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Intro to NLP

• Instructor: Jan Hajič, Pavel Pecina
– ÚFAL MFF UK, office: 420 / 422 MS
– Hours: J. Hajic: Mon 10:00-11:00
– preferred contact: {hajic,pecina}@ufal.mff.cuni.cz

• Room & time:
– lecture: SU1, Wed, 15:40-17:10 + S7, Wed, 17:20-18:50
– seminar [cvičení] follows (Pavel Pecina, Zdeněk 

Žabokrtský, …)
– Other info: pls see at the seminar
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Textbooks you need
• Manning, C. D., Schütze, H.: 

• Foundations of Statistical Natural Language Processing. The 
MIT Press. 1999. ISBN 0-262-13360-1. [available at least at 
MFF / Computer Science School library, Malostranske 
nam. 25, 11800 Prague 1]

• Jurafsky, D., Martin, J.H.:
• Speech and Language Processing. Prentice-Hall. 2000. ISBN 0-

13-095069-6 and newer editions. [recommended].

• Cover, T. M., Thomas, J. A.:
– Elements of Information Theory. Wiley. 1991. ISBN 0-471-06259-6.

• Jelinek, F.:
– Statistical Methods for Speech Recognition. The MIT Press. 1998. ISBN 

0-262-10066-5
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Other reading
• Journals:

– Computational Lingusitics
– Transactions on Computational Linguistics

• Proceedings of major conferences:
– ACL (Assoc. of Computational Linguistics)
– EACL (European Chapter of ACL)
– EMNLP (Empirical Methods in NLP)
– CoNLL (Natural Language Learning in CL)
– IJCNLP (Asian cahpter of ACL)
– COLING (Intl. Committee of Computational Linguistics)
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Course segments (first three lectures)

• Intro & Probability & Information Theory
– The very basics: definitions, formulas, examples.

• Language Modeling
– n-gram models, parameter estimation
– smoothing (EM algorithm)
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Experiments & Sample Spaces

• Experiment, process, test, ...
• Set of possible basic outcomes: sample space W

– coin toss (W  = {head,tail}), die (W  = {1..6}) 
– yes/no opinion poll, quality test (bad/good) (W = {0,1})
– lottery (| W | @ 107 .. 1012)

– # of traffic accidents somewhere per year (W  = N) 
– spelling errors (W  = Z*), where Z is an alphabet, and Z* 

is a set of possible strings over such and alphabet
– missing word (| W | @ vocabulary size)
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Events

• Event A is a set of basic outcomes
• Usually A Ì W , and all A Î 2W (the event space)

–  W is then the certain event, Æ is the impossible event

• Example:
– experiment: three times coin toss

•  W = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

– count cases with exactly two tails: then
• A = {HTT, THT, TTH}

– all heads:
•  A = {HHH}
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Probability

• Repeat experiment many times, record how many 
times a given event A occurred (“count” c1).

• Do this whole series many times; remember all cis.

• Observation: if repeated really many times, the 
ratios of ci/Ti (where Ti is the number of 
experiments run in the i-th series) are close to 
some (unknown but) constant value.

• Call this constant a probability of A. Notation: p(A)
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Estimating probability

• Remember: ... close to an unknown constant.
• We can only estimate it:

– from a single series (typical case, as mostly the 
outcome of a series is given to us and we cannot repeat 
the experiment), set 

                                 p(A) =  c1/T1.

– otherwise, take the weighted average of all ci/Ti (or, if 
the data allows,  simply look at the set of series as if it 
is a single long series).  

• This is the best estimate.
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Example
• Recall our example:

– experiment: three times coin toss
•  W = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

– count cases with exactly two tails: A = {HTT, THT, TTH}

• Run an experiment 1000 times (i.e. 3000 tosses)
• Counted: 386 cases with two tails (HTT, THT, or TTH)
• estimate: p(A) = 386 / 1000 = .386
• Run again: 373, 399, 382, 355, 372, 406, 359

– p(A) = .379 (weighted average) or simply 3032 / 8000

• Uniform distribution assumption: p(A) = 3/8 = .375
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Basic Properties

• Basic properties:
– p: 2 W  ® [0,1]
– p(W) = 1

– Disjoint events: p(ÈAi) = åi p(Ai)
• [NB: axiomatic definition of probability: take the 

above three conditions as axioms]
• Immediate consequences:

– p(Æ) = 0,     p(`A ) = 1 - p(A),    A Í B  Þ p(A) £ 
p(B)

–  åa Î W p(a) = 1
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Joint and Conditional Probability

