
UIMA: Unstructured Information Management Architecture for Data Mining
Applications and developing an Annotator Component for Sentiment Analysis

Jan Hajič, jr.
 Charles University in Prague

 Faculty of Mathematics and Physics
 Institute of Formal and Applied Linguistics

Malostranské nám. 25, 118 00 Prague
Czech Republic

Kateřina Veselovská
 Charles University in Prague

 Faculty of Mathematics and Physics
 Institute of Formal and Applied Linguistics

Malostranské nám. 25, 118 00 Prague
Czech Republic

Abstract. In this paper we present UIMA – the Unstructured
Information Management Architecture, an architecture and
software framework for creating, discovering, composing and
deploying a broad range of multi-modal analysis capabilities
and integrating them with search technologies. We describe
the elementary components of the framework and how they
are deployed into more complex data mining applications. The
contribution is based on our experience in work on the
sentiment analysis task for IBM Content Analytics project.
Note that most of the information on UIMA in this paper can
be obtained from UIMA documentation; our main goal is to
give the reader an idea whether UIMA would be helpful for
her or his task, and to do this in less time than reading the
documentation would take.

1 Introduction

UIMA is an acronym standing for Unstructured
Information Management Architecture. “Unstructured
information” means essentially any raw document: text,
picture, video, etc. or a combination thereof. Unstructured
information is mostly useless – a string of five digits will
not tell us much unless we know it's a ZIP code and not a
price tag. In order to make an unstructured document
useful, we must first discover this type of meaning in the
unstructured document and make this additional
information available for further processing.

The process of making sense of unstructured information
is in UIMA called annotating. Components that discover
the hidden meanings and store them as annotations are,
predictably enough, called annotators. The point of UIMA
is to provide a common framework so that multiple
components can be linked to create arbitrarily rich
annotations of the unstructured (semantically “flat”) input.
This is the most important contribution of UIMA: a very
flexible way of passing analysis results from one
component to another, and so gradually discovering and
making use of more and more information contained within
the unstructured document.

The interoperability of various components is achieved
by defining the Common Analysis Structure, CAS, and its
interfaces to various programming languages (most notably
JCAS for Java). The CAS is the tumbleweed that cascades
through the various annotators, each of which adds its
annotation results to the CAS. The CAS can also pass more

information than annotations of document regions: the
representation scheme for analysis results is very general
and supports such information as “the annotation span 43-
47 and 55-59 are references to the same company”.

The component that houses an annotating pipeline is
called an Analysis Engine. An Analysis Engine at its
simplest contains just one annotator and is called a
primitive AE. AEs that house more annotators are called
aggregate engines. Also, an Analysis Engine can be
composed of multiple other AEs. The Analysis Engine is
the component that is actually run by the framework. The
simplest AE is just this runnable wrapper of an annotator.

Individual annotators are usually used for small-scale,
granular tasks: language identification, tokenization,
sentence splitting, syntactical parsing, named entity
recognition, etc. Analysis Engines are typically used to
encapsulate “semantic” tasks on raw documents (or on
somehow meaningful levels of document annotation, such
as a document after linguistic analysis or a picture after
segmentation), such as document-level sentiment analysis.
Both annotators and Analysis Engines are easily re-usable
in various UIMA pipelines.

UIMA is currently an Apache project, meaning it can be
freely downloaded at http://uima.apache.org. (Previously,
the architecture was proprietary to IBM. IBM still uses
UIMA extensively in its applications like Content
Analytics and Enterprise Search.)

The architecture also provides facilities to wrap
components as network services and scale up to very large
volumes by running annotation pipelines in parallel over a
networked cluster. This is done through a server that
provides analysis results as a REST service.

A number of annotators and other components is
available as a part of the UIMA Sandbox from the Apache
project. Others are lying around the internet.

UIMA is not oriented towards data mining research,
although it is universal enough to be used as such. There
are no built-in facilities for evaluating data mining
performance.

For our sentiment analysis project, we have not worked
with other media in UIMA than text, so we will limit
ourselves to text analysis in this paper. However, UIMA is
capable of multi-modal analysis as well.

http://uima.apache.org/

Apache UIMA is very well-documented, from our
experience significantly better than the IBM applications
using it.

