Utilizing Source Context in Statistical Machine Translation

Aleš Tamchyna

June 5, 2013
Outline

- Introduction
 - Phrase-Based MT
 - Why Consider Wider Source Context?

- Related Work

- First Experiments
 - Context Similarity Feature
 - Beyond Phrase-Sense Disambiguation

- Conclusion
Phrase-based MT

- Word alignment: $P(e|f)$
 - Learned from sentence-aligned parallel data.
 - Example query:
 What is the probability of 'car' given German 'Auto'?

- Translation model (phrase table): $P(e|f)$
 - Trained heuristically based on the word alignment.
 - Example query:
 What is the probability of 'a fast car' given 'ein schnelles Auto'?

- Language model: $P(e)$
 - Trained from target-side monolingual data.
 - How probable are the words 'a fast car' in an English sentence?

- Feature weights
 - Model weights are tuned towards a metric of MT quality (e.g. BLEU, Papineni et al. 2002).
 - Minimum Error Rate Training (MERT, Och 2003).

- Decoding
 - Search in the hypothesis space for the most adequate translation.
Why Consider Wider Source Context?

Phrase length and language model scope are always limited. Many language phenomena are local, but:

Long-distance agreement in Czech:
- Input Google Translate: Kids like to play football. Dˇ eti rády hrají fotbal.
- Kids mostly like to play football. Dˇ eti vˇ etˇ sinou rády hrají fotbal.

Lexical Selection:
- Shooting of the expensive film. Nat´ aˇ cen ´ı drah´e filmu.
- Shooting of the least expensive film. Stˇ relba z nejlevnˇej ´s ´ıch filmu.
Why Consider Wider Source Context?

Phrase length and language model scope are always limited. Many language phenomena are local, but:

- Long-distance agreement in Czech:

 Input
 Kids like to play football.

 Google Translate
 Děti rády hrají fotbal.
Why Consider Wider Source Context?

Phrase length and language model scope are always limited. Many language phenomena are local, but:

- Long-distance agreement in Czech:

 Input

 Kids like to play football.

 Kids mostly like to play football.

 Google Translate

 Děti rády hrají fotbal.

 Děti většinou rádi hrají fotbal.
Why Consider Wider Source Context?

Phrase length and language model scope are always limited. Many language phenomena are local, but:

- **Long-distance agreement in Czech:**

 Input
 Kids like to play football.
 Kids mostly like to play football.

 Google Translate
 Děti rády hrají fotbal.
 Děti většinou rádi hrají fotbal.

- **Lexical Selection:**

 Input
 Shooting of the film.

 Google Translate
 Natáčení filmu.
Why Consider Wider Source Context?

Phrase length and language model scope are always limited. Many language phenomena are local, but:

- **Long-distance agreement in Czech:**

 Input
 Kids like to play football.
 Kids mostly like to play football.

 Google Translate
 Děti rády hrají fotbal.
 Děti většinou rádi hrají fotbal.

- **Lexical Selection:**

 Input
 Shooting of the film.
 Shooting of the expensive film.

 Google Translate
 Natáčení filmu.
 Natáčení drahé filmu.
Why Consider Wider Source Context?

Phrase length and language model scope are always limited. Many language phenomena are local, but:

- Long-distance agreement in Czech:

 Input
 Kids like to play football.
 Kids mostly like to play football.

 Google Translate
 Děti rády hrají fotbal.
 Děti většinou rádi hrají fotbal.

- Lexical Selection:

 Input
 Shooting of the film.
 Shooting of the expensive film.
 Shooting of the least expensive film.

 Google Translate
 Natáčení filmu.
 Natáčení drahé filmu.
 Střelba z nejlevnějších filmu.
Related Work

Word Sense Disambiguation (WSD)

- Select correct word sense in a particular sentence.
- Possible senses = meanings in the target language (Vickrey et al., 2005)
 ⇒ essentially machine translation.
 ▶ Relies only on source-side features.
 ▶ Suitable setting for discriminative models.