• p(A,B) = p(A Ç B)
• p(A|B) = p(A,B) / p(B)

– Estimating form counts:
• p(A|B) = p(A,B) / p(B) = (c(A Ç B) / T) / (c(B) / T) =             

= c(A Ç B) / c(B)

                      W 
                             A                          B

                                         A Ç B
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Bayes Rule
• p(A,B) = p(B,A) since p(A Ç B) = p(B Ç A))

– therefore: p(A|B)  p(B) = p(B|A)  p(A), and therefore     

      p(A|B) = p(B|A)  p(A) / p(B)   !
                        W 

                             A                          B

                                         A Ç B
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Independence
• Can we compute p(A,B) from p(A) and p(B)?
• Recall from previous foil: 
                      p(A|B) = p(B|A)  p(A) / p(B) 

             p(A|B) p(B) = p(B|A)  p(A)

                     p(A,B) = p(B|A)  p(A)

... we’re almost there: how p(B|A) relates to p(B)?
– p(B|A) = P(B) iff A and B are independent

• Example: two coin tosses, weather today and 
weather on March 4th 1789; 

• Any two events for which p(B|A) = P(B)! 
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Chain Rule

   p(A1, A2, A3, A4, ..., An) =             !
    p(A1|A2,A3,A4,...,An) ´ p(A2|A3,A4,...,An) ´                   

    ´ p(A3|A4,...,An) ´  ...  p(An-1|An) ´ p(An)

• this is a direct consequence of the Bayes rule.

NPFL124 Part 1 16



2019/20

The Golden Rule 
(of Classic Statistical NLP) 

• Interested in an event A given B (when it is not easy 
or practical or desirable to estimate p(A|B)):

• take Bayes rule, max over all As:
• argmaxA p(A|B) = argmaxA p(B|A) . p(A) / p(B) =

     argmaxA p(B|A) p(A) !
• ... as p(B) is constant when changing As
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Random Variable
• is a function X: W ® Q

– in general: Q = Rn, typically R
– easier to handle real numbers than real-world events

• random variable is discrete if Q is countable (i.e. 
also if finite)

• Example: die: natural “numbering” [1,6], coin: {0,1}
• Probability distribution:

– pX(x) = p(X=x) =df p(Ax) where Ax = {a Î W : X(a) = x} 

– often just p(x) if it is clear from context what X is 
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Expectation
Joint and Conditional Distributions

• is a mean of a random variable (weighted average)
– E(X) = åxÎX(W) x . pX(x)

• Example: one six-sided die: 3.5, two dice (sum) 7
• Joint and Conditional distribution rules:

– analogous to probability of events

• Bayes: pX|Y(x,y) =notation pXY(x|y) =even simpler notation       
p(x|y) = p(y|x) . p(x) / p(y)

• Chain rule: p(w,x,y,z) = p(z).p(y|z).p(x|y,z).p(w|x,y,z)
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The Notion of Entropy

• Entropy ~ “chaos”, fuzziness, opposite of order, ...
– you know it:

• it is much easier to create “mess” than to tidy things up...

• Comes from physics:
– Entropy does not go down unless energy is applied

• Measure of uncertainty:
– if low... low uncertainty; the higher the entropy, the 

higher uncertainty, but the higher “surprise” 
(information) we can get out of an experiment
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The Formula
• Let pX(x) be a distribution of random variable X

• Basic outcomes (alphabet) W 

                 H(X) = - åx Î W  p(x) log2 p(x)    !
• Unit: bits (log10: nats)

• Notation: H(X) = Hp(X) = H(p) = HX(p) = H(pX)
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Using the Formula: Example

• Toss a fair coin: W = {head,tail}
– p(head) = .5, p(tail) = .5
– H(p) = - 0.5 log2(0.5) + (- 0.5 log2(0.5)) =                             

2 ´ ( (-0.5) ´ (-1) ) = 2 ´ 0.5 = 1

• Take fair, 32-sided die: p(x) = 1 / 32 for every side x

– H(p) = -åi = 1..32  p(xi) log2p(xi) = - 32 (p(x1) log2p(x1) 
(since for all i p(xi) = p(x1) = 1/32)                                       
=  -32 ´ ((1/32) ´ (-5)) = 5 (now you see why it’s called bits?) 

