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Chapter 1

Introduction

Human ability to communicate through natural language has fascinated scientists
for decades. Neurolinguists have thoroughly studied the way human brain works
by means of examining the effects of losing the ability to perceive or produce
natural language (i.e. due to a lesion in a particular brain area) and more re-
cently, following recent advances in brain imaging technology, with experiments
carefully designed to reveal the nature of human brain functioning in natural
language production or comprehension. Classical linguists and philosophers have
also wondered about natural language from a different perspective and have come
forward with philosophical theories about the inner features of language, its struc-
ture and universal features. Computational linguists have been trying to quan-
titatively describe natural language and the human brain ability to use it, with
means of mathematical, especially statistical models, and following a giant leap
in information technologies, this pursue moved from purely mathematical quest
and resulted in tools which help people in using language: machine translators,
dictionaries, information retrieval tools and much more.

Natural language processing (NLP) is a field of science which seeks to au-
tomatically capture the ability to use natural language and model human way
of language comprehension or production. As such, natural language processing
spans over multiple disciplines such as artificial intelligence, computer science,
mathematics (especially statistics) and of course, linguistics. The tasks of NLP
include challenges such as morphological, syntactic and semantic analysis of un-
structured text, sentiment analysis, information retrieval, question answering or
machine translation. Obviously, most of these large scale objectives can be divid-
ed into related sub-problems: part-of-speech tagging, lemmatization, dependency
parsing, or the topic of this thesis, named entity recognition, and others.

Natural language research is by its very nature an interdisciplinary field and
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2 CHAPTER 1. INTRODUCTION

the author of this thesis was fortunate enough to be supported and encouraged
to follow and carry out exciting research in multiple disciplines: neurolinguistics
(Kim and Straková, 2012), semantics (Agirre et al., 2009), information retrieval
(Straková and Pecina, 2010), artificial neural networks (Chapters 4, 5 and 7),
dependency parsing with artificial neural networks (Straka et al., 2015), part-of-
speech tagging (Straková et al., 2014) and named entity recognition (Kravalová
and Žabokrtský, 2009; Straková et al., 2013; Straková, 2015; Straková et al., 2016;
Straková et al., 2017).

The software which emerged as a result tackles classical tasks of automatic
natural language processing: MorphoDiTa (Morphological Dictionary and Tag-
ger, (Straková et al., 2014)1) is a free software which performs morphological
analysis (with lemmatization), morphological generation, tagging and tokeniza-
tion with state-of-the-art results for Czech. NameTag (Straková et al., 2014)2

is a free software for named entity recognition which achieves state-of-the-art
performance for Czech. Parsito (Straka et al., 2015)3 is a free software for de-
pendency parsing based on neural networks. The tagging and parsing tools4 are
united in a simple-to-use tool UDPipe (Straka et al., 2016)5, a pipeline processing
CoNLL-U-formatted files, which performs tokenization, morphological analysis,
part-of-speech tagging, lemmatization and dependency parsing for nearly all tree-
banks of Universal Dependencies 1.2 (the pipeline is currently available for more
than 30 languages).

This thesis contains the results of the author’s long-standing research inter-
est: named entity recognition, particularly in Czech language. The following
sections 1.1 and 1.2 describe the organization of this thesis and are intended to
facilitate the kind reader’s orientation in reading of this work. Section 1.1 also
contains a description of the author’s contribution.

1.1 Organization of This Work and the Author’s
Contribution

This thesis publishes results in the field of named entity recognition (a task of
automatic identification and classification of named entities, such as names of
people, cities, organizations) with excellent state-of-the-art results for Czech. The

1http://ufal.mff.cuni.cz/morphodita
2http://ufal.mff.cuni.cz/nametag
3http://ufal.mff.cuni.cz/parsito
4except NameTag
5http://ufal.mff.cuni.cz/udpipe

http://ufal.mff.cuni.cz/morphodita
http://ufal.mff.cuni.cz/nametag
http://ufal.mff.cuni.cz/parsito
http://ufal.mff.cuni.cz/udpipe


1.1. ORGANIZATION OF THIS WORK AND THE AUTHOR’S CONTRIBUTION 3

organization of this work is as follows:
Chapter 1 opens this work with author’s motivations, facilitates the reader’s

navigation in the organization of this thesis and presents an overview of the
author’s research contribution.

Chapter 2 describes the task of named entity recognition, especially in the
Czech language. It describes the (relatively short) history of Czech named entity
recognition research and related work. The text is intended as an introduction
to named entity recognition and may easily be skipped by an advanced reader.
It is based on an encyclopedic entry (Straková, 2015) written by the author for
Karlík et al. (2015) and further extended.

Chapter 3 describes the Czech Named Entity Corpus. It is partially taken from
Kravalová and Žabokrtský (2009) and from the author’s submission (Straková
et al., 2017) to forthcoming Ide and Pustejovsky (2017).

We decided not to include a chapter on SVM-based named entity recogniz-
er (Kravalová and Žabokrtský, 2009) as we consider this recognizer outdated,
especially in the light of more recent work (Straková et al., 2013, 2016).

Chapter 4 presents our yet unpublished in-house experiments with artificial
neural network architectures, namely with drop-in replacement of log-linear mod-
els trained using maximum entropy principle by artificial neural networks with
a softmax output layer trained by stochastic gradient descent.

Chapter 5 describes a Czech named entity recognizer published in paper
Straková et al. (2013) and Chapter 6 follows with a NameTag software description
(Straková et al., 2014).6

Chapter 7 presents our most recent research with featureless named entity rec-
ognizer based on artificial neural networks with word embeddings and character-
level word embeddings (Straková et al., 2016).

Finally, Chapter 8 concludes the thesis with final remarks.
The contribution of this thesis is that it describes major improvements in

Czech named entity recognition, which have been forming Czech named entity
recognition state of the art in the recent years (Kravalová and Žabokrtský (2009);
Straková et al. (2013, 2016), Chapters 5 and 7) and are also available to the com-
munity as an open-source project NameTag (Straková et al. (2014), Chapter 6). It
also offers a decent insight into named entity recognition challenges, conceptions
and methodology (Chapter 2).

Specifically, the contributions of the thesis author are the following:
The SVM-based recognizer (Kravalová and Žabokrtský, 2009) was completely

6http://ufal.mff.cuni.cz/nametag



4 CHAPTER 1. INTRODUCTION

designed, implemented and evaluated by the author of the thesis. The author set
up the experimental pipeline, implemented the Perl prototype and carried out
the experiments. The author then wrote the related methodology, results and
discussion sections of Kravalová and Žabokrtský (2009).

Similarly, the softmax artificial neural network based NE recognizer (Straková
et al. (2013), Chapter 5) was also completely designed and evaluated by the
author. Straková et al. (2013) and Chapter 5 were written mainly by the thesis
author.

The experiments with drop-in replacement for log-linear models with softmax
artificial neural networks (Chapter 4) are a joint work with Milan Straka: The
overall case studies architecture is the author’s work and the author of this the-
sis experimented with case studies NER and SRL (please see Section 4.5.1 and
Section 4.5.2), while Milan Straka provided the POS results (Section 4.5.3) and
implemented the artificial neural network classifier in C++. The text in Chap-
ter 4 was originally written jointly with Milan Straka, Jan Hajič and Martin Popel
in 2014, and further thoroughly updated and extended by the thesis author in
2016.

The author prepared the release of CNEC 1.0, CNEC 1.1 and cooperated in
CNEC 2.0 release, including the packaging, documentation and online documen-
tation and further maintaining. The author did not propose the CNEC 1.0, nor
the NE hierarchy described in Section 3.1. All the annotation work on CNEC 1.0
was done before the author joined the NE team. However, the author did par-
ticipate in discussions about the CNEC 2.0 named entity hierarchy (Section 3.3).
The author thoroughly evaluated the CNEC corpus and reported the results in
Section 3.2.

NameTag, the NE recognizer described in Chapter 6, is a direct reimplementa-
tion of the author’s Perl prototype proposed in Straková et al. (2013) (Chapter 5)
and was jointly implemented in C++ by Milan Straka and the author. Milan
Straka implemented the underlying softmax artificial neural network classifier as
described above and in detail in Chapter 4 and the author implemented the NE-
related methodology in C++. The text in Chapter 6 is based on Straková et al.
(2014), a joint work with Milan Straka and Jan Hajič.

The overall system architecture, as well as experiment design and evaluation
of Chapter 7 is the work of the thesis author. The system architecture is re-used
from the author’s previous work (Straková et al. (2013), Chapter 5), the artificial
neural network classifier is the Milan Straka’s implementation from Chapter 4.
The author carried out all the experiments, wrote a new Perl prototype and shell
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Figure 1.1: How to read this thesis. A simple artificial neural network, bold
connections are activated.

pipeline for this purpose and Lua scripts for artificial neural network experiments
in Torch (see Straková et al. (2016) and Chapter 7), generated the word em-
beddings and is the main author of Straková et al. (2016). The character-level
embeddings were implemented in Lua for Torch by Milan Straka.

The author also participated as co-author in other NLP-related fields (Agirre
et al., 2009; Straková and Pecina, 2010; Kim and Straková, 2012; Straka et al.,
2015, 2016) and acted as an advisor in MorphoDiTa (Straková et al., 2014)7 and
Parsito (Straka et al., 2015)8 development. This thesis however describes only
the author’s NER-related work.

1.2 How To Read This Thesis

We refer the kind reader to Figure 1.1, which contains vital information on how
to read this thesis.

