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Study programme: Computer Science

Study branch: IOI

Prague 2016



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In ........ date ............ signature of the author

i



Title: Artificial Neural Network for Opinion Target Identification in Czech

Author: Vladan Glončák

Institute: Institute of Formal and Applied Linguistics

Supervisor: doc. RNDr. Vladislav Kuboň, Ph.D., Institute of Formal and Ap-
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Introduction

Sentiment analysis, or opinion mining, aims to identify and extract subjective
information, such as the attitude of the author, in source material. Attitudes,
opinions and emotions are all subjective sentiments. Text analysis, natural lan-
guage processing methods and even machine learning methods are used for this
purpose. Whilst they are not facts, sentiments may be helpful in business intelli-
gence, sociology, psychology and related fields.

In general, the most typical task of sentiment analysis is to determine whether
a short text or a sentence has positive, negative or neutral polarity. Another com-
mon task is to classify a given piece of text as subjective or objective. However,
sometimes more detailed-oriented approaches are necessary.

A typical example is user reviews, which usually have several aspects that are
mentioned in the review. To obtain useful data from restaurant reviews, it would
be important to know the sentiment about food quality, friendliness of the staff
and other features, not only the polarity of the whole review.

Aspect-based sentiment analysis (ABSA) refers to determining the sentiments
on features or aspect of entities. In the example of restaurant reviews, food is
an entity, while price and quality are aspects of the entity. Both entities and
aspects, to be evaluated later, must be determined first. This roughly divides
ABSA into two sub-tasks; the identification of aspects and polarity classification.
The purpose of the experiment introduced in this thesis is the identification of
aspects. A fine-grained approach and the consideration of the internal sentence
structure is required to carry out those sub-tasks.

Most sentiment prediction systems work by analyzing words in isolation. This
approach is simple and comprehensive; however, often the most important infor-
mation hidden in the context is lost. To pursue aspect-based analysis without
requiring a more language-specific approach and engineering, we introduce neural
networks.

Neural networks are a family of machine learning models loosely based on cen-
tral nervous systems of higher animals. Neural networks possibly have a greater
ability of generalization than probabilistic models.

Neural networks have been used in sentiment analysis before. In this work we
use recurrent neural networks, namely long short term memory (LSTM), because
syntactic relationships and long-distance dependencies, which we assume are a
great influence, may be better modeled with a recurrent neural network rather
than convolutional neural network.

After introducing the issue in the first few chapters we perform the main
purpose of this thesis: identifying the opinion target, the aspect and entity, that
are being reviewed. We implement the previously used model in Python and
measure its performance on Czech data. The results are then compared to the
results already achieved by the use of probabilistic models and neural networks.
We also try to modify the model in order to achieve higher performance.

For the purpose of our experiment, we modify the existing dataset for opinion
target identification in Czech, the same dataset that was used for the probabilistic
models. Language independence of the approach allows us to compare the results
with results from analysis of other languages.
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1. Sentiment Analysis

There are lots of facts that we remember throughout our lifetime. However, not
everything that we say is a fact. Most of what people say are just opinions. De-
spite that, opinions have always been an important factor when making decisions.

Even before the expansion of the Internet, people would ask their friends for
their opinions of various kinds of services. The increasing use of the Internet has
also influenced this part of our lives. Instead of asking friends, many people use
the Internet to get reviews of movies, restaurants, products they consider buying
and so on.

The web is filled with data containing opinions and sentiments. The amount
of the data is massive. Obtaining useful information from this enormous amount
of subjective sets of data demands new technologies. Major companies and or-
ganizations are coming to realize that platforms, such as blogs and discussion
forums, are a great influence of other people’s opinions, underscoring the need for
a technology to elucidate the actual moods. Business and government intelligence
are just examples of fields that could make use of such technologies.

There are many challenges related to the analysis of such data. For example,
determining which parts of text contain the subjective material. In some inter-
faces, like Amazon, it is quite easy, but in blog entries it may be more difficult.
The main task is identifying the overall polarity of the material. The subjective
material can be quite complex, expressing different opinions on different aspects
of the topic. Therefore another task is to identify those aspects that are being
evaluated.

All those tasks are research areas of sentiment analysis. Sentiment analysis
has been around for quite a while. In recent years it has enjoyed greater awareness,
mostly due to the increasing use of machine learning methods and availability of
datasets for the analysis.

1.1 Obstacles to Opinion Mining

Language is idiosyncratic, with nearly infinite possible grammatical variations,
misspellings and colloquialisms. All of these aspects make automated analysis
of natural language a difficult task. Simple approaches fail when complicated
language structures emerge and the use of contextual information is necessary.

The most straight-forward method to classify the piece of text as positive or
negative would be to look for “positive” and “negative” words and to decide based
on the prevalence of any kind of words. How do we get those sets of words? Pang
et al. [2002] showed that it is difficult for people to come up with the right set of
words. This does not mean that it is a completely wrong approach. Pang et al.
[2002] have also shown that machine learning methods based on this technique
can achieve accuracy a little over 80%.

However, systems based on this simple principle would fail for fairly common
examples. For instance, at least one of these example sentences:

I like the laptop.
It looks like a laptop.
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would be evaluated inaccurately since “like” express positive feelings in the first
but in the second it is neutral.

Moreover, people often express sentiments in a subtle way. When reviewing
a movie,

“The movie seems to come from a recycling bin.”

would be a negative comment without any ostentatiously negative words. A dif-
ferent example would be a sentence like

“The movie has a great cast, the plot seems fascinating,
even the music is good. However, it can’t hold up.”,

is filled with “positive” words, but holding a negative sentiment overall. The use
of irony is sometimes baffling for people too,

“What an original idea, found footage film.
I’ve never seen a movie like that before.”

seems positive, but for people familiar with horror movies it is an obvious use of
irony.

1.2 Problem Formulation

There are various tasks in sentiment analysis. Pang and Lee [2008] listed an ex-
ample of problems motivated by different real-world application, using different
types of corpora.

A large proportion of such problems is to evaluate a given opinionated piece
of text, assumed to be about one single item, as a positive or negative. That
would be a binary classification task. Positive and negative are not the only
categories used. Thomas et al. [2006] classified whether a speech is in support or
in opposition to the issue in a debate.

However, it could be a regression task, deciding “how positive it is” or a
ranking task ordinal regression, ordering a set of text from the most positive to
the least positive one.

Other instances of problems could be deciding, whether a piece of text is ob-
jective or subjective. Mihalcea et al. [2007] suggest that this kind of task is often
more difficult than polarity classification, hence the improvement in subjectivity
classification will result in improvement of polarity classification as well. Some-
times the objective topic and subjective opinion may interact to an extent that it
is desirable to analyze both simultaneously. This is called joint topic-sentiment
analysis.

1.3 Aspect-Based Sentiment Analysis

So far, we have examined only simple examples, addressing only one entity, a
movie. However, even movies have several aspects, such as the cast, the music,
the plot and many more. In one review, the polarity of the opinion expressed
towards any entity or aspect can differ.
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“The performance of actors was compelling, the plot not so much.”

