find such $\{\lambda_i\}$ which minimizes the cross entropy (maximizes probability of data): $-(1/|D|)\sum_{i=1..|D|}\log_2(p'_{\lambda}(w_i|h_i))$

Held-out (Cross-validation) Data

- What data to use?
 - try the training data T: but we will always get $\lambda_3 = 1$
 - why? (let p_{iT} be an i-gram distribution estimated using r.f. from T)
 - minimizing $H_T(p'_{\lambda})$ over a vector λ , $p'_{\lambda} = \lambda_3 p_{3T} + \lambda_2 p_{2T} + \lambda_1 p_{1T} + \lambda_0 / |V|$

- remember: $H_T(p'_{\lambda}) = H(p_{3T}) + D(p_{3T} || p'_{\lambda});$

• $(p_{3T} \text{ fixed} \rightarrow H(p_{3T}) \text{ fixed, best})$

– which p'_{λ} minimizes $H_T(p'_{\lambda})$? ... a p'_{λ} for which $D(p_{3T} || p'_{\lambda})=0$

– ...and that's p_{3T} (because D(p||p) = 0, as we know).

– ...and certainly $p'_{\lambda} = p_{3T}$ if $\lambda_3 = 1$ (maybe in some other cases, too).

 $(p'_{\lambda} = 1 \times p_{3T} + 0 \times p_{2T} + 0 \times p_{1T} + 0/|V|)$

- thus: do not use the training data for estimation of λ !
 - **must hold out part of the training data (***heldout* **data,** <u>**H**</u>**)**:
 - ...call the remaining data the (true/raw) training data, \underline{T}
 - the test data <u>S</u> (e.g., for comparison purposes): still different data! NPFL124 Part 2

19

The Formulas

• Repeat: minimizing -(1/|H|) $\Sigma_{i=1..|H|}\log_2(p'_{\lambda}(w_i|h_i))$ over λ

$$p'_{\lambda}(w_{i}|h_{i}) = p'_{\lambda}(w_{i}|w_{i-2},w_{i-1}) = \lambda_{3} p_{3}(w_{i}|w_{i-2},w_{i-1}) + \lambda_{2} p_{2}(w_{i}|w_{i-1}) + \lambda_{1} p_{1}(w_{i}) + \lambda_{0} / |V|$$

• "Expected Counts (of lambdas)": j = 0..3

E-step

$$P c(\lambda_j) = \sum_{i=1..|H|} (\lambda_j p_j(w_i|h_i) / p'_{\lambda}(w_i|h_i))$$

• "Next
$$\lambda$$
": j = 0..3
M-step $\lambda_{j,next} = c(\lambda_j) / \Sigma_{k=0..3} (c(\lambda_k))$

The (Smoothing) EM Algorithm

- 1. Start with some λ , such that $\lambda_i > 0$ for all $j \in 0..3$.
- 2. Compute "Expected Counts" for each λ_i .
- 3. Compute new set of λ_i , using the "Next λ " formula.
- 4. Start over at step 2, unless a termination condition is met.
- Termination condition: convergence of λ.
 Simply set an ε, and finish if |λ_j λ_{j,next}| < ε for each j (step 3).
- Guaranteed to converge:

follows from Jensen's inequality, plus a technical proof.

NPFL124 Part 2

Remark on Linear Interpolation Smoothing

- "Bucketed" smoothing:
 - use several vectors of λ instead of one, based on (the frequency of) history: $\lambda(h)$
 - e.g. for h = (micrograms,per) we will have

 $\lambda(h) = (.999,.0009,.00009,.00001)$

(because "cubic" is the only word to follow...)

– actually: not a separate set for each history, but rather a set for "similar" histories ("bucket"):

 $\lambda(b(h))$, where b: $V^2 \xrightarrow{\checkmark} N$ (in the case of trigrams)

<u>b</u> classifies histories according to their reliability (~ frequency)

Bucketed Smoothing: The Algorithm

- First, determine the bucketing function <u>b</u> (use heldout!):
 - decide in advance you want e.g. 1000 buckets
 - compute the total frequency of histories in 1 bucket (f_{max}(b))
 - gradually fill your buckets from the most frequent bigrams so that the sum of frequencies does not exceed f_{max}(b) (you might end up with slightly more than 1000 buckets)
- Divide your heldout data according to buckets
- Apply the previous algorithm to each bucket and its data

Simple Example

- Raw distribution (unigram only; smooth with uniform): p(a) = .25, p(b) = .5, $p(\alpha) = 1/64$ for $\alpha \in \{c..r\}$, = 0 for the rest: s,t,u,v,w,x,y,z
- Heldout data: <u>baby</u>; use one set of λ (λ_1 : unigram, λ_0 : uniform)
- Start with $\lambda_1 = .5$; $p'_{\lambda}(b) = .5 \times .5 + .5 / 26 = .27$

 $p'_{\lambda}(a) = .5 \times .25 + .5 / 26 = .14$ $p'_{\lambda}(y) = .5 \times 0 + .5 / 26 = .02$

 $c(\lambda_1) = .5x.5/.27 + .5x.25/.14 + .5x.5/.27 + .5x0/.02 = 2.72$ $c(\lambda_0) = .5x.04/.27 + .5x.04/.14 + .5x.04/.27 + .5x.04/.02 = 1.28$ Normalize: $\lambda_{1,next} = .68$, $\lambda_{0,next} = .32$.

Repeat from step 2 (recompute p'_{λ} first for efficient computation, then $c(\lambda_i)$, ...) Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).