7http://ufal.mff.cuni.cz/morphodita
8http://ufal.mff.cuni.cz/parsito

http://ufal.mff.cuni.cz/morphodita
http://ufal.mff.cuni.cz/parsito
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Chapter 2

Named Entity Recognition

This chapter is an introductory text to named entity recognition and describes
the task and its standard methodology. Advanced readers are welcome to skip
this chapter. The opening Section 2.1 introduces the named entity task and is
based on a translation of an encyclopedic entry (Straková, 2015) for Karlík et al.
(2015). It was translated to English, updated and broadened for this thesis.
The following two Sections explain the standard methodology for the NER task
(Section 2.2) and its evaluation (Section 2.3). The last two Sections 2.4 and 2.5
present an overview of related work in Czech and English, respectively.

2.1 Named Entity Recognition Task

Named entity recognition (NER) is one of the tasks of automatic natural language
processing (NLP). The task is to automatically identify so-called named entities:
words or sequences of words which denote unique names, locations, organizations
and so on. These entities are also sometimes called proper names in natural
language. The task typically involves classification of these identified entities
into a set of predefined classes. Therefore the task of named entity recognition
is sometimes subdivided into two subtasks: named entity identification (the task
is to correctly identify a named entity span without further classification, that
is, to retrieve all named entity tokens) and named entity classification (the task
is to correctly classify the retrieved named entity tokens into a set of predefined
classes). Mostly, named entity recognition (NER) usually stands for both of the
tasks performed jointly.

An example of named entity recognition in Czech sentence follows. Consider
the following headline:1

1taken on August 17th 2016 from http://www.ihned.cz

7
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8 CHAPTER 2. NAMED ENTITY RECOGNITION

Získat programátory z Ukrajiny je snazší, stačilo málo. Česku ale konkurují
západní země i Moskva.

The named entity recognition system retrieves these named entities:2

Získat programátory z Ukrajiny je snazší, stačilo málo. Česku ale konkurují
západní země i Moskva.

Named entity recognition is an often solved task of natural language process-
ing as a preprocessing step of more complex tasks such as automatic machine
translation, information retrieval, question answering and others. Since the ex-
istence of many annotated corpora and shared tasks, such as MUC7 (Chinchor,
1998) or CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003), named entity
recognition has become a standard task in NLP.

The input for the recognizer is usually an unprocessed and unstructured text.
Sometimes, morphological analysis or part-of-speech tagging (POS tagging) is
available for the NE recognizer, or they are automatically performed by the rec-
ognizer. Many recognizers utilize language independent ways of language pre-
processing such as stemming (Konkol and Konopík, 2014) or word embeddings
(Chapter 7 of this thesis).

A typical domain for named entity recognition is retrieval of names of people,
locations and organizations in newspaper articles. However, named entity recog-
nition obviously involves recognition of any prominent or important sequences,
such as genes (genomes) in medicine and biology, or chemical entities.

Recently, named entities are also linked with their disambiguated encyclopedic
entries. After the task of named entity recognition (that is, after named entity
identification and classification) is solved, the task of named entity linking is to
link all entity mentions (such as “Václav Havel” and later ”Havel”) with their
disambiguated encyclopedic entry.

The complexity of the particular named entity recognition task depends on
morphosyntactic characteristic of the language,3 the amount and quality of su-
pervised data available and obviously, on the number and hierarchy of the named
entity classes. For example, in shared task CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003), four classes are predicted: PER (person), ORG (organiza-
tion), LOC (location) and MISC (miscellaneous), while in Czech Named Entity
Corpus, tens of classes are annotated and therefore must be identified and clas-
sified by the named entity recognition system, including time expressions and

2For more named entity recognition examples, we also recommend an online NameTag demo
at http://ufal.mff.cuni.cz/nametag.

3We use the term “morphosyntactic” very freely, in a general meaning without a specific
linguistic theory in mind.

http://ufal.mff.cuni.cz/nametag
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others. Generally, the annotators of a named entity corpus have to make a design
choice concerning the distribution and number of the selected named entity class-
es, moving on a continuous scale: one extreme with a few coarse named entity
classes and the other with a very fine-grained hierarchy. We touch the question
of named entity classes hierarchy design in Chapter 3.

2.2 Named Entity Recognition Methodology

2.2.1 Machine Learning

The typical methodology of named entity recognition involves supervised or semi-
supervised machine learning. Machine learning is a field of artificial intelligence,
which develops and describes techniques allowing computers to automatically
perform certain tasks, such as suggest a restaurant based on the previous eating
habits, play a selected song based on the listener’s preferences, recognize faces in
images, or, in our case, recognize named entities in text. The task and its solution
are usually described in the means of statistical mathematic model. In supervised
machine learning, the machine is presented with large amount of correctly solved
examples (training data) and a programmed way to learn how to infer solutions
for new, yet unseen examples (testing data). Unlike humans, who are able to infer
correct solutions based on a few prototypes of the problem, an automatic pro-
cess with statistical approach needs a large amount of correctly solved examples
(annotated data) to create a statistical model and then infer the new examples
correctly. In named entity recognition, this purpose is achieved with a large
amount of annotated data (corpora) where correct named entities are identified
and classified by human annotators. Semi-supervised machine learning seeks to
develop ways how to improve the system with smaller need for these annotated,
labeled data and to make use of larger amount of easily available unlabeled data.
For more information about statistical language modeling, we refer to standard
textbook Manning and Schütze (1999). For more information about machine
learning, see Mitchell (1997).

Currently, the state-of-the-art systems for named entity recognition are based
on a combination of a supervised machine learning (learning from available an-
notated corpora) and semi-supervised machine learning (e.g. clustering and
word embeddings). The state-of-the-art solutions include, but are not limited
to, conditional random fields (CRFs, Lafferty et al. (2001), used for example in
Konkol and Konopík (2013)), maximum entropy recognizers (used for example



10 CHAPTER 2. NAMED ENTITY RECOGNITION

in Straková et al. (2013)) and recently, excellent results have been achieved with
artificial neural networks (Lample et al., 2016). More related work can be found
in Sections 2.4 and 2.5.

2.2.2 Named Entity Span Encoding

Because named entity recognition is a task defined on linear sequences and be-
cause there are multi-word named entities, the classifier needs to correctly identify
the named entity span. For this purpose, an encoding which denotes the named
entity beginning and last token is needed. The same problem arises in data, be-
cause named entity chunks need to be marked in the selected data format. In
CoNLL shared tasks, named entity beginning (B), inside (I) and outside (O) is
marked, resulting in the well-known and often used BIO scheme. Another scheme
is called BILOU: the classifier is learned to identify the beginning (B), inside (I),
last (L), outside (O) and unit-length tokens (U). The question of named entity
chunks encoding is not an academic one - the selected encoding impacts the final
system performance. An interesting comparison of the BIO and BILOU encoding
scheme is given in Ratinov and Roth (2009), as well as in Konkol and Konopík
(2015). Following Ratinov and Roth (2009) and our own preliminary experi-
ments, we use a modified BILOU encoding in all our solutions. For a detailed
description of our encoding, see Section 5.2 in Chapter 5.

2.2.3 Classification Features

Most recognizers utilize hand-crafted rules or regular expressions and/or manually
or automatically created lists of named entities (so-called gazetteers). These kinds
of dictionary-based solutions usually yield systems with high precision but do not
generalize well. Hand-crafted rules and regular expressions are therefore usually
involved in supervised machine learning systems as classification features, or if
high precision is required, the dictionary search can be performed as a post-
processing step.

In this place, we describe a standard set of classification features for the NE
task and we devote Section 2.2.6 to gazetteers.

A standard set of classification features for the NE task includes a broad
variety of the following:

• current surface word form,

• word lemma (a morphologically motivated base or root form of the word,
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usually an output of a morphological analysis. In a broader sense it can be
considered a label of the word in a word lexicon.),

• word stem (an automatic reduction of inflected and derived word form to
a base form, which necessarily does not have to be a morphologic lemma as
in previous item and it even does not have to be a valid word form),

• part-of-speech tags (POS tags),

• the previous items applied on a window of a predefined number of preceding
and following words,

• rule-based orthographic features describing the current or surrounding word
forms, such as word capitalization, first character capitalization, informa-
tion about special characters such as hyphens, dots, question marks, etc.,

• various regular expressions designed to reveal e-mail addresses, numbers,
phone numbers, days, months and years, depending on the task. For exam-
ple, time expression can be matched using the following regular expression
([01]?[0-9]|2[0-3])[.:][0-5][0-9]([ap]m),

• prefixes and suffixes of the current or surrounding surface word forms,

• capitalization patterns in current and surrounding word forms.

A simple supervised machine learning system of one’s choice (such as maxi-
mum entropy classifier) armed with a reasonable amount or combination of the
classification features listed above already yields a moderately successful NE
recognition system. A drawback of these features is that they are human en-
gineered, need to be designed and programmed by hand, require the knowledge
of the language, and require extensive feature engineering (feature engineering is
a term describing the process of empirical identification of the most successful set
of classification features by iterative benchmarking).

2.2.4 Non-local Features

The idea behind these techniques is that the same word appearing repeatedly in
the text should very probably be classified with the same label and is analogous
to “one sense per discourse” (Gale et al., 1992).4

4Many thanks to Zdeněk Žabokrtský, who commented on this parallel.
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• Context aggregation (Ratinov and Roth, 2009): The hypothesis is that con-
texts can be exploited from repeated occurrences of the same token in a doc-
ument, thus reducing data sparsity. For each token, the classification fea-
tures of all its occurrences in a fixed window are aggregated.

• Extended prediction history (Ratinov and Roth, 2009): An obvious obser-
vation is that when a prediction of a current token is made, the preceding
occurrences of the same token have already been classified and one can use
the classification of previous occurrences of the same token as classification
feature for the current prediction.

• Two-stage prediction (Krishnan and Manning, 2006): Two-stage (or iter-
ative) prediction is a familiar concept not only in NER. The idea is to
iteratively solve the task with serially connected classifiers, and use the
predictions made in the previous step as classification features in the next
step. Sometimes, different classifiers are even used for the consecutive steps.