1.1 UIMA and GATE

The GATE (General Architecture for Text Engineering)
is a project that has significant overlaps with UIMA and
can embed UIMA Analysis Engines. However, as opposed
to UIMA, its primary audience are not software developers,
but researchers and businesses. As opposed to UIMA,
GATE offers a front-end for „pointing and clicking“ in the
GATE developer, a cloud and an information extraction
component, ANNIE. However, GATE doesn't have
multimodal capabilities.

We have no experience with GATE, but it seems the
system is intended for a different audience: while UIMA
focuses on the annotating pipeline and making the software
developer's and natural language engineer's job easier,
GATE is much more comprehensive and covers a complete
application.

GATE provides an interface to incorporate UIMA
Analysis Engines.

2 UIMA Components Overview

UIMA is a software architecture which specifies
component interfaces, data representations, design patterns
and development roles for creating multi-modal analysis
capabilities.

The UIMA framework provides a run-time environment
in which developers can plug in their component
implementations and with which they can build and deploy
unstructured information management applications. The
framework is not specific to any IDE or platform; Apache
hosts a Java and a C++ implementation of the UIMA
Framework.

The UIMA Software Development Kit (SDK) includes the
UIMA framework, plus tools and utilities for using UIMA.
Some of the tooling supports an Eclipse-based
(http://www.eclipse.org/) development environment. These
tools (specifically the Component Descriptor Editor and
JcasGen, see below) proved to be extremely useful for
orienting ourselves in the complex interfaces of annotation
components.

There are two parts to a component: the code and the
component descriptor, which is an XML document
describing the capabilities and requirements of the
component. The descriptor holds information such as the
input and output types, required parameters and their
default values, reference to the class which implements the
component, author name, etc. The Component Descriptor
Editor for Eclipse IDE is a tool for creating component
descriptors without having to know the XML. The
descriptor of a component serves as its declared interface to
the rest of UIMA.

2.1 Types, CAS and SOFAs

A subject of annotation is called a SOFA. SOFAs can be
texts, audio, video, etc. Annotations are anchored to the
SOFAs. An annotator may work with any number of

SOFAs it gets, even create new ones. Typically, SOFAs
going through the pipeline together will be of more
modalities, like a news story and an associated picture, or
any other group of unstructured documents that we wish to
process together to discover relevant information.

Discovered structured information about the SOFAs are
kept in types. A type is anything: Company, Name,
ParseNode, etc. Types are domain-, application- and
(unless some coordination/sharing is involved) developer-
specific. Each type has an associated feature structure. The
feature structure holds additional information about the
annotated span; for instance, the Company type may have a
feature structure that holds whether the company is publicly
traded, who its CEO is, where is it based, etc. The feature
structure also may be empty. A type can also be a subtype:
the type class can inherit from another (multiple inheritance
is not allowed).

Types that are associated with a specific region of the
SOFA are called annotation types. These types have a
span, a start and end feature which delimit the annotated
region.

A non-annotation type could be a Company, a type
describing all there is to know about a company mentioned
in the various SOFAs. Annotation types could be then
various CompanyNameAnnotation,
CompanyCEOAnnotation, etc. Our analysis goal could be
to recover whatever there is to know about companies
mentioned in a collection of SOFAs; we would gradually
annotate the SOFAs by the annotation types and finally put
all the pieces together into the Company type.

For working with type systems, the UIMA SDK provides
a Type System Descriptor Editor within the Component
Descriptor Editor tool. Defining types then becomes more
or less a point-and-click operation. Additionally, once the
type system descriptor is done, the JCasGen utility (also a
part of the UIMA SDK for Eclipse) automatically generates
the appropriate classes for the annotation types themselves,
so that the user never needs to do anything with the types
but define them in the Descriptor Editor.