• Unfair coin: 
– p(head) = .2 ... H(p) = .722;  p(head) = .01 ... H(p) = .081
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Example: Book Availability

     Entropy     H(p)

          1 

bad bookstore  good bookstore

       0

        0                                 0.5                                  1    ¬ p(Book Available)
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The Limits

• When H(p) = 0?
– if a result of an experiment is known ahead of time:
– necessarily: 

$x Î W; p(x) = 1 & "y Î W; y ¹ x  Þ  p(y) 
= 0

• Upper bound? 
– none in general
– for | W | = n:  H(p) £ log2n 

• nothing can be more uncertain than the uniform distribution
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Perplexity: motivation
• Recall:

– 2 equiprobable outcomes: H(p) = 1 bit
– 32 equiprobable outcomes: H(p) = 5 bits
– 4.3 billion equiprobable outcomes: H(p) ~= 32 bits

• What if the outcomes are not equiprobable?
– 32 outcomes, 2 equiprobable at .5, rest impossible:

• H(p) = 1 bit
– Any measure for comparing the entropy (i.e. 

uncertainty/difficulty of prediction) (also) for random 
variables with different number of outcomes?
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Perplexity
• Perplexity:

–G(p) = 2H(p)

• ... so we are back at 32 (for 32 eqp. outcomes), 2 
for fair coins, etc.

• it is easier to imagine:
– NLP example: vocabulary size of a vocabulary with 

uniform distribution, which is equally hard to predict

• the “wilder” (biased) distribution, the better:
– lower entropy, lower perplexity
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Joint Entropy and                   
Conditional Entropy

• Two random variables: X (space W),Y (Y)
• Joint entropy:

– no big deal: ((X,Y) considered a single event):

         H(X,Y) = - åx Î W åy Î Y p(x,y) log2 p(x,y)

• Conditional entropy: 

         H(Y|X) = - åx Î W åy Î Y p(x,y) log2 p(y|x)

recall that H(X) = E(log2(1/pX(x))) 

    (weighted average:  weights are not conditional) 
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Properties of Entropy I

• Entropy is non-negative:
– H(X) ³ 0

– proof: (recall: H(X) = - åx Î W  p(x) log2 p(x))
• log(p(x)) is negative or zero for x £ 1,
• p(x) is non-negative; their product p(x)log(p(x) is thus negative; 
• sum of negative numbers is negative;
• and -f  is positive for negative f  

• Chain rule: 
– H(X,Y) = H(Y|X) + H(X), as well as 
– H(X,Y) = H(X|Y) + H(Y) (since H(Y,X) = H(X,Y))
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Properties of Entropy II
• Conditional Entropy is better (than unconditional): 

– H(Y|X) £ H(Y)  

• H(X,Y) £ H(X) + H(Y) (follows from the previous (in)equalities)

• equality  iff  X,Y  independent
• [recall: X,Y independent iff p(X,Y) = p(X)p(Y)]

• H(p) is concave (remember the book availability graph?)
– concave function f over an interval (a,b):

          "x,y Î(a,b), "l Î [0,1]:

                   f(lx + (1-l)y) ³ lf(x) + (1-l)f(y)
• function f is convex   if    -f is concave

f

x y

lf(
x) +

 (1
-l)

f(y
)
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“Coding” Interpretation of Entropy

• The least (average) number of bits needed to 
encode a message (string, sequence, series,...) 
(each element having being a result of a random 
process with some distribution p): = H(p)

• Remember various compressing algorithms?
– they do well on data with repeating (= easily 

predictable = low entropy) patterns
– their results though have high entropy Þ compressing 

compressed data does nothing  
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Coding: Example
• How many bits do we need for ISO Latin 1?

–  Þ the trivial answer: 8

• Experience: some chars are more common, some (very) rare:
• ...so what if we use more bits for the rare, and less bits for the 

frequent? [be careful: want to decode (easily)!]
• suppose: p(‘a’) = 0.3, p(‘b’) = 0.3, p(‘c’) = 0.3, the rest: 

p(x)@ .0004
• code: ‘a’ ~ 00, ‘b’ ~ 01, ‘c’ ~ 10, rest: 11b1b2b3b4b5b6b7b8

• code acbbécbaac: 0010010111000011111001000010
                                  a c b b     é     c b a a c 
• number of bits used: 28 (vs. 80 using “naive” coding)

• code length ~ 1 / probability; conditional prob OK!
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Kullback-Leibler Distance
(Relative Entropy)

• Remember: 
– long series of experiments... ci/Ti oscillates around some 

number... we can only estimate it... to get a distribution q.