Please note that context aggregation and extended prediction history are not
applicable for the CNEC (Chapter 3) because the sentences are isolated in the
current form of the corpus. To obtain more context for each named entity oc-
currence, one would need to reconstruct the sentence context from the original
corpora (Czech National Corpus5).

2.2.5 Unlabeled Data and Semi-Supervised Learning

As noted above, the production of human-annotated data for supervised machine
learning is expensive. Therefore, many techniques were proposed, which make use
of large unlabeled data, which are easy and relatively cheap to obtain. A huge
amount of unstructured, unlabeled text can be used for semi-supervised learning
or as a source for automatically retrieved gazetteers (see Section 2.2.6).

One of the typical usage of large unlabeled corpora is word clustering. Clus-
tering is a mapping from a given vocabulary (e.g.all words in a natural language,
for example English) to a radically smaller set of groups, so called clusters, with
or without semantic motivation. For instance, a trivial example of clustering
are clusters like vehicles (car, bus, train), fruits (apple, banana), etc. The clus-
ters may also have only a mathematical, abstract meaning, without an obvious
linguistic interpretation.

5http://ucnk.ff.cuni.cz

http://ucnk.ff.cuni.cz
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Brown clustering (Brown et al., 1992) groups words into hierarchical cate-
gories based on their contexts in unstructured texts. The idea is that words in
similar contexts share also similar characteristics which is the same principle as
in language modeling (see Manning and Schütze (1999)). From the NER per-
spective, it is important that the Brown clustering represents useful and easy to
use classification features in NE classifier and is used as such (Ratinov and Roth,
2009; Straková et al., 2013).

Recently, a successful proposal for scalable clustering of tens of millions of
phrases was proposed by Lin and Wu (2009).

Word embeddings (Bengio et al., 2003; Mikolov et al., 2013) represent a recent,
amazingly efficient way of clustering and because they form a basis of our semi-
supervised, featureless NER solution described in Chapter 7, we devote a special
Section 7.2 to them.

Another interesting approach is exploitation of Wikipedia, the free encyclope-
dia.6 Wikipedia is enormously interesting for NE research because it represents
a large amount of data which is already partially annotated or at least easy to
parse. Most of the entries describe a named entity (a city, a person, etc.) and
in most of the entries, the named entity appears at the beginning of the entry
(for example, “Prague is the capital and largest city of the Czech Republic.”).
Out of many publications dealing with Wikipedia as a source for NER, we name
a recent work of Nothman et al. (2013, 2008).

The previous examples used the unlabeled data to produce gazetteers or clus-
ters as classification features for a supervised classifier. Ando and Zhang (2005)
propose one semi-supervised and one unsupervised method to learn from unla-
beled data. The hypothesis is that in chunking predictive problems, there exists
a shared, common predictive structure and the intuition behind the proposed
approach is that by learning on large number (thousands) of auxiliary problems
automatically generated from the unlabeled data, the system discovers this shared
common predictor.

2.2.6 Gazetteers

Originally, a gazetteer is a list of geographical places. In named entity recognition,
gazetteer is a list of any interesting group of named entities, such as names of
famous people, list of cities, list of organizations, etc. Gazetteers are either
collected manually, which is time-consuming, or automatically, and they are used

6http://www.wikipedia.org

http://www.wikipedia.org
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in a dictionary-based named entity recognition method (that is, named entity is
classified as named entity based solely on its existence in a list of gazetteers) or as
a classification feature in machine learning. For an automatic, machine collection
of gazetteers, Wikipedia is often used (Kazama and Torisawa, 2007).

2.3 NER Evaluation

The performance of automatic named entity recognition system is evaluated with
the following mathematical measures:

Precision is the number of correctly identified (and classified, if required by
the task) named entities, averaged with the number of named entities retrieved
by the system. All tokens of the entity must be identified and correctly classified
as marked in gold data (that is, in data annotated by human annotators).

precision = |gold ∩ retrieved|
|retrieved|

Recall is the number of correctly identified (and classified) named entities,
divided by the number of correct (gold) named entities.

recall = |gold ∩ retrieved|
|gold|

Recall and precision are combined with harmonic mean into F1-measure (or
F-measure, sometimes also F-score, with or without hyphen):

F-measure = 2 · recall · precision
recall + precision

Please note, that in named entity recognition evaluation, accuracy (percentage
of words correctly recognized by the recognizer) does not describe the performance
of the system. Since a vast majority of tokens in the text are not named entities
and are usually correctly recognized as such, the accuracy easily achieves over
90 − 95% or more. Therefore, a simple token accuracy is not considered an
sufficiently informative performance measure in named entity recognition and
F-measure is used instead (see paragraph above).

If nested named entities are considered, named entity recognition evaluation
becomes more complex. In most datasets, flat named entities are assumed, how-
ever, this is not the case in the Czech Named Entity Corpus, which allows nested
named entities. Named entities are nested, if one named entity is annotated with-
in another one, such as in the following example: In the sequence “The Bank of
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England”, only the outermost named entity (“The Bank of England”) or the in-
nermost named entity (“England”) can be recognized. If both named entities are
annotated, then “England” is embedded inside the span of “The Bank of Eng-
land” and the named entities are nested. To our knowledge, very little literature
addresses nested entities (Finkel and Manning, 2009). In general, we can see two
approaches in nested NER evaluation: either the top-level entities are evaluated
or all entities are evaluated, putatively more difficult task as all named entity lev-
els must be correctly identified and classified. The latter applies to Kravalová and
Žabokrtský (2009); Straková et al. (2013) and the CNEC corpus. Nevertheless,
all our NE recognizers Kravalová and Žabokrtský (2009); Straková et al. (2013,
2016) do not recognize nested named entities and deal only with top-level named
entities for technological reasons.7

2.4 Related Work in Czech NER

Czech named entity recognition (NER) has become a well-established field since
the publication of the Czech Named Entity Corpus8 (Ševčíková et al., 2007a;
Kravalová and Žabokrtský, 2009). Because Czech Named Entity Corpus (CNEC)
has had a large influence on the development of the Czech NER, we devote a sep-
arate Chapter 3 to its thorough description and we also recommend both publica-
tions Ševčíková et al. (2007a); Kravalová and Žabokrtský (2009) and a technical
report Ševčíková et al. (2007b) for detailed information about the corpus anno-
tation process.

Following the publication of the Czech Named Entity Corpus in 2007, a va-
riety of named entity recognizers for Czech has been published: Ševčíková et al.
(2007b,a); Kravalová and Žabokrtský (2009); Straková et al. (2013); Král (2011);
Konkol and Konopík (2011, 2013, 2014); Konkol et al. (2015); Konkol and Konopík
(2015); Konkol (2015); Straková et al. (2016) and there is even a publicly avail-
able Czech named entity recognition software (NameTag9, Straková et al. (2014)),
which is also described in Chapter 6 of this thesis.

In the following paragraphs, we introduce the reader in the Czech named
entity related literature.

As already mentioned above, Ševčíková et al. (2007a) and Ševčíková et al.
(2007b) describe the annotation and publication of the CNEC corpus in its

7And are therefore penalized for each missed nested entity.
8http://ufal.mff.cuni.cz/cnec
9http://ufal.mff.cuni.cz/nametag

http://ufal.mff.cuni.cz/cnec
http://ufal.mff.cuni.cz/nametag
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first version, and a simple decision tree based NE recognizer is also described
in Ševčíková et al. (2007a).

Král (2011) is devoted to a search for an optimal set of features (also known as
feature engineering) with focus on Czech named entity recognition. The classifier
used as an underlying NER architecture is CRF (Lafferty et al., 2001).

Konkol and Konopík (2011) present a NER system for Czech based on maxi-
mum entropy classifier.

Konkol and Konopík (2013) followed up on CNEC with a new extended
corpus, which contains a CoNLL-based version of CNEC with simplified anno-
tation. Unlike the CNEC, which contains two-level hierarchical named entity
classification and allows nested entities and more than one label (see Chap-
ter 3), Konkol and Konopík (2013) published a Czech Named Entity Corpus
Extension in CoNLL format10 with one-level hierarchy containing 7 coarser class-
es of named entities, which are non-embedded and non-ambiguous. Further-
more, Konkol and Konopík (2013) present a CRF-based named entity recogniz-
er with a standard set of classification features, such as bag of words, ortho-
graphic features, orthographic patterns and gazetteers. An evaluation of our
work on the extended corpus of Konkol and Konopík (2013) can be found in
Table 7.1.

Konkol and Konopík (2014) thoroughly examined various stemming approach-
es and their effect to Czech NER. The benchmarks employ classical approaches
to stemming, an in-house high-precision stemmer, Majka (Šmerk, 2009), PDT 2.0
lemmatizer (Hajič et al., 2006), MorphoDiTa (Straková et al., 2014) and others.
The authors evaluated these benchmarks on a simple baseline CRF NER recog-
nizer, with a final result being that linguistically motivated stemmers yield better
results than language agnostic stemmers. In other words, linguistic complexity
(or know-how) built into these tools is advantageous.

Konkol et al. (2015) inspected various clustering techniques in NER. The clus-
ters were used as classification features in NER system and proved very beneficial
for the recognizer.

An interesting parallel of our work can be seen in Konkol and Konopík (2011)
and Konkol et al. (2015). In Konkol and Konopík (2011), word similarity in
semantic spaces are utilized, and Konkol et al. (2015) experiments with clus-
tering techniques as classification features in NER. In Chapter 7, we use word

10CoNLL, or CoNLL-like format is derived from a well-known column format used in CoNLL
shared tasks data. Each line represents one token, special information per token is presented
in tab-separated columns and sentences are delimited with empty line.
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embeddings (Section 7.2), which can be viewed in this context as semi-supervised,
automatically trained real-valued vectors which describe word characteristics in
a selected semantic space.