The above sentence has both positive and negative sentiments but for different
aspects. This leaves us with two tasks:

opinion target identification, that is to find the aspect in the sentence itself
or to classify as some predefined category and

polarity classification, deciding whether the aspect is rated positively or neg-
atively.

Generally, methods used for solving those tasks can be

rule-based methods, making decisions based on a predefined set of rules, for
example motivated by some syntactic rules

machine learning methods, when the model that performs the classification is
not based on predefined set of rules, rather the rules on which the decision
is based is implied from the data i.e. learned

or combined, as in the work by Tamchyna, Fiala, and Veselovská [2008].

1.4 Machine Learning Methods

Of course we can carefully analyze data and come up with a set of decision making
rules. There are datasets that are so large and complex that they are called “Big
data”. It would be merely impossible for a human to analyze it all. Instead of
torturing people, we would rather present the data and let machines analyze it
themselves. This approach is called machine learning.

A system is said to learn from experience with respect to some task, if its
performance at the task improves with the experience. We of course need to
somehow measure, or grade, the performance to know whether the system is
actually learning something. We do it by using a predefined cost function. The
purpose of the learning, or “training”, is to minimize the cost.

Tasks of machine learning are:

Classification, where the task is to determine a category to which the data
instance belongs to. Models used for classification are usually referred to
as classifiers,

Regression, where the task is to predict a numeric value, based on the presented
data. Models used for regression are usually called predictors and

Clustering, where the task is to automatically find bundles of data which have
some common properties.

The data used in machine learning consists of data instances. Data instances
have to be presented in a way comprehensible to computer programs. For this
purpose, data instances are given as vectors of either numerical or categorical
values. Each component of the vector represents some property or some feature
of the data instance, hence they are referred to as feature vectors. Sometimes,
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along with the feature vector a desired,“the correct”, value is given. A feature
vector with a given desired output value is called an example. Choosing the right
features and taking them out of the real data is an exhaustive part of the machine
learning process, referred to as feature extraction.

Separate sets of data should be used for the training process and the final
evaluation of accuracy of the model. It is very important that data instances are
split into training and testing data sets randomly. Otherwise the probabilistic
distribution of the data could be different in the two sets, making the evaluation
useless for real world examples. The learning methods can be supervised, if the
desired values are given, or unsupervised if they are not given.

There are various models in machine learning. Description of linear and lo-
gistic regression, support vector machines, tree based methods, such as decision
trees and random forests, clustering methods and many others listed by James
et al. [2014]. We further describe models only used in experiments by Tamchyna,
Fiala, and Veselovská [2008] and Tamchyna and Veselovská [2016].

1.4.1 Cross-Validation

If we take an independent sample for evaluating the model performance, it may
happen that the model is not performing as well as on the training set. It fits too
well for the training data, hence this is called overfitting. It means that the model
is not capable of generalization, it “think” too rigidly. The converse problem of
underfitting is when the model does not fit the training data and the model is
generalizing too much.

The goal of machine learning is to find the equilibrium between the prob-
lems. Evaluation of the rate of the underfitting and overfitting is done by cross-
validation.

The dataset is randomly split to k equally large subsets. During k-fold cross
validation, in each of k folds one subset is used as testing data and the rest as
training data. The overall accuracy is then estimated as a mean of accuracy
achieved in each fold.

1.4.2 Conditional Random Fields

In statistics and probability theory, a Markov process is a process satisfying
Markov property. To put it simply, it means that predictions of the future of
the model can be done solely based on the present state of the process, i.e. the
complete process history will not result in a better prediction [Rabiner and Juang,
1986].

Imagine we have r rooms with n urns containing balls of c colors. Every time
a room is chosen randomly, a ball is drawn from a randomly chosen urn and then
it is put back in the urn. The observed value of the process is just the color of
the ball. Draws are completely independent from each other. The process itself
is not observed, only the chosen color, thus it is called a hidden Markov process.

The state of the process cannot be observed, it is the hidden state. The
next hidden state depends only on the current hidden state, not the previous
states. The probability distribution of the process can be therefore modeled by a
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“chain” of hidden states, where each hidden state has some conditional probability
distribution dependent only on the previous hidden state.

Given a sentence, an example of a hidden Markov process could be outputting
a set of labels, one for each word, assuming that the probability of the current
label is dependent solely on the previous label and the input words. The input
words, or simply the sentence, is constant throughout the process.

In the experiment performed by Tamchyna et al. [2008], a model called linear-
chain conditional random fields (CRF) was used. It is a statistical model related
to a hidden Markov model. However, it is a discriminative model; it directly
models the conditional probability of a labeling as

P (y|x) =
1

z(x)
exp

(
T∑
t=1

K∑
k=1

λkfk(yt, yt − 1, t, x)

)
,

where z is the normalization function

z(x) =
∑
y′

exp

(
T∑
t=1

K∑
k=1

λkfk(y
′
t, y
′
t − 1, t, x)

)
,

summing over all possible label sequences. The index t ∈ {1, ..., T} corresponds
to a position in the sentence, yt being the label at the position t. K is the
number of feature or the conventionality of the input vector. Feature function
fk depends on the current label yt, the previous label yt−1, the input words x
and the associated weights λk. The weights are optimized during the training to
maximize the likelihood of the desired labeling.

The prediction is the most probable label, i.e.

ŷ = argmin
y

P (y|x)

There are methods based on dynamic programming, like Viterbi algorithm
[Viterbi, 2006], to efficiently find ŷ.

1.4.3 Logistic Regression

A routine method used for binary classification, also used in the experiment
conducted by Tamchyna and Veselovská [2016], is logistic regression. It is well
described in Introduction to Statistical Learning with Applications in R by James
et al. [2014, Chapter 4].

We want to assign a category to each example in the dataset. For binary
classification, we will denote the categories by 0 and 1. The predicting func-
tion, also called hypothesis, has a form of a sigmoidal function, discussed later in
Subsection 2.1.1

ϕ(x) =
1

1 + e−ΘT x
,

where Θ are the parameters of the hypothesis that are learned during the training.
The function outputs the probability of the data instance being of the category

denoted by 1. We can choose an arbitrary threshold, although 0.5 is the most
commonly used, and classify it as 0, if the probability is lower than the threshold
or one if it is greater than or equal to threshold.
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The likelihood of the data is the probability of data instances being classified
as y1, ..., yn, where n is the number of data instances and yi ∈ 0, 1 is the predicted
category for the i-th data instance xi, is given by the formula

L(y1, ..., yn; Θ, x1, ...xn) =
n∏
i=1

P (yi|xi,Θ)

During the training, the likelihood is maximized. However, it is easier to
maximize a summation instead of a possibly very large product, so log likelihood
function is used as a cost function

`(y1, ..., yn; Θ, x1, ...xn) = logL(y1, ..., yn; Θ, x1, ...xn)

=
n∑
i=1

logP (yi|xi,Θ) .
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2. Neural Networks

Neural networks are models inspired by the central nervous system of higher
animals, humans in particular. Simple nodes, known as “neurons” or “neurodes”
are connected together in an artificial network which mimics a real biological
neural network.