• So we get a distribution q; (sample space W, r.v. X)

         the true distribution is, however, p. (same W, X)

               Þ how big error are we making?
• D(p||q) (the Kullback-Leibler distance):

  D(p||q) =  åx Î W p(x) log2 (p(x)/q(x)) = Ep log2 (p(x)/q(x)) 
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Comments on Relative Entropy

• Conventions:
– 0 log 0  =  0
– p log (p/0) = ¥ (for p > 0)

• Distance? (less “misleading”: Divergence)
– not quite:

• not symmetric: D(p||q) ¹ D(q||p)
• does not satisfy the triangle inequality

– but useful to look at it that way

• H(p) + D(p||q): bits needed for encoding p if q is used

NPFL124 Part 1 35



2019/20

Mutual Information (MI)
in terms of relative entropy

• Random variables X, Y; pXÇY(x,y),  pX(x),  pY(y)

• Mutual information (between two random variables X,Y):

               

                    I(X,Y) = D(p(x,y) || p(x)p(y))

• I(X,Y) measures how much (our knowledge of) Y 
contributes (on average) to easing the prediction of X

• or, how  p(x,y)  deviates from (independent)  p(x)p(y)
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Mutual Information: the Formula
• Rewrite the definition: [recall: D(r||s) = åv Î W r(v) log2 (r(v)/s(v));

                                             substitute r(v) = p(x,y), s(v) = p(x)p(y); <v> ~ 

<x,y>]

      I(X,Y) = D(p(x,y) || p(x)p(y)) =  

                  = åx Î W åy Î Y p(x,y) log2 (p(x,y)/p(x)p(y))

 

• Measured in bits (what else? :-)

!
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From Mutual Information to Entropy
• by how many bits the knowledge of Y lowers the entropy H(X):

 I(X,Y) = åx Î W åy Î Y p(x,y) log2 (p(x,y)/p(y)p(x)) =
...use p(x,y)/p(y) = p(x|y)

   = åx Î W åy Î Y p(x,y) log2 (p(x|y)/p(x)) =
...use log(a/b) = log a - log b (a ~ p(x|y), b ~ p(x)), distribute sums

   = åx Î W åy Î Y p(x,y)log2p(x|y) - åx Î W åy Î Y p(x,y)log2p(x) =
...use def. of H(X|Y) (left term), and åy Î Y p(x,y) = p(x) (right term) 

   = - H(X|Y) + (- åx Î W p(x)log2p(x)) =
...use def. of H(X) (right term), swap terms

   = H(X) - H(X|Y)           ...by symmetry, = H(Y) - H(Y|X)
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Properties of MI vs. Entropy

• I(X,Y) = H(X) - H(X|Y)    = number of bits the knowledge 
of Y lowers the entropy of X

                = H(Y) - H(Y|X) (prev. foil, symmetry)

Recall: H(X,Y) = H(X|Y) + H(Y) Þ -H(X|Y) = H(Y) - H(X,Y) Þ

• I(X,Y) = H(X) + H(Y) - H(X,Y)
• I(X,X) = H(X) (since H(X|X) = 0)

• I(X,Y) = I(Y,X) (just for completeness)

• I(X,Y) ³ 0  ... let’s prove that now (as promised).
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Other (In)Equalities and Facts

• Log sum inequality: for ri, si ³ 0

       åi=1..n (ri log(ri/si)) £ (åi=1..n ri) log(åi=1..nri/åi=1..nsi))

• D(p||q) is convex [in p,q] (Ü log sum inequality)
• H(pX) £ log2|W|, where W is the sample space of pX

        Proof: uniform u(x), same sample space W: åp(x) log u(x) = -log2|W|;

                   log2|W| - H(X) = -åp(x) log u(x) + åp(x) log p(x) = D(p||u) ³ 0

• H(p) is concave [in p]:
        Proof: from H(X) = log2|W| - D(p||u), D(p||u) convex ÞH(x) concave 
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Cross-Entropy

• Typical case: we’ve got series of observations

      T = {t1, t2, t3, t4, ..., tn}(numbers, words, ...; ti Î W); 

   estimate (simple): 

      "y Î W:   (y) = c(y) / |T|, def. c(y) = |{t Î T; t = y}|
• ...but the true p is unknown; every sample is too small!
• Natural question: how well do we do using     [instead of p]?
• Idea: simulate actual p by using a different T’ 
     (or rather: by using different observation we simulate the 

insufficiency of T vs. some other data (“random” difference))

p

p
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Cross Entropy: The Formula

• Hp’(  )  =  H(p’) + D(p’||   )