Konkol and Konopík (2015) explore various kinds of segmentation (BIO,
BILOU, see Section 2.2.2). We recommend an intriguing statistical t-test com-
parison presented by Konkol and Konopík (2015) in Tables 2 and 3. Our only
minor objection to the selected methodology is that the underlying system used
too low baseline. It may happen that a more complex system would show differ-
ent results. A side note to this topic, a modified BILOU scheme is used in our
architectures, see Section 5.3.

Konkol (2015) describe an effort towards Czech named entity linking. Konkol
(2015) present a small corpus with disambiguated personal names and explored
metrics for string similarity, which were later enveloped by a larger system.

Finally, this section concludes with this thesis author’s contribution. The
author of this thesis joined the Czech Named Entity Corpus team two years after
its publication (Ševčíková et al., 2007a) and cooperated in CNEC public release
and maintenance since then.

Kravalová and Žabokrtský (2009) present both the CNEC and a SVM-based
NE recognizer. Although the SVM-based NE recognizer is the work of the thesis
author, we do not include Kravalová and Žabokrtský (2009) as a Chapter in this
thesis, as we consider it outperformed by our own work (Straková et al., 2013,
2016).

A new state-of-the-art Czech NER recognizer was published in 2013 (Straková
et al. (2013), Chapter 5). This research became a basis for an open-source Czech
NER software NameTag11 (Straková et al. (2014),Chapter 6).

In Straková et al. (2016), we proposed a new artificial neural network based
named entity recognizer. All the above mentioned solutions use manually selected
rule-based orthographic classification features, such as first character capitaliza-
tion, presence of special characters in the word or regular expressions designed to
reveal particular named entity types. Also gazetteers are extensively utilized. The
major contribution of our recent work is that we proposed artificial neural net-
works with parametric rectified linear units, word embeddings and character-level
word embeddings, which do not need manually designed classification features or
gazetteers, and still surpass the current state of the art. This work can be found
in Chapter 7 of this thesis or in Straková et al. (2016).

11http://ufal.mff.cuni.cz/namegag

http://ufal.mff.cuni.cz/namegag
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2.5 Related Work in English NER

This section presents an overview, albeit a brief one, of related research in English
NER. It does not seek to bring together a complete list of all English NER-related
publications, it rather presents either publications which influenced the thesis
author in her research.

As usual in most NLP tasks, English has became the most researched lan-
guage in named entity recognition. In 1996, a shared task in series of Message
Understanding Conferences12 (MUC-6, Grishman and Sundheim (1996) involved
named entity recognition and the term “named entity” (NE) was introduced. Af-
ter the series of MUC, processing of named entities became a well established
discipline within the NLP domain, usually motivated by the needs of information
extraction, question answering, or machine translation.

Since then, many datasets and shared tasks were created for English: CoNLL-
2002 and CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003), MUC7 (Chin-
chor, 1998) and many more. We refer the kind reader to one of many existing
comprehensive lists on the Internet.13

One of the most used and standard comparison dataset is the CoNLL-2003
(Tjong Kim Sang and De Meulder, 2003). In this dataset, four classes are pre-
dicted: PER (person), LOC (location), ORG (organization) and MISC (miscel-
laneous). It is assumed that the entities are non-embedded, non-overlapping and
annotated with exactly one label.

For English, one can find literature about attempts at rule-based solutions for
the NE task as well as machine-learning approaches, be they dependent on the
existence of labeled data (such as CoNLL-2003 shared task data, Tjong Kim Sang
and De Meulder (2003)), unsupervised (using redundancy in NE expressions and
their contexts, see e.g. Collins and Singer (1999)) or a combination of both (such
as Talukdar et al. (2006)).

However, a typical state-of-the-art solution involves both supervised and semi-
supervised machine learning methods. One of the most influential publications
of the recent years in the NER research is Ratinov and Roth (2009).14

Ratinov and Roth (2009) represent the English state-of-the-art with 90.80
F-measure on the CoNLL-2003 data. The authors compare and describe a broad
variety of techniques BIO vs. BILOU encoding (see Ratinov and Roth (2009),
Section 2.2.2), non-local features, context aggregation, two-stage prediction, ex-

12http://http://cs.nyu.edu/faculty/grishman/muc6.html
13such as http://www.cs.technion.ac.il/~gabr/resources/data/nei_datasets.html
14Which reached over 550 citations between 2009-2016, according to Google Scholar.

http://http://cs.nyu.edu/faculty/grishman/muc6.html
http://www.cs.technion.ac.il/~gabr/resources/data/nei_datasets.html
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tended prediction history and semi-supervised techniques (exploitation of large
unlabeled corpora, clustering, see Section 2.2.5).

Lin and Wu (2009) present a simple and scalable algorithm for clustering tens
of millions of phrases and use the resulting clusters as features in discriminative
classifiers (cited from (Lin and Wu, 2009)). The proposed method is evaluated
also on the CoNLL-2003 shared task with the resulting F-measure 90.90.

The English NER state of the art Ratinov and Roth (2009) has recently been
pushed forward by Chiu and Nichols (2015) and Lample et al. (2016). Most
of the recent advances have been reached with NER systems based on artificial
neural networks. We define and explain the neural network terminology, as well
as describe the related artificial neural network based literature in the related
Chapters 4 and 7. In this place, we mention the achievements only briefly:

Chiu and Nichols (2015) employ artificial neural networks with bidirectional
LSTMs eliminating the need for feature engineering.

The most similar to system proposed by us in Straková et al. (2016) (Chap-
ter 7) is Lample et al. (2016) with 90.94 F-measure.

We also recommend a recent intriguing work of Yang et al. (2016), based on
deep hierarchical recurrent neural network for sequential tagging, which is feature
engineering free and reaches 91.2 F-measure for the CoNLL-2003 shared task.

Finally, we would like to mention a recent successful proposal for joint solution
of named entity recognition and named entity linking. Luo et al. (2015) presents
a graph-based framework for joint learning of these two tasks, thus identifying
their common properties.
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Chapter 3

Czech Named Entity Corpus

We describe the Czech Named Entity Corpus (CNEC) in this chapter. The initial
work on CNEC was published in the technical report Ševčíková et al. (2007b)
and in Ševčíková et al. (2007a). The author joined the NE team in 2009. The
Section 3.1 is taken from Kravalová and Žabokrtský (2009) and describes the
annotation of CNEC 1.0.

A few years later, in 2014, we carried out an extensive evaluation of the
Czech Named Entity Corpus. We focused especially on those design choices which
had impact on machine learning systems (learneability) and software solutions
(practical reasons). The research was carried out for the forthcoming Ide and
Pustejovsky (2017). The Section 3.2 contains the author’s contribution to this
book (Straková et al., 2017).

3.1 Czech Named Entity Corpus 1.0

For the purpose of supervised machine learning of named entity recognition in
Czech, Ševčíková et al. (2007b) annotated a Czech corpus of named entities. This
section describes the Czech Named Entity Corpus 1.0 and is taken from Kravalová
and Žabokrtský (2009).

3.1.1 Data Selection

For annotation, 6000 sentences were randomly selected from the Czech National
Corpus1 conforming to the query ([word=".*[a-z0-9]"] [word="[A-Z].*"]).

This query makes the relative frequency of NEs in the selection higher than
the corpus average, which makes the subsequent manual annotation much more

1http://ucnk.ff.cuni.cz
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effective, even if it may slightly bias the distribution of NE types and their ob-
served density. The query is trivially motivated by the fact that NEs in Czech
(as well as in many other languages) are often marked by capitalization of the
first letter. Annotation of NEs in a corpus without such selection would lower
the bias, but would be less effective due to the lower density of NE instances in
the annotated material.

Naturally, the decision to select only sentences with biased, unnaturally high
density of named entities, was later revisited. We shall discuss this design choice
later in Section 3.2 and in Conclusions (Chapter 8), but we reveal in advance,
that the biased corpus did not impact the performance of our NE recognizers.
(Obviously, the F-measure had to be measured in other domain than in the same,
likewise biased testing data.) However, the major drawback of this decision is
that the corpus consists of isolated sentences, therefore any discourse classifica-
tion features cannot be used and the corpus is disqualified from entity linking
annotation in its present form.2

3.1.2 Two-level NE Hierarchy Annotation

There is no generally accepted typology of named entities. One can see two
trends: from the viewpoint of unsupervised learning, it is advantageous to have
just a few coarse-grained categories (cf. the NE classification developed for MUC
conferences or the classification proposed in Collins and Singer (1999), where
only persons, locations, and organizations were distinguished), whereas those
interested in semantically oriented applications prefer more informative (finer-
grained) categories (e.g. Fleischman and Hovy (2002) with eight types of person
labels, or Sekine’s Extended NE Hierarchy, cf. Sekine (2003)).

In CNEC 1.0, a two-level NE classification depicted in Figure 3.1 was used.
The first level corresponds to coarse categories (called NE supertypes) such as
person names, geographical names etc. The second level provides a more de-
tailed classification: e.g. within the supertype of geographical names, the NE
types of names of cities/towns, names of states, names of rivers/seas/lakes etc.
are distinguished.3 If more robust processing is necessary, only the first level
(NE supertypes) can be used, while the second level (NE types) comes into play

2The sentence context of the isolated CNEC sentences could however be reconstructed from
the original corpus (Czech National Corpus, http://ucnk.ff.cuni.cz).