For practical reasons, the biological approach has been neglected in software
implementations, favoring approach based on statistics and signal processing.

2.1 Model of a Neuron

A neuron, like in biological neural network, is a fundamental information pro-
cessing unit of the network.

A model of neuron is characterized by a set of synapses (connections). Each
synapse is characterized by its weight. In addition, the neuron also has a given
bias (or threshold) and activation (or squashing) function ϕ.

w1
w2
w3

wn
b

.

.

.

x1

x2

x3

xn

φ

Figure 2.1: A model of neuron

In the Figure 2.1 we see weight of synapses denoted by w1, w2, w3, ..., wn. The
input is a vector of numbers x = (x1, x2, x3, ...xn) and the bias is denoted by b.
The output of the neuron is computed as

y = ϕ

(
b+

n∑
i=1

xiwi

)
,

where ϕ is some squashing function and its argument is called induced local field.

2.1.1 Squashing Function

The final output depends on the squashing function. One of the most commonly
used functions is threshold function, which is defined as

ϕ(x) =

{
1 if x ≥ 0

0 if x < 0

However, the prevalent squashing function is the sigmoid function. In general,
sigmoid function is a bounded differentiable function defined for all real numbers
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and has a positive derivative at each point. An example would be a specific case
of the logistic function defined by

ϕ(x) =
1

1 + e−x
.

This function is used in machine learning enormously, often being referred to
simply as sigmoid function. Note that this is similar to the loggistic regression
model described in Subsection 1.4.3.

Another examples are signum function

ϕ(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

and the hyperbolic tangent function

ϕ(x) = tanh(x).

2.2 Network Architectures

A single neuron itself is a useful structure, that can be used as a binary classifier
for linearly separable data. In order to solve more difficult tasks more neurons are
connected together in a network. Neuron output is a single number. If there are
more connections starting from one neuron, they all transmit the same number.
There are various structures of neural networks, but in general, we may identify
three types of architecture of neural networks [Haykin, 2009]

Single-layer networks contain only the input and output layer. “Single-layer”
refers to the output layer, the input layer is omitted because no computation
is performed there. All neurons of the input layer are connected with all
neurons of the output layer, but not vice versa. This means that this type
of network is strictly feedforward because the connections are oriented from
input layer to output layer.

output
layer

input
layer

Figure 2.2: An example of a single-layered network
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Multi-layer feed-forward networks are different from single-layer network by
the presence of one or more layers of neurons between the input and output
layer. Those layers are called hidden, because they cannot be seen directly
from neither input nor output layer. The output of the first layer is used
as an input for the second layer and so on. Neural networks with only
one hidden layer are often called shallow, while neural networks with more
layers are called deep neural networks.

output
layer

input
layer

hidden
layer

Figure 2.3: An example of a multi-layered feedforward network

Models used by word2vec, further discussed in Chapter 3, are a little vari-
ation of shallow neural networks.

Recurrent networks (or RNN) are distinguished by the fact that they have at
least one feedback loop. Feedback loop means that the output of a layer is
used again as an input.

neurons

Figure 2.4: An example of a recurrent network

Recurrent networks can be either single-layered (i.e. Hopfield model) or
can be multi-layered. Another example of recurrent neural networks are

12



long short-term memory (LSTM) networks proposed by Hochreiter and
Schmidhuber [1997] further described in Subsection 2.2.1.

2.2.1 Long Short-Term Memory

Now we take a closer look at a specific model of neural networks used in the
experiment, specifically the previously mentioned recurrent model called LSTM.

Human thoughts have persistence. People do not just discard what is on
their mind and suddenly start to think from scratch. However, this is exactly
what feed-forward networks do. Their “mind” is always as if they just woke up.
Recurrent neural networks address this issue by preserving the information by
feeding it back to the input.

This recurrence may be a bit puzzling at first, but it is actually quite simple.
Instead of passing the output back to the input, we can imagine as if the network
passed its output to a copy of itself. This way we can imagine the recurrent
network as a chain of smaller networks. In fact, chain-like structures, like sen-
tences, movies and real-time handwriting, are exactly the type of structures that
recurrent networks are good at processing. Using recurrent networks for speech
recognition, language modeling and translating has been a huge success.

Imagine we are trying to predict the next word in a sentence. For instance,
the sentence

“The Earth orbits around the . . . ”

will clearly end in the word “Sun” (we will leave out the possibility of “center
of gravity of the solar system” for the sake of simplicity). We did not need to
remember the context for too long to complete the sentence. However, when we
take a longer sentence such as

“I was born in the USA, although for various reasons,
I don’t consider myself an . . . ”

the necessary context is rather small, but has to be remembered for much longer
time. Unfortunately, the gap between the information and the place where it is
used as a context can become arbitrarily large. This issue of long-distance de-
pendencies was addressed in the article Long Short-Term Memory by Hochreiter
and Schmidhuber [1997].

Long short-term memories are suitable for many types of tasks. A great
success, in particular, was usage of long short-term memory for automatic recog-
nition of handwriting. Nevertheless, almost all exciting results based on recurrent
networks are achieved by using LSTMs.

In simple terms, LSTM remembers a value just by simply re-feeding it over
and over again to the memory cell. This principle is called “constant carrousel”.
This would be useless, if there was not any way to control, whether we want to
keep the information, forget it or output it. Of course, there is a way to do so.
In LSTM this is achieved by so-called gates.

In the Figure 2.5, x represents the input vector, c is the memory cell and y
is the output of the LSTM. The ⊗ represents multiplication and circles with a
curve inside represent the usage of some squashing (or scaling) function (typically

13



i f o

cx y

Figure 2.5: A typical implementation of LSTM

the sigmoid or hyperbolic tangent function). The gray nodes are representing the
gates, i is the input gate, f is the forget gate and o is the output gate.

The gates are just nodes that output a signal between 0 and 1. This is achieved
by the sigmoid function. There are 3 gates:

input gate which controls, how much of information is let into the system, with
0 meaning no information is let inside and 1 meaning all the information is
let inside the memory cell

forget gate which determines, whether we want to forget the information (0) or
keep it (1)

output gate which controls whether the information should be outputted to the
rest of the network (1) or not (0)

At first, the input is fed to all the gates and squashed by sigmoid function
(or some other differentiable function). The decision of the input gate and the
squashed input are then multiplied, which means that the input remains un-
changed if the input gate outputs 1 and the input is zeroed if the input gate
outputs 0. The output of any gate is just a simple squashed dot product as
mentioned in Section 2.1:

outgate = ϕ

(∑
i

wgate,ixt,i

)
.

The forget gate also outputs its decision. The currently remembered vector
and the decision of the forget gate are multiplied, meaning that if the output of
the forget gate is 1, the pattern remains in memory (is again fed to the input
of the memory cell ct) or forgotten, when forget gate outputs 0. Note that the
looped input is not put through any squashing function, in order to allow the
value to be remembered for a long time without decaying.