The whole bundle of SOFAs, annotations and whatever
else goes through the pipeline is housed inside a Common
Analysis Structure (CAS). This class is passed from one
annotator to another, from one AE into another and is
available at the end for some consumer to use the
discovered information however it wishes. The CAS class
provides iterators to each annotation type and allows
annotators to do whatever they wish to them (an annotator
may even clear results of previous annotators, so as to keep
the CAS uncluttered with intermediate steps that never get
used later). An example of an UIMA multi-modal
processing pipeline is in Fig. 1:

 Fig. 1: multi-modal processing pipeline

2.2 Annotators

Annotators are the innermost components in an UIMA
processing pipeline. They are the components that actually
discover the information from the unstructured document:
all the “interesting” things happen in annotators.

UIMA provides the base class for an annotator. At its
simplest, all one needs to do to implement an UIMA
annotator is to override the process(...) method of the base
class.

Annotating in UIMA means attaching UIMA annotation
types to certain spans of text (more precisely, creating the
annotation type with attributes that denote which region in
the associated document is “responsible” for this particular
piece of information). The definition of input and output
types – the annotator type system – is the critical decision in
designing an annotator.

Annotators have two sources of information they can
work with: the CAS that runs through the pipeline, from
which an annotator gets the document and previously done
annotations, and the UIMA Context class, which contains
additional information about the environment the annotator
is run in: various external resources, configuration
parameters, etc. All the inputs an annotator needs to run are
described in its component descriptor.

An example annotator could be a tokenizer, an annotator
responsible for segmenting text into tokens. It may simply
delimit tokens, or it may also add features such as lemma,
part of speech, etc. The simpler annotator will require
nothing and output the type, let's say, TokenAnnotation
with only the span defined and no associated features. The
more complex tokenizer will require no input types and
maybe an outside resource with a trained statistical model
for lemmatization and POS tagging; it will output the type
ComplexTokenAnnotation with a feature structure
containing the lemma and part of speech features. Maybe
the annotators should require an input LanguageAnnotation
type that is associated with the whole document and its
feature structure has a language feature, containing some
pre-defined language code, so that the tokenizer knows
which statistical model to load. This LanguageAnnotation
might be the output of a language recognition algorithm
implemented by another annotator further up the pipeline.
There can instead be a LanguageSpanAnnotation type can
also be designed to allow for multi-lingual documents, by
actually giving it a span. The Tokenizer will then iterate
over those LanguageSpanAnnotations and will load a
different model for each of them, etc.

This example only illustrates the flexibility and ease of
use for UIMA: other than the type system, there is no
restriction on what the components actually do inside. The
input and output of annotators is standardized by the UIMA
framework, so that if you think you have a better language
identifier which uses a completely different algorithm, you
can plug it in and as long as it keeps outputting the
LanguageAnnotation type, nothing needs to be changed for
the tokenizer. This is no magic – any good programmer
knows how to keep things modular – but the point is,

UIMA already does this for free, and with a great amount
of generality.

2.3 Analysis Engines

The basic blocks in the UIMA architecture that “do
something” are the analysis engines. At their simplest, an
Analysis Engine simply wraps an annotator so that the
UIMA framework can run the annotator inside. Analysis
Engines with a single annotator are called primitive AEs.
An aggregate Analysis Engine links more annotators
together into a pipeline:

Fig.2: Aggregate Analysis Engine

Analysis Engines provide encapsulation: the only thing a
developer needs to know is its input and output types (and
some technical information), described in its component
descriptor. This enables the developer to aggregate AEs
into a more complex UIMA application, perhaps a
hierarchical one where top-level AEs consist of multiple
sub-engines. These sub-engines are called delegate AEs.
Generally, Analysis Engines can be thought about as CAS-
in, CAS-out processing components and any two where the
outputs and inputs in the CAS match can be linked
together.

Starting from UIMA 2.0, there is a flow control facility
of UIMA which can even make decisions, based on what
the processing pipeline has come up with so far, as to
which analysis engine to use next. (We have no experience
with this, though.) The UIMA framework, given an
aggregate analysis engine descriptor, will run all delegate
AEs, ensuring that each one gets access to the CAS in the
sequence produced by the flow controller.