3Given the size of the annotated data, further subdivision into even finer classes (such as
persons divided into categories such as lawyer, politician, scientist used in Fleischman and Hovy
(2002)) would result in too sparse annotations.

http://ucnk.ff.cuni.cz
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Types of NE

a - Numbers in addresses

c - Bibliographic items

g - Geographical names

i - Institutions

m - Media names

n - Specific number usages

o - Artifact names

p - Personal names

q - Quantitative expressions

t - Time expressions

ah - street numbers
at - phone/fax numbers

az - zip codes
cb - volume numbers

cn - chapt./sect./fig. numbers
cp - page numbers

cr - legisl. act numbers
cs - article titles

gc - states
gh - hydronyms

gl - nature areas / objects
gp - planets, cosmic objects

gq - urban parts
gr - territorial names

gs - streets, squares
gt - continents

gu - cities/towns
g_ - underspecified

ia - conferences/contests
ic - cult./educ./scient. inst.

if - companies, concerns...
io - government/political inst.

i_ - underspecified
mi - internet links

mn - periodical
mr - radio stations

mt - TV stations
na - age

nc - sport score
ni - itemizer

nm - in formula
np - part of personal name

nq - town quarter
nr - ratio

nw - flat size n_ - underspecified

oa - cultural artifacts (books, movies) oc - chemical

oe - measure units
om - currency units

op - products
or - directives, norms

o_ - underspecified pb - animal names

pc - inhabitant names pd - (academic) titles

pf - first names pm - second names

pp - relig./myth persons ps - surnames

p_ - underspecified
qc - cardinal numbers

qo - ordinal numbers
tc - centuries

td - days tf - feasts

th - hours tm - months

tn - minutes
tp - epochs

ts - seconds ty - years

Figure 3.1: Two-level hierarchical classification of NEs used in CNEC 1.0. Note
that the (detailed) NE types are divided into two columns just because of the
space reasons.
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when more subtle information is needed. Each NE type is encoded by a unique
two-character tag (e.g., gu for names of cities/towns, gc for names of states;
a special tag, such as g_, makes it possible to leave the NE type underspeci-
fied).

Besides the terms of NE type and supertype, we use also the term NE in-
stance, which stands for a continuous subsequence of tokens expressing the entity
in a given text. In the simple plain-text format, which we use for manual anno-
tations, the NE instances are marked as follows: the word or the span of words
belonging to the NE is delimited by symbols < and >, with the former one imme-
diately followed by the NE type tag (e.g. <pf John> loves <pf Mary>).

The annotation scheme allows for the embedding of NE instances. There
are two types of embedding. In the first case, the NE of a certain type can be
embedded in another NE (e.g., the river name can be part of a name of a city as
in <gu Ústí nad <gh Labem> >). In the second case, two or more NEs are parts
of a (so-called) container NE (e.g., two NEs, a first name and a surname, form
together a person name container NE such as in <P<pf Paul> <ps Newman> >).
The container NEs are marked with a capital one-letter tag: P for (complex)
person names, T for temporal expressions, A for addresses, and C for bibliographic
items. A more detailed description of the NE classification can be found in
Ševčíková et al. (2007a).

3.1.3 Annotated Data Cleaning

After collecting all the sentences annotated by the annotators, it was necessary
to clean the data in order to improve the data quality. For this purpose, a set
of tests was implemented. The tests revealed wrong or “suspicious” spots in the
data (based e.g. on the assumption that the same lemma should manifest an
entity of the same type in most its occurrences), which were manually checked
and corrected if necessary. Some noisy sentences caused e.g. by wrong sentence
segmentation in the original resource were deleted; the final size of the corpus is
5870 sentences.

3.1.4 Morphological Analysis of Annotated Data

The sentences have been enriched with morphological tags and lemmas using
Jan Hajič’s tagger shipped with Prague Dependency Treebank 2.0 (Hajič et al.,
2006) integrated into the TectoMT environment (Žabokrtský et al., 2008). The
motivation for this step was twofold:
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• Czech is a morphologically rich language, and named entities might be
subject to paradigms with rich inflection too.

• Additional features (useful for any machine learning approach) can be mined
from the lemma and tag sequences.

3.1.5 Public Data Release

Manually annotated and cleaned 5870 sentences with roughly 33000 named en-
tities were released as Czech Named Entity Corpus 1.0. The corpus consists
of manually annotated sentences and morphological analysis in several formats:
a simple plain text format, a simple XML format, a more complex XML format
based on the Prague Markup Language (Pajas and Štěpánek, 2006) and contain-
ing also the above mentioned morphological analysis, and the html format with
visually highlighted NE instances.

For the purposes of supervised machine learning, training, development and
evaluation subsets are provided. The division into training, development and eval-
uation subsets was made by random division of sentences into three sets, in pro-
portion 80% (training), 10% (development) and 10% (evaluation), see Table 3.1.
Other basic quantitative properties are summarized in Table 3.2 and Table 3.3.

The resulting data collection, called Czech Named Entity Corpus 1.0, is now
publicly available on the Internet at http://ufal.mff.cuni.cz/cnec.

Set #Sentences #Words #NE instances
train 4696 119921 26491
dtest 587 14982 3476
etest 587 15119 3615
total 5870 150022 33582

Table 3.1: Division of the corpus into training, development and evaluation sets.

Length #Occurrences Proportion
one-word 23057 68.66 %
two-word 6885 20.50 %
three-word 1961 5.84 %
longer 1679 5.00 %
total 33582 100.00 %

Table 3.2: Occurrences of NE instances of different length in the corpus.

http://ufal.mff.cuni.cz/cnec
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NE type #Occurrences Proportion
ps 4040 12.03 %
pf 3072 9.15 %
P 2722 8.11 %
gu 2685 8.00 %
qc 2040 6.07 %
oa 1695 5.05 %
ic 1410 4.20 %
ty 1325 3.95 %
th 1325 3.95 %
gc 1107 3.30 %
if 834 2.48 %
io 830 2.47 %
tm 559 1.66 %
n_ 512 1.52 %

Table 3.3: Distribution of several most frequent NE types in the annotated corpus.

3.2 Using the Corpus for NE Recognizers

This section describes our experience with Czech Named Entity Corpus 1.0 in
development of supervised named entity recognizer NameTag 4 based on Straková
et al. (2013).

3.2.1 Corpus Size

The CNEC 1.0 corpus consists of 6,000 sentences with over 150,000 tokens,
which is smaller than the CoNLL 2003 shared task corpus (Tjong Kim Sang
and De Meulder, 2003) which contains more than 300,000 tokens. While the
CoNLL 2003 shared task corpus uses 4 named entity types, the Czech Named
Entity Corpus uses 7 supertypes in the first hierarchy level, 42 types in the sec-
ond hierarchy level, and 4 types of containers. The second annotation round
uses 10 supertypes in the first hierarchy level, 62 types in the second hierarchy
level and 4 containers. The difference between the first and the second round an-
notation is that in the second round, the annotation scheme was enriched with
number usages. Most Czech NE recognizers are usually trained and evaluated on
the first round annotation scheme and do not deal with the numbers annotated
in the second annotation round.

4http://ufal.mff.cuni.cz/nametag

http://ufal.mff.cuni.cz/nametag
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The corpus represents a sufficient and consistently annotated amount of data
to make a reliable source for supervised machine learned recognizers. The most
interesting classes for NE recognizers using supervised machine learning — person
names, surnames, cities and countries — are well represented and learnable. The
two named entity recognizers trained on CNEC 1.0 which we used in real appli-
cations (Kravalová and Žabokrtský, 2009; Straková et al., 2013) achieved reliable
results, generalized well on new data, and their performance received positive
ratings from human evaluators.5

3.2.2 Classification Granularity and Distribution

The trade-off between the demand for semantically valid and exhaustive classi-
fication on one side and technical complexity and annotation costs on the other
is usually one of the most interesting questions in the classification design dur-
ing the annotation process. Obviously, for a particular annotation design, one
classification may prove to be either too uninformative or too fine-grained.

One can see that, as the number of entity types in the annotation scheme
increases within a corpus of a fixed size, the frequency of marginal classes may
become too small to be learnable by supervised machine learning. On the other
hand, some linguistic phenomena may be better captured and therefore better
learnable in a more detailed classification because these phenomena then appear
in distinctive, recognizable contexts.

We carried out a number of experiments to evaluate the impact of classi-
fication granularity as well as the distribution of types and supertypes in the
corpus. Tables 3.4 and 3.5 illustrate the impact of classification granularity and
entity types distribution on the supervised machine learning system developed
by Straková et al. (2013). Table 3.4 presents a direct comparison of classification
granularity. Three granularity levels are evaluated: 7 supertypes, 42 types, and
a mapping to 4 CoNLL classes (PER, LOC, ORG, MISC). In order to ensure
a fair comparison between classification granularity levels, the annotation was
flattened (only the outer named entities were kept) and containers were ignored.
F-measure evaluation for types and supertypes on the original CNEC annotation
including embedded entities is shown in Table 3.5.

We presumed that the major challenge for supervised machine learning meth-
ods will be posed by the fine-grained, detailed second level entity type classi-
fication and expected the difficulty of recognizing automatically a much larger

5Licence issues unfortunately do not allow us to support this claim, as this additional eval-
uation was performed as an in-house project by third-party company.
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Classes Classes Evaluated

Trained 42 7 4

42 77.52% 82.18% 79.98%

7 54.16% 52.66%

4 52.13%

(a) flattened corpus without containers

Classes Classes Evaluated

Trained 42 7 4

42 74.82% 79.38% 75.89%

7 71.90% 71.40%

4 74.46%

(b) flattened corpus without
containers except that the container P

is considered an entity

Table 3.4: Evaluation of Straková et al. (2013) in CNEC 1.0 trained and evalu-
ated with a varying degree of classification granularity. To ensure fair evaluation
conditions, the corpus was flattened and F-measure evaluated in a CoNLL-like
fashion (outer entities only, no containers).