Then the remembered value is again squashed by some differentiable function.
Finally the output gate decides based on the input x whether the value should
be let out of the memory cell to the rest of the system or not. This is done by
multiplication, the same way as for the other gates.

In the Figure 2.5, the decision of the gates is based on the input fed also to
the memory cell. However, in more general case, the input of the gates and the
memory cell does not have to be the same. The rest of the computation remains
unchanged even if different inputs for the gates are used.
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2.3 Training

Neural networks are used in machine learning, which implies that they should
be able to learn. More specifically, the network should be able to improve its
performance. Similarly to other machine learning models, neural networks are
trained on the training data.

There are various methods used to train neural networks. Principally, those
methods can be described as

• unsupervised learning methods

• supervised learning methods

The difference is that during supervised learning the desired outputs are used
to improve the performance. Supervised learning is also referred to as learn-
ing with a teacher and unsupervised learning is likewise named learning without
a teacher. An illustrious example of unsupervised learning method is Hebbian
learning. For the purpose of our experiment we will focus on the supervised
methods exclusively.

The predominant supervised method for feed-forward neural networks is back-
propagation algorithm. For recurrent neural networks a modification of the algo-
rithm, called back-propagation through time, has been invented.

2.3.1 Back-Propagation Algorithm

The name of the algorithm is derived from “back propagation of errors”. Many
variation of the basic algorithm employing heuristics have been proposed through-
out the years. The basic version can be described by following steps:

Initialize random weight to all synapses.

For all data points in the training set perform

1. Present a data point x and the desired output d

2. Compute the actual output y of the network

3. Update the synaptic weight on the layers.
First update the weights on the output layer,
then the layer preceding the updated layer and so on.

The weights change in time. The weight of the connection between the neurons
i and j at some step is denoted as wi,j(t). The updated weight in the next time
step will be

wi,j(t+ 1) = wi,j(t) + ∆wi,j,

where ∆wi,j is the correction applied to the weight.
How do we know what correction we should apply? We need a mathematical

way of evaluating the performance of the network. The answer is to present a
cost function. The cost function, based on the actual and desired output, yields a
single number. This is a “grade” the network got for its performance on the task.
The purpose of the learning is getting the best grade, which, in mathematical
terms, means to minimize the cost function.
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The correction mentioned above is computed with respect to the learning rate
η, the local gradient δj and the input of the neuron j, which is the output of the
neuron i, denoted by yi.

∆wi,j = ηδjyi

The use of the local gradient was motivated by gradient descent method, also
known as the method of steepest descent. A detailed description of the method
can be found in the textbook Iterative Methods for Optimization by Kelley [1999].

It is an iterative method for finding the local minimum of a function. The
algorithm starts at some point p0. As many times as needed, it moves from pi to
pi+1 in the direction of −∇f(pi), where f is the function being minimized.

The local gradient is computed as a first derivation of the cost function

E =
1

2

∑
j∈C

error2
j ,

where errorj is simply the difference of the desired and actual output and C is
the set of output neurons. The function is sometimes referred as energy function
in the context of back-propagation algorithms, but the nuance between cost and
energy functions is irrelevant for the purpose of this thesis. The full derivation
can be found in the book by Haykin [2009, Chapter 4].

For a neuron on the output layer, the local gradient is

δi = errorjϕ
′(vj),

where vj is the induced local field of the neuron j (explained in Section 2.1). For
a hidden neuron we obtain

δj =
∑
k

δkwj,kϕ
′(vj)

where the index k represents the neurons of layer following the layer with neuron
j.

Supposing we are using a sigmoidal function

ϕ(x) =
1

1 + e−λx
,

where λ is an adjustable parameter (sometimes referred to as “slope”), we obtain

ϕ′(x) = λyi(a− yi).

Large learning parameter η will result in an unstable network. The smaller we
make the learning parameter, the smaller are the corrections made to the weights,
which means that the training will be “smoother” but much slower. A simple
method used to increase the learning weight and avoiding the instability is to use

∆′wi,j = ηδjyi + α (wi,j(t)− wi,j(t− 1))

instead of ∆wi,j described above.
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2.3.2 Back-Propagation Through Time

An extension of the back-propagation algorithm described in Subsection 2.3.1 for
training recurrent neural networks is called back-propagation-through-time algo-
rithm, commonly abbreviated as BPTT. A detailed description of the algorithm
is available in the book by Haykin [2009, Chapter 15.7].

The algorithm may be derived from the basic one by unfolding the operation
of the network into a layered feed-forward network. That means, as we previously
described in Subsection 2.2.1, representing the computation as a chain of identical
networks, rather than a single network. A computation of a recurrent network
(with a single layer) of n steps can be as well represented as a network with n+ 1
layers.

If the whole computations took n epochs (time steps) we can compute the
total cost

Etotal =
1

2

n∑
t=1

∑
j∈Ct

error2
j,n,

where Ct is a set of output neurons in each epoch. Now we can perform the
algorithm as proposed by Williams and Peng [1990]. At first a single forward pass
through the whole network through all time steps is performed. The complete
record of the state of the network is saved.

Then, similarly to the basic algorithm, weights are updated. A slightly differ-
ent corrections

∆wi,j = η
n∑
t=0

δj,nxi,t−1

are applied. The local gradient obtained from the cost function is also similar to
the basic version

δj,n =


ϕ′(vj,t) errorj,t for t = n

ϕ′(vj,n)′
(
errorj,n +

∑
k∈Ct δk,t+1wj,k

)
for 1 ≥ t < n

Variation of this algorithm is used to train LSTM.

17



3. Word Embeddings and
Continuous Bag-of-Words Model

3.1 Word Embedding

We may ask ourselves, what precisely is a word. This question may seem trivial,
but in fact, it has been a topic of profound discussions. Yet, we can agree that
the number of words in any language vocabulary is vast.

As the size of vocabulary is immense, it would be difficult to use the whole
dictionary, or rather the number of words in dictionary, for computations. To
simplify the computations, the dictionary is mapped to Rn, where n is much
smaller than the size of the dictionary. Put simply, every word is represented as
a real vector.

It was recently shown by [Tomas Mikolov, 2013c] and [Levy and Goldberg,
2014] that the word vectors capture many linguistic regularities. Performing
vector operations on the vectors is quite close to what we would expect.

For example, the vectors can capture morphological dependencies. It was
demonstrated that the vector between a singular and a plural form of words are
quite similar for all nouns, which means that

vapple − vapples ≈ vfamily − vfamilies,

where vapple is a vector representation of the word apple along with others.
Nevertheless, word embeddings are able to capture deeper dependencies, such

as the similarity of the meaning between king and queen. More precisely, we can
approximate the vector representation of the word “queen” just by using vector
representations of the words “king”, “man” and “woman” as

vking − vman + vwoman ≈ vqueen.

The motivation for identifying opinion target is that words used to describe some
entity should be somehow similar.