Using Source Context in SMT

Related Work: Phrase Sense Disambiguation

Carpuat and Wu (2007)

- Disambiguate senses (=translations) of phrases.
- Use a state-of-the-art WSD system to provide $P(e|f, f_{context})$.
- Train one WSD model for each source phrase in vocabulary.
- Use the WSD score as a feature in the decoder.

Features:

The DT dog NN saw VBD a DT cat NN with IN a DT telescope NN ..

- Words around the phrase (fixed window length), e.g. “saw_1”.
- POS tags around the phrase, e.g. “VBD_1”.
- Syntactic features, e.g. predicate: “pred_saw”.
- Local n-gram collocational features, e.g. “col_dog_saw_”.

[9x251]Related Work: Phrase Sense Disambiguation

Carpuat and Wu (2007)

- Disambiguate senses (=translations) of phrases.
- Use a state-of-the-art WSD system to provide $P(e|f, f_{context})$.
- Train one WSD model for each source phrase in vocabulary.
- Use the WSD score as a feature in the decoder.

Features:

The DT dog NN saw VBD a DT cat NN with IN a DT telescope NN ..

- Words around the phrase (fixed window length), e.g. “saw_1”.
- POS tags around the phrase, e.g. “VBD_1”.
- Syntactic features, e.g. predicate: “pred_saw”.
- Local n-gram collocational features, e.g. “col_dog_saw_”.

Aleš Tamchyna (ÚFAL) Utilizing Source Context in SMT June 5, 2013 6 / 12
Related Work: Rich Features in the Decoder

Gimpel and Smith (2008)

- Similar idea and features, but very different architecture:

\[P(e|f, f_{\text{context}}) = \frac{\text{count}(e|f, f_{\text{context}})}{\sum_{e'} \text{count}(e'|f, f_{\text{context}})} \]
Related Work: Global Lexicon Model

Mauser et al. (2009)

- Trained one classifier for each target word.
- Features: only source-side bag of words, extracted from the whole sentence.
- Binary classification: does the word belong in the sentence translation?
- In decoding: hypothesis score is the product of scores of individual target words.
Context Similarity Feature

- Phrase context: words in a window of fixed length, ignoring word positions.
- For each phrase pair \((e, f)\), remember all context words in training data (and their counts).
- In decoding, compute the cosine similarity between current context and the observed contexts of possible phrase translations.
- No improvements in BLEU so far:
 - Feature is unstable, small changes in phrase segmentation drastically impact similarity scores.
 - Function words have the same weight as content words.
- Possible solutions (future work):
 - Ignore function words.
 - Use word lemmas instead of surface forms.
Beyond PSD: Learning Setting

- Participated in a workshop where we integrated PSD in the Moses decoder
 ⇒ (relatively) easy to run PSD experiments.
- Still work in progress, no improvement in BLEU so far.
- Vowpal Wabbit
 ▶ Fast, scalable ML toolkit.
 ▶ Online learning algorithm.
 ▶ Linear: \(f(x) = \mathbf{w} \cdot \mathbf{x} \)
 ▶ Reductions for multi-class/multi-label classification.
- Our setting:
 ▶ Multi-label classification: each translation option has a loss.
 ★ 0 for correct, 1 for others.
 ★ 0 for correct, BLEU-approximation discounts for others.
 ▶ Two namespaces: Source, Target.
 ▶ Quadratic features: Cartesian product of S and T features.
 ▶ Reduction: cost-sensitive one-against-all.
 ▶ Label-dependent features.
Beyond PSD: Current Work

- Use 2 classifiers:
 - Predictor of content words (t-lemmas) based on wider context and lexical features (bag of source t-lemmas, ...).
 - Predictor of morphological categories (tags, +lemmas for prepositions) based on more local, morpho-syntactic features.

- Avoid 0/1 loss, use the BLEU approximation.

- Overall translation scheme: form|t-lemma|tag → form|t-lemma|tag.
References