The UIMA framework is also equipped to handle
different deployments: the delegate engines, for example,
can be tightly-coupled (running in the same process) or
loosely-coupled (running in separate processes or even on
different machines). The framework supports a number of
remote protocols for loose coupling deployments of
aggregate analysis engines, including SOAP (which stands
for Simple Object Access Protocol, a standard Web
Services communications protocol).

3 Scenarios of UIMA Applications

 How the components described in the previous section
can be fit together to actually do something and what is the
“division of labor” between the UIMA framework and the
developer is best described in images.

Fig. 3: An elementary UIMA application

This is the elementary deployment scenario. The
developer determines what she or he wants to annotate,
creates the appropriate Type System descriptor and
incorporates it into the Component Descriptor, implements
the annotator itself and passes this information to the
UIMA Analysis Engine factory. This factory is a part of the
UIMA framework. The factory then takes the information
from the Component Descriptor and the class and
instantiates the Analysis Engine.

The UIMA framework provides methods to support the
application developer in creating and managing CASes and
instantiating, running and managing AEs. However, since
our work is only to implement the annotator class and
provide the descriptor into an IBM application, we have no
experience with actually using an Analysis Engine.

3.1 Collection Processing

 Typically, the application will be processing multiple
documents, a collection. This presents additional challenges
in creating a collection reader and managing the iterative
workflow (distributed processing, error recovery, etc.)
Almost any UIMA application will have a source-to-sink
workflow like in Fig. 3:

Fig. 4: UIMA collection processing workflow

UIMA supports this larger operation through its
Collection Processing Engines. This support is through two
additional components: the Collection Reader and the CAS
Consumer, and a Collection Processing Manager. The
Collection Reader is responsible for feeding documents
into the Analysis Engine. The CAS consumers are,

predictably enough, responsible for processing the output
CASes – for instance, indexing them for a semantic search
application, or in a sentiment analysis setting, track opinion
trends. The CPEs, as any UIMA component, need an
associated Component Descriptor.

UIMA provides some CAS consumers for semantic
search and a simple consumer for storing the data into an
Apache Derby database.

Creating a CPE is a process analogous to creating an
Analysis Engine; of course, the sum of what needs to be
configured is different. The following figure illustrates the
analogy:

Fig. 5: An UIMA application with a Collection
Processing Engine

The descriptor for a CPE specifies things like where to
read from, how to do logging, what to do in case of error or
what the control flow among various Analysis Engines
inside the CPE should be.

Collection processing is the “final step”: this is UIMA at
its fullest.

4 Annotating Sentiment with UIMA

We are working on a Sentiment Analysis annotator for
Czech for IBM Content Analytics (ICA). The task of
Sentiment Analysis is currently two-fold. First, we
determine whether a segment of the input document
contains an evaluative statement: whether a sentence says
something nice or bad about about something. Second, we
determine the orientation of the segment – whether the
statement is positive, or negative.

We work with lexical features using statistical methods,
essentially estimating the precision of individual words in
predicting a sentiment class (negative/neutral/positive). The
precision of a word w for a sentiment class c is estimated as
P(c|w) = N(c,w)/N(w), where N(w) is the token count of w
in the data and N(c,w) is the count of w in data tagged as
class c. From this number, we subtract P(c) to obtain an
additive-precision aprec(w,c). Classification is done in two
stages: determining whether a segment is polar or non-
polar and if deemed polar, segment orientation is
determined. For a segment S = (w1, w2, … w|S|), in each
stage, we take the argmax of the sum of aprec(w,c) for all
w in S to be the output label (first either polar or nonpolar,
then, if classified as polar, positive or negative).

How to implement sentiment analysis in UIMA? We are
only creating an annotator, so we do not need to concern
ourselves with application deployment. All that needs to be

done is defining the inputs and outputs. We have
determined the input type system from an IBM Content
Analytics developer tool that was provided to us through
the IBM Academic Initiative. The output types are ours to
define. There is one external resource our annotator will
need to access: the statistical model of lexical units'
precision.