Word2vec is a group of models that are used to generate the word embeddings.
Various methods for generating the embeddings exist, such as dimensionality
reduction on the word co-occurrence matrix. We will focus on the methods based
on neural networks. There are two main models used for generating the vectors.
Skip-gram model proposed by Mikolov et al. [2013b] and continuous bag-of-words
(CBOW) model proposed by Mikolov et al. [2013a]. The skip-gram model is more
suitable for infrequent words, on the other hand, it is much slower. Since we can
expect that customer reviews are not filled with precarious words, for the purpose
of the experiment we chose CBOW.

3.2 Continuous Bag-of-Words Model

Now we shall enlighten how the vector representations of word are constructed.
Several methods to achieve this goal exist. In this section, we will focus on how
it is obtained by the use of neural networks.
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Imagine we have a large dictionary of size n, where n is a large number, for
example The Dictionary of Contemporary Czech contains approximately 200000
words. For computations we would prefer to work with real vectors of dimension
m. How do we obtain those representations by the use of neural networks?

To capture the previously described dependencies, we have to somehow use
the context in which the words are used. A bigram is a sequence of two elements,
in our case two following words. A sequence of three words would be trigram,
generally a sequence of n words is called n-gram. Given the first word, we would
like to predict the following word. To accomplish the task we will use a simple
multi-layer neural network shown in Figure 3.1, a much larger version of the
network from Figure 2.3.
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h2
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Win Wout

Figure 3.1: A basic example of the CBOW model for the context of one word

The input and the output layer will be of size n. The hidden layer will be of
size m. Each neuron would represent one word, so the input would be a vector
of dimension n consisting of zeros and a single 1, which would represent the first
word. We would like to obtain a similar output, a vector containing only zeros
and a single 1, which would represent a prediction of the word. In that case, we
would predict a single word. In authentic examples, there are usually more than
one possibilities. Rather than a single one, we would prefer a vector that would
contain real numbers between and 0 and 1, representing the probability of the
occurrence of the word.

By training a network of that type we would obtain some weights between
neurons of the input layer and the output layer. If we denote the weight of
synapse between i-th neuron of the input layer and the j-th neuron of the hidden
layer by wi,j, we obtain a matrix W ∈ Rm×n. If the input is k-th word, the signal
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that arrives to the hidden layer can be expressed as

uTk =
(
0 0 · · · 1 · · · 0

)


w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n
...

...
. . .

...
wk,1 wk,2 · · · wk,n

...
...

. . .
...

wm,1 wm,2 · · · wm,n


=
(
wk,1 wk,2 · · · wk,n

)
,

which means, that the vector uk is a representation of the k-th word.
Unfortunately, we have attained two matrices, one is the matrix Win repre-

senting the weights between the input and hidden layer, the other matrix Wout

representing the weights between hidden and output layer. Now we have two sets
of vector representations, input vectors and output vectors. The two sets of vector
representations are usually combined by summation; nonetheless, concatenation
is also used.

. . .

y1 y2 y3 y4 y5 yn

. . .h1 h2 h3 hm

. . .

x1 x2 x3 x4 x5 xn

. . .

x1 x2 x3 x4 x5 xn

. . .

x1 x2 x3 x4 x5 xn

Figure 3.2: CBOW model using context of size 3

Besides, for real sentences, a considerably broader context is required. We
used only one word to predict the other, in other words we have used context
of one word. Usually we will need a broader context. Mikolov et al. [2013a]
achieved the best results for using a context of 8 words, 4 word preceding and 4
words following the predicted word. In the CBOW model, this is accomplished by
using more copies of the input layer, where each copy represents one given word.
An example of CBOW model with a context of 3 words is shown in Figure 3.2.

When computing the output of the hidden layer, an average of the all inputs
is used. The reason, why it is called “bag-of-words” model, is that the result are
independent of the word order, since simple average of the inputs is used.
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3.2.1 Training

As we mentioned earlier, the goal of the CBOW model is to output the probabil-
ities for each word, formally, the probability P (word | context). Mikolov et al.
[2013a] achieved this by using softmax function. That is

P (wordk | context) ≈
eoutputk∑n
i=1 e

outputi
,

where outputk is the output of the k-th neuron, which is the prediction of the
probability of k-th word being suitable for the context.

During the training, for a given bigram, trigram or generally c-gram, where c
is the number of words in the context, we can obtain the desired output - a vector
with all zeros and a single 1 on the position k, indicating that k-th word of the
dictionary should have been predicted. Then we can simply train the network by
using back-propagation algorithm, described in Subsection 2.3.1.
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4. Dataset

In the experiment we used data obtained from Wikipedia and the dataset Aspect-
Term Annotated Customer Reviews in Czech1, that contains reviews of electronic
devices obtained from an established Czech online shop.

4.1 Wikipedia Dump

As the training data for word2vec2 we used the current dump of Wikipedia. Wiki-
media Foundation publishes data dumps from Wikipedia (and other Wikimedia
projects) on a regular basis, for English and Czech Wikipedia, once a month.

The dump is a single large .xml file containing text and metadata of all
current Wikipedia pages. An article from Czech Wikipedia is contained in a
page element.

<page>

<title>Strojové učenı́</title>

<ns>0</ns>

<id>94861</id>

<revision>

<id>13754175</id>

<parentid>13754173</parentid>

<timestamp>2016-05-29T19:40:13Z</timestamp>

<contributor>

<username>Ch!p</username>

<id>8025</id>

</contributor>

<minor />

<model>wikitext</model>

<format>text/x-wiki</format>

<text xml:space="preserve">’’’Strojové učenı́’’’ je podoblastı́

[[umělá inteligence|umělé inteligence]], zabývajı́cı́ se...

We use WikiExtractor3 to obtain only the text from the dump, with no addi-
tional metadata.

Strojové učenı́ je podoblastı́ umělé inteligence, zabývajı́cı́ se...

The recommendation is to have one sentence per line, unrelated data separated
with an empty line and also discarding the punctuation. Replacing all numbers
with special NUM token may also improve the embeddings. We will compare
the results of embeddings obtained from a text with numbers and text with
NUM tokens. We preprocess the data by using our script preprocessing.py (see
Appendix A).

Converting all letters to lower case is not necessary and depends on the ap-
plication. It may be useful to distinguish Apple from apple. A model trained on

1The dataset is available at
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1507

2Availible at https://pypi.python.org/pypi/gensim/0.13.1
3WikiExtractor is available at https://github.com/attardi/wikiextractor
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data without converting to lower case characters recognize words “procesor” and
“Procesor” as two different words.

>>> m.most_similar(’procesor’, topn=5)

[(’mikroprocesor’, 0.8615756034851074),

(’čip’, 0.8593242168426514),

(’počı́tač’, 0.8330967426300049),

(’CPU’, 0.8149457573890686),

(’Procesor’, 0.8145838975906372)]

Above we can see the closest words to the word “procesor”. The distance is
measured simply as the cosine of the angle between the two vectors. There is no
difference in meaning of “procesor” and “Procesor” but they are not the closest
ones.