Data

Trained

Data Evaluated

original unbiased

types supertypes types supertypes

original 79.01% 82.72% 78.93% 82.63%

unbiased 78.72% 82.33% 78.80% 82.42%

Table 3.5: Evaluation of Straková et al. (2013) on two classification levels (su-
pertypes and types) and on original biased CNEC 1.0 and unbiased CNEC 2.0
release. The evaluation F-measure includes embedded entities and containers.

number of named entity types to be reflected in a noticeably lower F-measure.
Our concern was, that from the statistical point of view, the CNEC annotation
might be too detailed for the intended usage of the corpus as a training data for
supervised machine learning. Due to the limited size of the current version of the
corpus, some of the detailed classes are heavily underrepresented (see Fig. 3.2).

Surprisingly, it appears that the fine-grained classification is very well cap-
tured by the supervised machine learning method used by Straková et al. (2013).
Even more, both Table 3.4 and Table 3.5 show that training and predicting fine-
grained entity types and outputting only the coarser types leads to a performance
gain. We think one of the main findings of the CNEC project is the fact that
fine-grained annotation can be beneficial and is worth the while even though it
is more expensive in terms of annotation costs.
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Figure 3.2: Frequency of NE types and containers in Czech Named Entity Corpus
1.0. The area displayed for each NE type is proportional to the number of its
occurrences.

There is a striking performance drop in Table 3.4.a in case of first level clas-
sification (supertypes) and CoNLL-like mapping (4 classes). After a manual in-
spection of the prediction results, we hypothesized that this is caused by a rather
confusing classification of names on the first hierarchy level. Since first names
(<pf>) and surnames (<ps>) are annotated on the second hierarchy level but are
merged into one entity type <p> on the first level and in the CoNLL-like hierarchy,
it becomes too difficult for the system to recognize personal names’ boundaries
(<pf><ps> becomes <p><p>). Once we included one of the containers, <P> and
marked it as a single personal name entity, we achieved much more satisfying
results, which are shown in Table 3.4.b. A conclusion to this experiment is that
<p> – personal name entity on the first level hierarchy – is causing the first level
hierarchy to be uninformative.
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3.2.3 Embedding of Named Entities

While the CoNLL-2003 shared task corpus entities are non-embedded, CNEC
entities may be embedded and annotated with more than one type. Howev-
er, most automatic named entity recognizer algorithms are designed to predict
non-embedded entities. Therefore most of the above mentioned systems, includ-
ing those of Kravalová and Žabokrtský (2009) and Straková et al. (2013), have
to employ some kind of rule-based post-processing that combines different ma-
chine learning methods in order to recognize embedded entities and containers.
Straková et al. (2013) report about 2-3% F-measure gain in a container identifica-
tion post-processing step. To our knowledge, all Czech named entity recognizers
ignore entity embedding and allow each token to be part of at most one named
entity.

3.2.4 Representativeness and Bias

As described in Section 3.1.1, the Czech Named Entity corpus was created by
selecting sentences from the Czech National Corpus matching a certain regular
expression. As a result, the corpus is biased towards an unnaturally high frequen-
cy of named entities. Interestingly, the biased occurrence of named entities was
more of a problem from a theoretical point of view. We were concerned that the
named entity recognizer trained on biased data might produce suboptimal results,
favorizing recall over precision. This was proven not to be the case: To prevent
the bias in the data, a second release of CNEC has been prepared, enriched
with a section containing and appropriate number of (almost) named-entity-free
sentences, so that the new version of the corpus as a whole reflects the typical
NE occurrence frequency in random texts. The NE recognizer of Straková et al.
(2013) has been trained and evaluated on both CNEC versions for comparison.
Detailed results of this experiment are displayed in Table 3.5. The recognizer
performance is almost identical regardless of whether if was trained on CNEC 1.0
or CNEC 2.0, reaching slightly higher results when trained on CNEC 1.0.

3.2.5 Non-local Features

One of the main criticisms against the random selection of isolated sentences
in CNEC 1.0 is the fact that such selection makes impossible the utilization
of any classification features spanning more than the current sentence. Non-
local features, such as context aggregation, are reported to increase named entity
recognizers performance substantially (e.g. Ratinov and Roth (2009) report an
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Named Entity
Errors

Relative Named Entity
Errors

Relative
Recognized Gold Error Recognized Gold Error

gu ic 30 15.6 pf p_ 4 1.3
ps p_ 15 3.3 io ic 4 7.4
ps oa 15 3.3 gu oa 4 2.1
pf oa 12 3.8 gu io 4 2.1
gc gu 9 9.2 gu if 4 2.1
ic gu 8 6.8 ty oa 3 2.4
ic if 6 5.1 ps op 3 0.7
gu gq 6 3.1 ps ia 3 0.7
ps pm 5 1.1 ps gu 3 0.7
oa ic 5 4.9 pf ia 3 1.0
if ic 5 5.8 if op 3 3.5
ps ic 4 0.9 if io 3 3.5
ps gs 4 0.9 ic oa 3 2.5

Table 3.6: Most frequent errors made by the recognizer of Straková et al. (2013).
For every entity type misclassified by the recognizer, we present the number of
errors and a relative error, which expresses the ratio of the number of misclassi-
fications to the number of occurrences of the recognized entity.

F-measure gain of 2.97% on CoNLL 2003 test data). As we already pointed
out above, one way to retrieve larger context for the corpus sentences can be
a reconstruction of the sentence context from the original corpus.6

3.2.6 NER Error Analysis

The most frequent errors made by the recognizer of Straková et al. (2013) are
presented in Table 3.6. The most common recognizer error is a confusion of
cities (gu) with cultural/educational/scientific institutions (ic), whose names of-
ten contain a name of a city. A similar problem arises with personal names (pf

and ps) on one side and books and movies (oa) on the other. Many of the other
frequent misclassifications differ only in the second level of the NE hierarchy –
e.g. the system correctly recognizes an institution (first level) but not its exact
type (second level).

6Czech National Corpus, http://ucnk.ff.cuni.cz

http://ucnk.ff.cuni.cz
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Figure 3.3: Dependence of the recognizer F-measure on the corpus size.

3.2.7 Learning Curves

The effect of the corpus size on the recognizer error rate is displayed in Fig-
ure 3.3. As expected, the F-measure increases logarithmically with respect to the
increasing corpus size.

3.3 Czech Named Entity Corpus 2.0

After employing the Czech Named Entity Corpus 1.0 in a broad variety of both
academic and real world applications, we slightly modified the CNEC 1.0 NE
hierarchy: some of the initially proposed types were disregarded, while some type
were added in CNEC 2.0. A diagram of named entity type hierarchy proposed in
CNEC 2.0 is depicted in Figure 3.4.

The original set of types describing numerical and quantitative entities (c,
n and q) proved to be too detailed and in some cases, even difficult for human
annotator to distinguish. Therefore, entities of supertype c (bibliographic items
such as page numbers, volume numbers, figure numbers, etc.) and q (quantita-
tive expressions such as cardinal numbers, etc.) were all merged into hierarchy
supertype n (number expressions).

Heavily underrepresented types were merged into other suitable types, for
example tc (centuries) and tp (epochs) were merged into more general type no

(ordinal numbers); tn (minutes) and ts (seconds) were merged into nc (cardinal
numbers). Similarly, names of planets (gp) or animals (pb) were merged into
more general types.
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Types of NE

a - Numbers in addresses

g - Geographical names

i - Institutions

m - Media names

n - Number expressions

o - Artifact names

p - Personal names

t - Time expressions

ah - street numbers
at - phone/fax numbers

az - zip codes
gc - states

gh - hydronyms
gl - nature areas / objects

gq - urban parts
gr - territorial names

gs - streets, squares
gt - continents

gu - cities/towns
g_ - underspecified

ia - conferences/contests
ic - cult./educ./scient. inst.

if - companies, concerns...
io - government/political inst.

i_ - underspecified
me - email address

mi - internet links
mn - periodical

ms - radio and TV stations
na - age

nb - vol./page/chap./sec./fig. numbers
nc - cardinal numbers

ni - itemizer
no - ordinal numbers

ns - sport score
n_ - underspecified

oa - cultural artifacts (books, movies)
oe - measure units

om - currency units
op - products

or - directives, norms
o_ - underspecified

pc - inhabitant names
pd - (academic) titles

pf - first names
pm - second names

pp - relig./myth persons
ps - surnames

p_ - underspecified td - days

tf - feasts th - hours

tm - months ty - years

Figure 3.4: Two-level hierarchical classification of NEs proposed in CNEC 2.0.
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Finally, a completely new type me representing e-mail was introduced.
A complete list of NE type modifications follows below:

• overhaul the number entities

– entities of supertype c were merged into n; in order to accommodate
bibliographic entities a new type nb “vol./page/chap./sec./fig. num-
bers” was added

∗ cs→ oa

∗ cn→ nb

∗ cb→ nb

∗ cp→ nb

∗ cr → n_, or

– entities of supetype q were moved into n

∗ qc→ nc

∗ qo→ no

– low frequent entities of supertype n were removed and some renamed
and merged

∗ removed nm, nr, nw

∗ nc was renamed to ns

∗ np→ no

∗ nq → n_

– a few time entities were removed

∗ tc→ no

∗ tp→ no

∗ tn→ nc

∗ ts→ nc

• new entity me representing email was added

• gp entity was merged into g_

• mr and mt were merged into ms

• oc entity was merged into o_

• pb entity was merged into p_
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Furthermore, to improve the bias introduced by manual data selection during
creation of the Czech Named Entity Corpus 1.0, new data was annotated and
added: In order to provide annotations for the new me, as well as for the A
container, which is underrepresented in CNEC 1.0, 125 sentences with many
addresses and emails were added, 3000 sentences containing only a few named
entities were added so that the resulting corpus better represents the density of
named entities.