                Hp’(  )  = - åx Î W p’(x) log2   (x) !
• p’ is certainly not the true p, but we can consider it the 

“real world” distribution against which we test 
• note on notation (confusing...): p/p’ «     , also 

HT’(p)

• (Cross)Perplexity: Gp’(p) = GT’(p)= 2Hp’(  ) 

p p

pp

p

p
p
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Conditional Cross Entropy

• So far: “unconditional” distribution(s) p(x), p’(x)...
• In practice: virtually always conditioning on context
• Interested in: sample space Y, r.v. Y, y Î Y; 

            context: sample space W, r.v. X, x Î W;:

            “our” distribution p(y|x), test against 
p’(y,x),

                    which is taken from some independent data:

               Hp’(p) = - åy Î Y, x Î W p’(y,x) log2p(y|x) 
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Sample Space vs. Data

• In practice, it is often inconvenient to sum over 
the sample space(s) Y, W (especially for cross entropy!) 

• Use the following formula:

         Hp’(p) =      - åy Î Y, x Î W p’(y,x) log2p(y|x) =

                                      - 1/|T’| åi = 1..|T’| log2p(yi|xi) 

•  This is in fact the normalized log probability of the “test” data:

            Hp’(p) = - 1/|T’| log2 Pi = 1..|T’| p(yi|xi)

!
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Computation Example

•  W = {a,b,..,z}, prob. distribution (assumed/estimated from data):
        p(a) = .25, p(b) = .5, p(a) = 1/64 for a Î{c..r}, = 0 for the rest: 

s,t,u,v,w,x,y,z

• Data (test):   barb    p’(a) = p’(r) = .25,  p’(b) = .5 
• Sum over W: 
                a           a  b c d e f g ... p q  r  s t ... z
                -p’(a)log2p(a)   .5+.5+0+0+0+0+0+0+0+0+0+1.5+0+0+0+0+0 = 2.5

• Sum over data:
               i / si                            1/b   2/a   3/r   4/b               1/|T’|
               -log2p(si)        1  +  2  +  6  +  1      = 10  (1/4) ´  10 = 

2.5
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Cross Entropy: Some Observations

• H(p)   ?? <, =, > ??   Hp’(p):  ALL! 

• Previous example: 
     [p(a) = .25, p(b) = .5, p(a) = 1/64 for a Î{c..r}, = 0 for the rest: 

s,t,u,v,w,x,y,z]

                          H(p) = 2.5 bits = H(p’) (barb)
• Other data: probable:    (1/8)(6+6+6+1+2+1+6+6)= 4.25

                          H(p) < 4.25 bits = H(p’) (probable)
• And finally: abba:          (1/4)(2+1+1+2)= 1.5

                          H(p) > 1.5 bits = H(p’) (abba)
• But what about:   baby    -p’(‘y’)log2p(‘y’) = -.25log20 = ¥  

(??)
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Cross Entropy: Usage
• Comparing data??  

– NO! (we believe that we test on real data!)

• Rather: comparing distributions (vs. real data)
• Have (got) 2 distributions: p and q (on some W, X)

– which is better?
– better: has lower cross-entropy (perplexity) on real data S

• “Real” data: S
•  HS(p) = - 1/|S| åi = 1..|S| log2p(yi|xi)    ??   HS(q) = - 1/|S| åi = 1..|S| log2q(yi|xi) 
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Comparing Distributions

• p(.) from prev. example:                             HS(p) = 4.25

             p(a) = .25, p(b) = .5, p(a) = 1/64 for a Î{c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

• q(.|.) (conditional; defined by a table):

                                                                                         ex.: q(o|r) = 1

                                                                                                  q(r|p) = .125

 

 
(1/8) (log(p|oth.)+log(r|p)+log(o|r)+log(b|o)+log(a|b)+log(b|a)+log(l|b)+log(e|l))

(1/8) (      0        +      3     +    0      +     0     +      1     +     0     +      1    +     0    )

               HS(q) = .625

Test data S: probable 
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a b e l o p r other

a 0 .5 0 0 0 .125 0 0
b 1 0 0 0 1 .125 0 0
e 0 0 0 1 0 .125 0 0
l 0 .5 0 0 0 .125 0 0
o 0 0 0 0 0 .125 1 0
p 0 0 0 0 0 .125 0 1
r 0 0 0 0 0 .125 0 0
other 0 0 1 0 0 .125 0 0
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The Noisy Channel

• Prototypical case:
           Input                                                     Output (noisy)

                                 The channel

     0,1,1,1,0,1,0,1,...       (adds noise)             0,1,1,0,0,1,1,0,...