Therefore, for the purpose of the experiment it would be more useful to use
only lower cased data. The conversion to lower case is included in our script.

4.2 Czech Dataset

The original dataset contains 1000 positive and 1000 negative short segments
from reviews with manually tagged targets. It also contains a hundred of positive
and a hundred of negative reviews.

Bellow is an example of the segment from the dataset where the opinion target
is the product itself, represented by the word “Kabel” (cable).

<positive_summary id="1000000358">

<target>Kabel </target>, který funguje - vı́c netřeba

</positive_summary>

4.2.1 Dataset Preprocessing

The original dataset contained examples not only in Czech language, but also
in Slovak and a few in English. Czech and Slovak languages are closely related.
Even for foreigners who learned Czech, Slovak language is intelligible to some
extent. Despite that, using a mixed data set for the analysis may confound the
model.

How do we combine the two sets of word embeddings for the two languages in
order to achieve the best results? Despite being an interesting question, it shall
remain unanswered by this thesis. In our experiment we will focus exclusively on
the Czech data examples.

By removing the reviews in Slovak, we obtain a dataset of

• 852 short negative examples,

• 85 long negative examples,

• 924 short positive examples and

• 74 long positive examples,
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which means we have lost about 12.05% of data examples.
“The data come from the ‘wild’ , they are quite noisy,” suggest Tamchyna,

Fiala, and Veselovská [2008], “many segments are written without accents, reduc-
ing the benefits of morphological analysis...” This would have fatal consequences
for our model, therefore, as Tamchyna, Fiala, and Veselovská [2008] proposed,
we use spell-checker to fill in the accents.

The point is only to complete the diacritical signs, not to change the data.
The examples contain many slang words, alternative spellings, which are not
considered correct but are common, e.g. “potřebuju” instead of “potřebuji” or
“dizajn” instead of “design”. We preserve those vernacular aspects of the seg-
ments. However, because of the correction being done by a single person, the
author of this thesis, it may happen, that some words have not been given their
accents or have been corrected “too much”.

Since the Czech and Slovak languages are intertwined, sometimes, especially
for short samples, it is not possible to decide whether user typed without punc-
tuation, made a typo or actually wrote in Slovak. Therefore, some segments may
have been accidentally translated by the use of the spell-checker.

The long reviews are not suitable for training our model. Only a scarce number
of long examples have been provided, which would require many iterations over
the data. Furthermore, long reviews are usually detailed, mentioning almost all
aspects, therefore the model would probably learn a simple rule such as: “if it is
long, then it is in all categories”. The experiment with recurrent neural networks
by Tamchyna and Veselovská [2016] was also performed on short samples. For
the reasons described above, we will focus on the short samples.

Since only a limited amount of short samples was provided, we replenish the
short samples, thus obtaining a new version of the dataset (see Appendix B).
We download .html pages with reviews of randomly selected products from a
Czech e-shop4. Using our bash script preprocess reviews.sh (see Appendix A)
we extract the reviews consisting of at least six consequential non-whitespace
characters, since many of the reviews are just simple “nic” (nothing) or “žádné”
(none) already sufficiently contained in the original data.

The purpose of the experiment in this thesis is to identify categories of the
opinion target. Therefore, it was necessary to choose the right categories and
assign the desired categories to the examples. We decided to use categories:

service (S) provided by the e-shop

general (G) properties of the device

functionality (F) and performance of the device

build quality (B) and build properties of the device

price (P)

design (D) or the aesthetic aspect of the device

4www.alza.cz
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5. Experiment

5.1 Previous Work

This thesis stands on previous experiments, namely the experiment with the same
dataset conducted by Tamchyna, Fiala, and Veselovská [2008] and the experiment
with RNN learning model performed by Tamchyna and Veselovská [2016].

Our goal is to compare the results of those two experiments. The comparison
is only indicative, since the dataset and the approach have been slightly modified.

5.1.1 Experiment with the Czech Dataset

Tamchyna and Veselovská [2016] used a probabilistic model, described previously
in Subsection 1.4.2. They also obtained better results by employing features based
on morphological analysis, subjectivity lexicon and syntactic rules.

At first, surface features were used, that is the words as they are written —
a sequence of characters. They extracted all bigrams and trigrams from a window
consisting of the current word, two preceding and two following words.

Morpho-syntactic features were derived from lemma, morphological tag and
analytic function, which decides whether the word is a subject, predicate, etc.

Subjectivity lexicon is a list of subjectivity clues for sentiment analysis. Czech
SubLex 1.01 was used to obtain a feature indicating whether a word was marked as
subjective. Finally, rule features were extracted for each rule, indicating whether
the rule was applicable to the word.

Unlike the latter experiment, the task was a labeling task. The task was to
identify the opinion target in the example text itself. The results of the experi-
ment are shown in Table 5.1

Features Precision Recall F-measure

Surface 85.22 36.85 51.45
+ Morpho-syntactic 75.88 54.17 63.21
+ Subjectivity lexicon 78.19 55.09 64.64
+ Rule 76.54 57.69 65.79

Table 5.1: Precision, recall and F-measure obtained in the experiment with Czech
dataset with short reviews.

Several performance measures of the system were used in the experiment. Let
us briefly explain the used methods of performance measure.

Precision describes how many of the selected elements (in this case words, or
rather tokens) have been selected correctly. These are “true positives”.

The elements selected incorrectly are called “false positives”. Likewise, the
elements that have not been selected are called “true negatives” if they

1Available at https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1507
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should not have be selected. “False negatives” are the elements that should
have been selected but were not.

This is a useful performance measure. However, if the classifier selected
only one item and it was selected correctly, it would be 100% but it would
be useless, because it selected only a small number of elements that should
have been selected. That is why recall (also known as sensitivity) is used
too.

Recall expresses how many elements have been selected out of all that should
have been selected. Again, a model that selects all elements would have
100% recall. Therefore, we need a performance measure that would depict
the trade-of between precision and recall.

F-measure (or F1 score) is the harmonic mean of precision and recall given by
the formula:

F1 = 2
precision× recall

precision + recall
.

5.1.2 Recurrent Neural Network for Sentence Classifica-
tion

In this experiment, Tamchyna and Veselovská [2016] used the model of a neural
network shown on Figure 5.1

input
layer

64 LSTM
units

32 LSTM
units

32 LSTM
units

Logistic regression

partial
output

Figure 5.1: The model used in the previous experiment

A single model is fed with the whole sample. More precisely, it gets embed-
dings obtained from pretrained Word2Vec, one by one. If a word does not have
an embedding, it is simply ignored. The dimension of the embeddings is 200.
A separate network is used for each category. During reading the sample, the
partial output is ignored. This may seem as a huge drawback, but all LSTM
units are RNNs, which means that they are trained by BPTT described in Sub-
section 2.3.2. Therefore, the last output is dependent on the previous outputs
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and it is taken into account during the training. After reading the whole sample,
logistic regression layer outputs its decision, based on the last partial output.

The task of the experiment was multi-label classification, which means that
multiple classes (or “labels”) could be assigned to the same data sample.