4.1 Creating the Component Descriptor

Since we used lemmatization to increase feature recall,
we need lemmatized input. Also, we need some sentence
segmentation, in order to determine which segments our
classifier should operate on. The ICA standard UIMA
pipeline has a lexical analysis component that outputs types
uima.tt.TokenAnnotation and uima.tt.SentenceAnnotation
(this component is available in the ContentMaker
component from the UIMA Sandbox). We will need the
lemma feature of TokenAnnotation.

On output, we will provide both the token sentiment
annotations and the sentence annotations. We named the
corresponding types UFALSentimentToken and
UFALSentimentSentence. The token's feature structure
consists of the Lemma, the lexicon tag for negation and
various precision statistics for the polarity classes. The
sentence annotation type contains cumulative statistics over
the tokens that span regions contained within the sentence
span and a final classification statement.

Our external resource is a CSV file that we pack in one
JAR together with the annotator. The default parameter
value for the UIMA Context, through which the annotator
can access this resource, is provided in the Component
Descriptor as well.

Creating the component descriptor using the Component
Descriptor Editor did not take more than several minutes.
Aside from the type system and the external parameter
specification, we only needed to provide the relative path to
the annotator class.

4.2 Code

Creating the annotator code then consisted of running the
JCasGen utility to generate from the type system the
classes that go into the CAS as annotations and writing the
algorithm itself. The only UIMA-specific code that had to
be written raw was reading from the CAS and adding
annotations to it (no more than some 10 lines of code). On
the UIMA side, development was easy; on the IBM side,
we are still encountering interoperability issues.

5 Conclusions

Our experience with UIMA is not very extensive:
currently, our task is simply to implement a sentiment
annotator for the IBM Content Analytics application.
However, according to our up-to-date knowledge of the
system, we are convinced that UIMA is a very thorough,
flexible and robust framework. Moreover, the
documentation of UIMA is extremely good.

The UIMA SDK does its utmost to relieve the developer
of tedious, repetitive tasks through utilities like the

JCasGen and the Component Descriptor Editor, as long as
the Eclipse IDE is used. These utilities make it easy to start
working with UIMA. The SDK does its best to help the
developer focus on the meaningful parts of the task at hand
only: on implementing the algorithms that discover
information inside the unstructured data.

This is, we feel, the greatest contribution of UIMA:
standardizing and automating the common parts of more or
less any data mining application and providing an easy
enough way of filling in the “interesting bits”, while at the
same time being flexible enough to meet most application
demands (multi-modality, complex control flow, etc.) At
the same time, it also provides robust runtime capabilities.

Also, UIMA aggregate AEs enable and encourage
granularity, so individual annotators can be designed so
that they do not require more than one person to implement
them reasonably fast. Therefore, once the component
descriptors are agreed upon, teamwork should be easy.

A weak point may be flexibility on the programmer side:
as soon as one strays from a development scenario where
the UIMA SDK tools are useful, the amount of work
necessary to get an UIMA application up and running
increases dramatically. We also do not know how
complicated it is to administer an UIMA application.

UIMA might not be the framework of choice in an
academic, experimental setting, since it provides no
facilities for evaluating the performance of the data mining
algorithms inside and is probably unnecessarily complex
for most experimental scenarios. Implementing such an
evaluator, however, might not be too difficult, either as an
external application operating on the database one of the
available CAS consumers generates, or as an UIMA
component, using some of the semantic search CAS
consumers. Furthermore, given UIMA flexibility,
modularity and re-usability, if such an evaluation
component was present, an UIMA CPE could be a great
way of testing data mining algorithms in various complex
settings.

We are convinced that UIMA is worth knowing about.

Acknowledgment

The work on this project has been supported by IBM
Academic Initiative program. Text and images from the
UIMA documentation
(http://uima.apache.org/documentation.html) have been
used. The sentiment analysis research is also supported by
the GAUK 3537/2011 grant and by SVV project number
267 314.

http://uima.apache.org/documentation.html

	1 Introduction
	2 UIMA Components Overview
	2.1 Types, CAS and SOFAs
	2.2 Annotators
	2.3 Analysis Engines

	3 Scenarios of UIMA Applications
	3.1 Collection Processing

	4 Annotating Sentiment with UIMA