3.4 Conclusions

The Czech Named Entity Corpus 1.0 was the first publicly released named entity
corpus for the Czech language, and since 2007, it has stimulated the research
on named entities in Czech and has become the reference corpus to measure
the progress in Czech named entity recognition progress (see Ševčíková et al.
(2007a); Kravalová and Žabokrtský (2009); Konkol and Konopík (2011); Král
(2011); Konkol and Konopík (2013); Straková et al. (2013); Konkol and Konopík
(2014); Konkol et al. (2015); Konkol and Konopík (2015); Konkol (2015); Straková
et al. (2016) or Section 2.4).

In the annotation process and the subsequent evaluation with Czech named
entity recognizers, we concluded that fine-grained classification is beneficial and
worth the increased annotation costs. We did not experience major negative
consequences of the biased sentence selection in the first CNEC release. However,
there is a presumable Czech NER performance loss due to the fact that the
sentences in CNEC had been randomly selected from a larger sample and are
therefore isolated, which makes the utilization of non-local features impossible.
Also, owing to the lack of paragraphs or documents, the corpus is disqualified
for named entity linking annotation. Nonetheless, we already noted above that
a reconstruction of the sentence context from the original corpus7 is possible.

Following our experience with CNEC 1.0, we released CNEC 2.0 in 2014, with
a slightly modified NE hierarchy and an extended number of sentences annotated
in the fourth round to achieve a more representative sample.

7Czech National Corpus, http://ucnk.ff.cuni.cz/

http://ucnk.ff.cuni.cz/
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Chapter 4

Efficient Log-linear Modeling and
Softmax Neural Networks

This chapter describes our initial experiments with artificial neural networks when
we were choosing methods to be later used in our in-house software solutions
for NE recognition (NameTag, Straková et al. (2014)) and dependency parsing
(Parsito, Straka et al. (2015)). Although this work was never published, we
believe it is worthwhile reading and include it in this thesis, because it explains
why we choose artificial neural networks with a hidden layer and softmax output
function in our systems.

This chapter is somewhat more technical than the previous chapters and as-
sumes the basic knowledge of language modeling (Manning and Schütze, 1999)
and artificial neural networks (Rojas, 1996), although the basic terminology is
also explained in Sections 4.2,4.3 and 4.4.

The result of this research and our contribution is our own implementation of
a robust, scalable and extremely efficient neural network classifier which is being
successfully used in our in-house software NLP solutions: NameTag (Straková
et al., 2014) and Parsito (Straka et al. (2015), with some modifications to fit the
dependency parsing task).

4.1 Introduction

This chapter presents a feed-forward artificial neural network with softmax output
function employed as a sequential tagger for large-scale NLP tasks. In a num-
ber of experiments in three commonly known NLP tasks, we compare standard
log-linear models (for an explanation of the terminology used in this chapter,
please read Section 4.2) to feed-forward neural network, and we also compare

37
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several log-linear model optimization methods. We report that on-line stochastic
gradient descent optimization proved to be the most robust and scalable opti-
mization method for large NLP tasks compared to batch optimization methods
and furthermore, that softmax neural network with hidden layer outperformed
the log-linear models in all tasks and languages, both in accuracy and runtime
performance.

Our contribution follows two goals:
Firstly, we verify that on-line stochastic gradient descent optimization com-

monly used in neural networks is better suited for large-scale NLP problems than
batch algorithms, achieving higher accuracy and much faster running times than
batch algorithms. Among these, especially L-BFGS (Nocedal, 1980; Liu and No-
cedal, 1989) has become the method of choice, due to an extensive comparison
published by Malouf (2002), mainly because it converges in substantially lower
number of steps than iterative scaling (GIS and IIS, Darroch and Ratcliff (1972);
Della Pietra et al. (1997); Goodman (2002); Jin et al. (2003)), and it is both
fast and efficient. However, it has been already observed that for large-scale and
sparse-data problems, which natural language problems often are, stochastic gra-
dient descent tackles the estimation problem even in units of iterations (Zhang,
2004), and might therefore be considered as scalable estimation method.

Secondly, our main contribution is a careful implementation of a hidden layer
neural network to capture non-linear hypotheses about the data. The imple-
mentation outperforms the log-linear models as expected, both in accuracy and
runtime performance.

We performed the evaluation on three problems: Named Entity Recogni-
tion CoNLL-2003 shared task, multilingual Semantic Role Labeling CoNLL-2009
shared task and Part of Speech Tagging on Wall Street Journal, utilizing the
associated complex measures (F1, Semantic F1 Labeled Score and accuracy, re-
spectively).

4.2 Statistical Modeling

We began our explanation of mathematical modeling of the empirical truth in Sec-
tion 2.2, in which we introduced the concept of machine learning by the means of
statistical mathematic modeling. We described how the automatic system grasps
the linguistic knowledge by constructing a statistical mathematical model from
the observable truth, that is, from training data. Statistical modeling is an inte-
gral part of most automatic language processing systems, such as speech recog-
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nition, machine translation, question answering, handwriting recognition, and so
on. In our case, we aim to construct a statistical model to recognize and predict
named entities in text.

Our goal is to define a probabilistic distribution, which would predict the
probability P (Y |X; θ) of an event Y given an observation X, where θ are the
model parameters to be estimated.

For example, we wish to predict the type of a named entity y ∈ Y , such
as “person”, “location”, “organization” and “not an entity”, for a given text
“Václav Havel” in a context “Václav Havel served as the first president of the
Czech Republic.”

In the following Sections 4.3 and 4.4, we describe two approaches to estimate
the model parameters θ in P (Y |X; θ): log-linear modeling (Section 4.3) and
artificial neural networks with softmax output layer (Section 4.4).

4.3 Log-linear Models

The variableX in the model P (Y |X; θ) is sometimes called the context. In classifi-
cation tasks, such as named entity recognition, it consists of classification features
fi(y, x) (see Section 2.2.3), for example information about the word capitaliza-
tion, its presence in gazetteers, its part-of-speech, etc. We aim to mathematically
define the model P (Y |X; θ) in terms of available classification features fi(y, x)
such that the likelihood of the training data is maximized in the model. One
possible way of defining P (Y |X; θ) is to use the maximum entropy principle – as
proven in Berger et al. (1996), when considering models which keep mean values
of fi, the one with maximum entropy (i.e., the most general one) can be expressed
as:

P (Y = y|X = x; θ) = 1
Z

exp
(∑

i

θifi(y, x)
)

(4.1)

where Z is the normalization term:

Z =
∑
y

exp
(∑

i

θifi(y, x)
)

(4.2)

Equation 4.1 defines a log-linear model, because if we take logarithms on both
sides, then logP is a linear combination of the weighted classification features.
In this sense, the term log-linear model will be used throughout this chapter.



40 CHAPTER 4. EFFICIENT LOG-LINEAR MODELING AND SOFTMAX NNS

4.3.1 Parameter Estimation in Log-Linear Models

For the log-linear model parameter estimation, three wide-spread maximum en-
tropy optimization algorithms are used:

• GIS – generalized iterative scaling Darroch and Ratcliff (1972) (and its
variant, improved iterative scaling, IIS, Della Pietra et al. (1997)), is an
early algorithm to estimate log-linear model parameters and it is based
on expectation-maximization principle. It is known to be relatively slow,
therefore other estimation methods were proposed.

• L-BFGS – limited memory BFGS (Nocedal, 1980; Liu and Nocedal, 1989),
the abbreviation stands for the authors’ names Broyden-Fletcher-Goldfarb-
Shanno. It is a numerical optimization procedure, a quasi-Newton method,
which iteratively converges to the global minimum of the optimized mul-
tivariate function in a high-dimensional space which corresponds to model
parameters. The mathematical means to navigate in the space of possible
updates is based on second derivatives, the Hessian matrix. Of this matrix,
only a dense approximation needs to be saved, thus yielding a limited-
memory variant of the BFGS algorithm.

• Dual coordinate descent method is another method of finding a minimum
of a function, but it is based on cyclically repeated updates along each
dimension, one at a time, thus avoiding the need for derivatives, which are
computationally expensive.

An extensive comparison of multiple methods for estimating maximum en-
tropy models is given for example in Malouf (2002). The author concluded that
(at that time) widely used iterative scaling algorithms performed poorly in terms
of time, and that the limited-memory second-order methods outperformed the
other estimation methods. Another comparison is given in Minka (2003). Unlike
these comparisons, we do not compare the estimation methods by achieved log-
likelihood, but by an overall performance in large-scale practical natural language
problems.

4.4 Neural Networks

Artificial neural networks have been used in the NLP field for decades, for tasks
such as POS tagging (Schmid, 1994) or parsing (Henderson, 2003; Titov et al.,
2009; Socher et al., 2011), as they have many properties with the potential to
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(A) (B)

Figure 4.1: Neural network diagram: (A) neural network with direct connections
from input neurons to output neurons, (B) neural network with a hidden layer.

make them more powerful compared to standard log-linear models (Section 4.3).
Main motivations to use neural networks include their robustness, scalability and
especially the ability to infer higher-order features from their inputs if hidden
layers are added (e.g., Collobert et al. (2011b)).1

An artificial neural network is an interconnected group of nodes, so called
neurons, which together form a computational model. In Figure 4.1.A, we can
see a simple neural network with an input layer and an output layer. Each
neuron accepts a real-valued number on input and computes an output using its
activation function. If two neurons are connected, the output from one neuron is
used as an input to the other neuron.