There are different approaches to measurement of precision and recall, listed
by Sorower [2010]. The model could be “partially correct”. Of course, we could
ignore those partially correct predictions and compute so-called “exact-match
ratio”.

However, the measurement used in the experiment is to compute precision as

precision =
1

n

n∑
i=1

|true ∩ prediction|
|prediction|

and recall as

recall =
1

n

n∑
i=1

|true ∩ prediction|
|true|

,

where true is the set of correct labels and prediction is the set of predicted labels
for each on n data examples.

The same task was performed for 8 separate datasets. Six of them were
restaurant reviews in six different languages — Dutch, English, French, Russian,
Russian, Spanish and Turkish. In addition, hotel reviews in Arabic, and consumer
electronics (laptops) reviews in English were used.

The acquired results vary greatly, for some datasets the model did not even
outperform the baseline, for others the model performed remarkably good (see
Table 5.2).

Language F-measure Language F-measure

English (restaurants) 59.30 Dutch 55.03
English (laptops) 38.26 Russian 64.83
Spanish 58.81 Turkish 61.03
French 50.84 Arabic (hotels) 52.59

Table 5.2: Best F-measure obtained for all datasets

5.2 Experiment with the Original Model

The model was evaluated for various languages, but Czech was not one of them.
Our ambition is to examine the model’s behavior for Czech data — more specific-
ally consumer electronics review in Czech.

5.2.1 Word Embeddings

We use our script train embeddings.py (see Appendix A) to train the word
embeddings using the preprocessed dump of Wikipedia as the training data (see
Section 4.1). The obtained vocabulary is approximately half a million words.
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The dimension of the embeddings is 200, the same as in the original experi-
ment. We used word frequency threshold of 5, which means ignoring the words
that occurred less than 5 times in the text. The size of context window we used
is also 5, as the authors recommend for CBOW.2

When the model is trained, we can experiment with the embeddings. Let us
try the example from Chapter 3,

vking − vman + vwoman ≈ vqueen,

using Czech equivalents.

>>> w2v.most_similar(positive=[’král’, ’žena’], negative=[’muž’],

topn=1)

[(’královna’, 0.6936340928077698)]

That was a success. We can witness that the model also learned some common
geographical knowledge, such as associate the capital with the country

>>> w2v.most_similar(positive=[’pařı́ž’, ’německo’],

negative=[’francie’], topn=1)

[(’berlı́n’, 0.6698291301727295)]

>>> w2v.most_similar(positive=[’pařı́ž’, ’slovinsko’],

negative=[’francie’], topn=1)

[(’lublaň’, 0.5795571208000183)]

However, it is not perfect. The correct answer is not always the closest one.

>>> w2v.most_similar(positive=[’pařı́ž’, ’itálie’],

negative=[’francie’], topn=3)

[(’vı́deň’, 0.6771950721740723),

(’neapol’, 0.6644973158836365),

(’řı́m’, 0.6556979417800903),]

In this specific case it could have been caused by common usage of “Ř́ım” as
Roman Empire.

We can also use the model to obtain some political knowledge. For example,
knowing the president of the Unites States, we can ask for the president of Russia

>>> w2v.most_similar(positive=[’obama’, ’rusko’],

negative=[’usa’], topn=1)

[(’putin’, 0.5721254348754883)]

Or knowing the first name of the contemporary president, we can acquire the
first name of a past president

>>> w2v.most_similar(positive=[’ronald’, ’obama’],

negative=[’reagan’], topn=1)

[(’barack’, 0.766093909740448)]

All the examples above work with both embeddings, the embeddings with
numbers and embeddings with NUM token. The distances vary a little, the above-
listed distances were obtained by the use of embeddings with NUM token.

2Google Code Archive; [accessed 2016 July 13], https://code.google.com/archive/p/
word2vec/
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5.2.2 Baseline

For comparison, we can use the previous results (see Table 5.1 and Table 5.2)
and a simple baseline models.

The most common combination of labels is the category “G” alone. Overall,
the most frequent labels are “G”, “B” and “F”.

“Predicted” labels F-measure

GF 45.65
BFG 45.58
BG 43.99
G 43.74

BDFGPS 31.21

Table 5.3: F-measures obtained for a trivial model with a fixed set of “predicted”
labels

We tried the trivial models that simply chose the same labels for all data
instances and measured their F-measure over the whole dataset (see Table 5.3).
We chose the best F-measure obtained by a trivial classifier, 45.65%.

5.2.3 Results of the Original Model

We perform the evaluation of the model described by Tamchyna and Veselovská
[2016] with no modification (Figure 5.1) by a 5-fold cross-validation (see Subsec-
tion 1.4.1).

The whole computation is performed by our implementation of the model (see
model.py in Appendix A).

We compare two types of embeddings - word embeddings recognizing numbers
and embeddings only recognizing a numeric token. The evaluation is performed
on only 2000 considerably complex examples. Therefore, trying more iterations
through the whole dataset is reasonable.

The word embeddings including numbers are more up-and-coming, so we will
focus on those in all later experiments. This is understandable as the dataset
consists of reviews of electronic devices, which inevitably contains numbers. The
highest achieved F-measure was 47.27% for 100 iterations (see Figure 5.2. The
model performed better than the trivial model and the performance is comparable
to the models in the original experiment.

5.3 Modified Model

As we mentioned previously in Subsection 5.1.2, there are some weak points of
the model, some of them pointed out by Tamchyna and Veselovská [2016]. In the
following sections we will try to address those issues.

29



0 50 100 150 200

0.
35

0.
40

0.
45

0.
50

Number of iterations over data

F
−

m
ea

su
re

baseline

Embeddings with numbers
Embeddings with NUM token

Figure 5.2: F-measures obtained for different number of iterations

5.3.1 Decision Threshold

At first, let us have a look on the performance measures of model trained with
around 100 iterations (see Figure 5.3).

We can observe that the precision is generally higher that the recall. The
model is having more difficulties with picking a label than picking the correct
one.

Desired output : F

Probability of B: 0.00269699

Probability of D: 0.00201485

Probability of F: 0.472179

Probability of G: 0.0234346

Probability of P: 0.00218663

Probability of S: 0.00198522

Desired output : G

Probability of B: 0.000408143

Probability of D: 0.000288665

Probability of F: 0.000708789

Probability of G: 0.00566146

Probability of P: 0.00130722

Probability of S: 0.000280321

The above examples show that even though some examples are confounding
to the model, it often chooses the correct one as the most probable.

While the first example may tempt us to just shift the decision threshold a
bit, the second suggests that it may not be enough. Tuning the threshold is
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Figure 5.3: Precision and recall for different numbers of iterations

always possible. However, it is time demanding. In our experiment, 1768 out of
2000 examples (or 88.4%) has only a single desired label. Considering that, we
propose a simpler solution that will work in both above cases.

Picking no label is doing no good to the model’s performance. The way how
the performance measures are computed (see Subsection 5.1.2) leaves the model
with zero award for not choosing anything as well as choosing the wrong label.
This leads us to a simple solution. If no labels have been chosen, choose the most
probable one.