• Model:    probability of error (noise):
• Example: p(0|1) = .3   p(1|1) = .7  p(1|0) = .4  p(0|0) = .6
• The Task:

  known: the noisy output; want to know: the input (decoding)
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Noisy Channel Applications
• OCR

– straightforward: text ® print (adds noise), scan ® image 

• Handwriting recognition
– text ® neurons, muscles (“noise”), scan/digitize ® image

• Speech recognition (dictation, commands, etc.)
– text ® conversion to acoustic signal (“noise”) ® acoustic waves

• Machine Translation
– text in target language ® translation (“noise”) ® source language

• Also: Part of Speech Tagging
– sequence of tags ® selection of word forms ® text
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Noisy Channel: The Golden Rule of ...

                                       OCR, ASR, HR, MT, ...
• Recall:

           p(A|B) = p(B|A)  p(A) / p(B)   (Bayes formula)

           Abest = argmaxA p(B|A) p(A)   (The Golden Rule)

• p(B|A):  the acoustic/image/translation/lexical model
– application-specific name
– will explore later

• p(A): the language model
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The Perfect Language Model

• Sequence of word forms [forget about tagging for the moment]

• Notation: A ~ W = (w1,w2,w3,...,wd)

• The big (modeling) question:

                                    p(W) = ?
• Well, we know (Bayes/chain rule ®):

                                    p(W) = p(w1,w2,w3,...,wd) = 

 = p(w1) ´ p(w2|w1) ´ p(w3|w1,w2) ´...´ p(wd|
w1,w2,...,wd-1)

• Not practical (even short W ® too many parameters) 
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Markov Chain

• Unlimited memory (cf. previous foil):
– for wi, we know all its predecessors w1,w2,w3,...,wi-1

• Limited memory:
– we disregard “too old” predecessors
– remember only k previous words: wi-k,wi-k+1,...,wi-1

– called “kth order Markov approximation”

• + stationary character (no change over time):

             p(W) @ Pi=1..dp(wi|wi-k,wi-k+1,...,wi-1), d = |W|
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n-gram Language Models

• (n-1)th order Markov approximation ® n-gram LM:

               p(W) =df Pi=1..dp(wi|wi-n+1,wi-n+2,...,wi-1)  !
• In particular (assume vocabulary |V| = 60k):

• 0-gram LM: uniform model,   p(w) = 1/|V|, 1 parameter
• 1-gram LM: unigram model,   p(w), 6´104 parameters
• 2-gram LM: bigram model,   p(wi|wi-1)         3.6´109 parameters

• 3-gram LM: trigram model, p(wi|wi-2,wi-1)  2.16´1014 parameters

prediction                        history
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Maximum Likelihood Estimate
• MLE: Relative Frequency...

– ...best predicts the data at hand (the “training data”)

• Trigrams from Training Data T:
– count sequences of three words in T: c3(wi-2,wi-1,wi)
     [NB: notation: just saying that the three words follow each other]

– count sequences of two words in T: c2(wi-1,wi): 

• either use c2(y,z) = Sw c3(y,z,w)

• or count differently at the beginning (& end) of data!     

p(wi|wi-2,wi-1) =est. c3(wi-2,wi-1,wi) / c2(wi-2,wi-1) !
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LM: an Example

• Training data:
                     <s> <s> He can buy the can of soda.
– Unigram: p1(He) = p1(buy) = p1(the) = p1(of) = p1(soda) = p1(.) = .125

                    p1(can) = .25

– Bigram: p2(He|<s>) = 1, p2(can|He) = 1, p2(buy|can) = .5, 

                  p2(of|can) = .5, p2(the|buy) = 1,...

– Trigram: p3(He|<s>,<s>) = 1, p3(can|<s>,He) = 1, 

                  p3(buy|He,can) = 1, p3(of|the,can) = 1, ..., p3(.|of,soda) = 1.

– Entropy:  H(p1) = 2.75,  H(p2) = .25,  H(p3) = 0    ¬ Great?!
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LM: an Example (The Problem)
• Cross-entropy:
• S = <s> <s> It was the greatest buy of all.
• Even HS(p1) fails (= HS(p2) = HS(p3) = ¥), because:

– all unigrams but p1(the), p1(buy), p1(of) and p1(.) are 0.

– all bigram probabilities are 0.
– all trigram probabilities are 0.

• We want: to make all (theoretically possible*) 
probabilities non-zero. 

*in fact, all: remember our graph from day 1?
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