By this simple patch, we obtained the best F-measure of 64.78% for 150
iterations, which is approximately the same as the best performance in the
experiment - performance on Russian data (see Table 5.2).

5.3.2 Reducing the Number of Models

As we mentioned previously in Subsection 5.1.2, we train a separate model for
each category. Tamchyna and Veselovská [2016] suggested a hypothesis that by
using a single model with only a separate logistic regression unit for each category
we reduce the time required for the training. It may also improve the performance
as that architecture allows the parameters to be somewhat shared.

We implement and test their hypothesis. It turned out that the training
indeed took less time. The G category is prevalent in our dataset. It is present
in almost half of the samples (45.15%). We found out that the classifiers were
rather “fighting” than cooperating and for all number of iterations we tried, (1, 5,
10, 20, 50, 75, 100, 600, 2400) the classifier was able to predict only the prevalent
class.
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It may work for an evenly proportioned dataset. The definition of this model
is contained in our implementation of the model in the script experiment.py;
however, model.py must be slightly modified in order to use it (see Appendix A).

5.3.3 Max-Pooling

In Subsection 5.1.2 we mentioned that the partial output is ignored while the
sentence is being read. Using also the partial output could improve the perfor-
mance. On the other hand, it may also not, as the partial output is already taken
in consideration by using BPTT.

For this purpose pooling methods are used. Average pooling was largely used
in the past. Recently, max-pooling became popular due to achieved results. More
precisely, we propose to use max-pooling over time. That is simply element-wise
maximum of all partial outputs.

Our motivation for using max-pooling is that higher activation means higher
importance. By using max-pooling over time, the highest activation is used more
during the training. The obtained results, shown in Figure 5.5 show that the
max-pooling have produced slightly better performance. The highest achieved
F-measure was 66.93% for only 20 iterations. The evaluation was performed by
the scrip model.py using -m option (see Appendix A)

5.3.4 Tuning the Number of Long Short-Term Memories

By using max-pooling we obtained slightly better results for only 20 iterations
over the dataset. Smaller number of iterations allows us to test what number of
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Figure 5.5: The model used in the previous experiment

LSTM cells in each layer results in the best performance.
We tried different number of LSTMs in each layer and discovered that the

relation between the number of units and performance is quite unpredictable (see
Table 5.4).

1st layer 2nd layer 3rd layer F-measure

64 32 16 63.82
64 64 32 64.59
128 64 32 64.11
100 50 25 65.5
90 50 25 65.49
80 40 25 66.81
78 41 26 63.81
66 33 27 63.83

Table 5.4: Several examples of F-measures obtained for models with different
number of LSTMs in hidden layers.

We have achieved some results close to our best result (66.93%), but we have
not outperformed it.
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Conclusion

The objective of the thesis is to identify the opinion target in short reviews of
electronic devices. We used six labels to describe different opinion targets. Each
review has one or more labels.

We prepared the dataset and evaluated the model’s performance with 5-fold
cross validation. Firstly, we removed reviews in Slovak and replenished the
dataset with new Czech examples. Secondly, we filled in diacritical signs and
assigned a category to each data instance.

We preprocessed the current dump of Czech Wikipedia and trained embed-
dings. We tested two sets of word embeddings — one trained with using numbers
as context information and one with the numbers replaced with a NUM token.
The results have shown that embeddings with numbers are better for our specific
experiment.

We implemented a model of neural network described by Tamchyna and
Veselovská [2016] and measured its performance for various number of iterations.
The highest achieved F-measure was 47.27%, which is not very high, since our
best trivial classifier scored 45.65%.

Therefore, we tried to achieve better results by modifying the way how the
final decision is made. This was a successful attempt and we obtained F-measure
of 64.78%, very close to the best results in the original experiment (64.83%).

We also tried to use a single modified classifier as Tamchyna and Veselovská
[2016] suggested for future work. We observed significantly shorter training time
but very poor performance. In fact, the model behaved like the trivial baseline
classifier — only predicting the most frequent label.

We also introduced max-pooling into the model in order to emphasize higher
activation while the model “reads” the example. In resulted in a minor improve-
ment of the performance. More importantly, we obtained the highest F-measure
of 66.93% for only 20 iterations. That is slightly higher than the F-measure of
the previously used probabilistic models (65.79%) on the same dataset before we
modified it.

We tried to change the numbers of LSTM units in different layers and ob-
served that the relation between the number of units and F-measure is quite
unpredictable. We have not managed to achieve better results.

Future Work

We used the same structure for all classifiers. Trying different numbers of units for
different classifiers may result in higher overall performance. Testing the models
with a modified number of LSTM units for different numbers of iterations may
also increase the performance.

We did not experiment with the embedding dimension and context window
size, since the training of the CBOW model is time consuming. In addition, the
time increases with the increasing embedding and window size.

Similarly to the problems of overfitting and underfitting, there is some ratio of
window and embedding size that yields the best results. It would be interesting
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to use higher computational capacities to measure the performance for various
size of the embeddings and the context window in order to find the ideal ratio.

As we have shown in Section 5.3.1, the corpora used for training the embed-
dings does influence the performance of the model. We used the current dump of
Wikipedia as the training data for the embeddings. However, since the reviews
often mention technical specifications of the devices, adding some technical text
to the corpora may boost the performance.

The dataset is a crucial ingredient of any machine learning experiment. We
suggest that more data instances of non-trivial length are collected and the cate-
gories are verified by more people. Also during our experiment, the model often
lost vital information because a colloquial expression was used. This issue could
be addressed by lemmatization or using some slang dictionary.

Despite many possible improvements, the usage of neural networks for ABSA
seems promising. Although the model performed differently for individual lan-
guages, the experiment does not require any knowledge of the language. This
principle is vital, especially in the contemporary era where languages evolve faster
than ever before.
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2015), pages 95–99. Association for Computational Linguistics, 2008. ISBN
978-1515120650.
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Attachments

Appendix A

The attached DVD contains in the scripts directory the following scripts:

experiment.py contains class and function definitions

preprocess.py is the script used for preprocessing the dump of Wikipedia,

train emeddings.py is a Python script used to train the CBOW model in order
to obtain the word embeddings,

model.py is a Python script performing the training and evaluation of the mod-
els performance

preprocess reviews.sh is a bash script used to extract the user reviews.

The scripts are well-commented and all (expect experiment.py) support -h
option to provide information on their usage.

Appendix B

The attached DVD contains the modified dataset in the data directory.
For the purpose of our experiment we used only suffled anot first.xml, but the
dataset contains the following files:

positive summary anot first.xml containing 1000 short samples of positive
user reviews,

negative summary anot first.xml containing 1000 short negative examples
of user reviews,

shuffled anot first.xml contains the lines of the two files above, randomly or-
dered,

positive summary anot lenght.xml containing 74 long samples of positive
user reviews and

negative summary anot length.xml containing 85 long negative examples of
user reviews.
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