Artificial neural networks are being used for a broad variety of tasks. In the
case of named entity recognition, we can use them as predictors for probabili-
ty of a word sequence being a named entity. The input of the artificial neural
network in this case are the real-valued classification features (see Section 2.2.3).
The output of an artificial neural network for a classification task such as named
entity recognition can be one neuron with categorical values (“person”, “loca-
tion”, “organization”, or “not an entity”) or it can be a layer of output neurons,
in which each output neuron represents each categorical value (“person”, “loca-
tion”, “organization”, or “not an entity”) and its real-valued activation repre-
sents the likelihood of the respective categorical value of the neuron. From this
notion, it takes only a step to an artificial neural network with softmax output
layer.

1I wrote this text in 2014. Originally, the text said here: However, neural networks are still
not used widely in the NLP community. How amusing.
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4.4.1 Softmax Neural Network

In this comparison, we propose replacing a standard log-linear model with a feed-
forward neural network with softmax output function. Because our goal is to
estimate probability distributions (Equation 4.1), the output layer of the network
uses the softmax activation function (Bridle, 1989, 1990), a commonly known
activation function producing probability distributions. If we denote qj as the
sum of inputs of an output neuron j, the output of this neuron is:

outputj = exp(qj)∑#outcomes
i=1 exp(qi)

.

It can be verified that a simple feed-forward neural network with softmax
output function computes the Equation 4.1. The difference between log-linear
model and a neural network is in the numerical algorithm used to approximate
the Equation 4.1. The estimation algorithms for the log-linear models can be
found in in Section 4.3.1 and for artificial neural network in Section 4.4.3.

4.4.2 Neural Network Architecture

In both proposed neural networks (Figure 4.1), the input neurons directly repre-
sent F classification features fi(x) of the input instance (training event) x ∈ X.
The output neurons correspond to values of categorical target variable y ∈ Y

(e.g., part of speech), and together they define the categorical distribution of the
target variable y in the current context. Their output values are computed using
the softmax activation function (Section 4.4.1).

The first network, displayed in Figure 4.1.A, consists of direct connections
between all input neurons and all output neurons, and together with the softmax
output function, it yields a direct parallel to a log-linear model (Bridle, 1989,
1990).

The second network, shown in Figure 4.1.B, contains an additional layer of
neurons, in addition to the input layer and the output layer. This additional
layer, usually called a hidden layer, is a standard part of many implementations
of the neural network architecture and allows the inference of non-linear features
from the input layer.

The activation function in the hidden layer neurons is the logistic function,
one of the most frequently used neural network activation functions. The logistic
function is a sigmoid function defined by the formula σ(x) = 1/(1 + e−x).

One of the arguments against the common usage of neural networks is that
the addition of a hidden layer slows down training convergence, and therefore,
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the additional training cost and increased model complexity is not worth the
potential performance gain.

We argue that with careful implementation of neural network optimization
methods and in combination with last-decade advances in information technolo-
gies, the computational power is sufficient for a comfortable experimental proce-
dure even on a personal computer. Our second argument in favor of higher-order
models is a substantial performance gain compared to log-linear models.

4.4.3 Parameter Estimation in Neural Networks

Our goal is to obtain a network that maximizes the likelihood of the training
data. Namely, we use negative log likelihood as the loss function which we try to
minimize:

L(θ) = −Ex,y∼training data logP (y|x; θ) (4.3)

θ = argmin
θ∗

L(θ∗) (4.4)

We train the weights of the network using the stochastic gradient descent
(SGD). In SGD, the loss function (the negative log likelihood in our case), which is
usually an expectation over the whole training data, is approximated by using just
one sample (or several samples, called a minibatch) from the training data. Then,
parameters of the model are updated to lower the loss function, by adjusting their
value in a direction opposite to the partial derivative of the loss function:

θi ← θi − λ
∂L(θ)
∂θi

(4.5)

The learning rate λ controls the size of the update. In our case, we use exponen-
tially decreasing learning rate.

As proven by Bottou (1998), SGD converges to a global optimum if the loss
function is convex and a suitable sequence of learning rate factors is used. If the
loss function is not convex, SGD converges at least to local optimum (again, if
a suitable sequence of learning rate factors is used).

To reduce overfitting, we use Gaussian prior (Chen and Rosenfeld, 1999),
which corresponds to L2-regularization term. The SGD update rule then be-
comes:

θi ← θi − λ
∂L(θ)
∂θi

− σ2θi (4.6)

We initialize the weights in the network 4.1.A to zero and the weights in
the network 4.1.B randomly according to normal distribution. In each training
iteration, we process the training data in random order.
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Because of random initialization, the training algorithm produces different
weights on different runs. In our experiments, all results are obtained with a fixed
seed number to ensure reproducibility between runs, unless stated otherwise.

Note that it is important to represent the input data sparsely, listing non-zero
classification features only. This optimization is crucial for performance, because
although the input layer has usually hundreds of thousands of classification fea-
tures, often only several dozens of them are non-zero in NLP tasks. Although this
representation is common in log-linear model optimization methods, only a few
artificial neural network implementation allow it.

Time and Memory Complexity

We discuss time and memory complexity of the individual nets (4.1.A and 4.1.B)
separately. Let F denote the number of unique classification features, C num-
ber of unique outcomes, E number of training events, H the size of the hidden
layer (number of hidden neurons) and N size of training data, i.e., the sum of
classification features present in the training data.

The network with direct connections takes O(FC) space, and one iteration of
training runs in O(NC) time. The network with hidden layer occupies O((F +
C)H) space and one iteration of training requires O((N + EC)H) time.

Dealing with Unseen Weights

The size of the network 4.1.A can be much larger than the size of the training data,
which happens when the number of both the unique classification features and
outcomes is large (that is the case for example in predicate sense classification,
see Table 4.1).

In this case, we can employ the following approximation, which is used by
many implementations of maximum entropy estimators. We denote a weight
corresponding to a feature-outcome pair appearing at least once in the training
data as a seen weight. The other weights will be called unseen weights.

Instead of representing both the seen and unseen weights, we can represent
only the seen weights. This reduces the size of the network 4.1.A to O(N) and
its training time to O(N +EC), which is essentially optimal. However, when all
unseen weights are ignored (which is a common practice2), the accuracy of the
estimator decreases. This behavior is caused by the fact that corresponding fea-
ture never contributes to the outcome. (Ignoring the unseen weights is equivalent

2Both the Maximum Entropy Modeling Toolkit and OpenNLP ignore unseen weights (see
Section 4.5 for references).
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Dataset
Training

Devel.
Instances

Test
InstancesInstances Outcomes

Feature
Features

Unique
Templates Features

NER 204,567 11 184 13,711,203 717,239 51,578 46,666
SRL predicate 86,234 2,777 37 3,016,704 991,412 3,084 5,108
SRL roles 2,477,524 54 114 255,028,986 12,363,307 91,395 144,368
POS 912,344 45 18 16,422,192 256,946 131,768 129,654

Table 4.1: English dataset properties of all case studies.

to setting them to zero.) Indeed, setting the value of unseen weights to a small
negative constant improves the accuracy as we discuss in Section 4.6.3.

4.5 Case Studies

We have assessed the models in an extrinsic way by incorporating each of the
particular implementations into one of the following three tasks: Named Entity
Recognition (NER) CoNLL-2003 shared task (Tjong Kim Sang and De Meulder,
2003), Semantic Role Labeling (SRL) CoNLL-2009 shared task (Hajič et al., 2009)
and Part-of-Speech (POS) Tagging on the Wall Street Journal part of the Penn
Treebank (Marcus et al., 1993). All these three tasks are commonly known and
useful natural language processing applications, are non-trivial, and for each of
them, a publicly available dataset exists.

We carried out our case studies in multiple languages: German and English for
NER; Catalan, Chinese, Czech, English, German and Spanish for SRL;3 and En-
glish for POS Tagging. We therefore evaluated the maximum entropy estimators
on 9 datasets. As an illustration, Table 4.1 summarizes quantitative properties
of the English datasets in terms of training, development and test instances and
also of (unique) features and classification outcomes.

All solutions follow this scheme: The log-linear model is used to estimate the
full distribution P (Y |X; θ), that is, it provides a probability of each classification
outcome y ∈ Y given a context x ∈ X. The estimated probabilities are then
globally optimized either via the Viterbi algorithm (Viterbi, 1967) (dynamic pro-
gramming) for NER and POS Tagging or via Linear Programming for SRL (Che
et al., 2009; Punyakanok et al., 2004).

In this place, we take a step aside to point out that we use the term dynamic
programming and Viterbi algorithm rather interchangeably. In a computer sci-
ence context, a Viterbi algorithm is basically a version of dynamic programming.

3The CoNLL 2009 shared task included also Japanese, which is now unavailable due to
license limitations.
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On the other hand, many computational linguists prefer to denote this kind of
decoding as “the Viterbi algorithm”.

For the log-linear model estimation, we have used three wide-spread maximum
entropy modeling toolkits which implement different optimization algorithms:

• Maximum Entropy Modeling Toolkit for Python and C++ by Zhang Le4

using L-BFGS,

• OpenNLP Maximum Entropy Package,5

• LIBLINEAR Package6 (Fan et al., 2008) using dual coordinate descent
method

and compared them with our own implementation of the suggested neural net-
work log-linear model using stochastic gradient descent (denoted NN-simple in
Section 4.6).

We have considered several stopping criteria for these methods. Clearly, one
common stopping criteria may be suboptimal for a particular task and trainer
combination. In search for a stopping criterion that would ensure fair conditions
for each implementation, we carried out an adaptive grid search for optimal num-
ber of iterations and smoothing parameters for each trainer and for each task and
language pair. We performed the optimization experiments on a computational
cluster with the overall computing capacity of 600 processor cores. The optimal
parameters for each method (that is, number of iterations and Gaussian σ2) are
noted in Appendix A.1.

There was one exception in the case of the OpenNLP library, because it im-
plements the GIS method which would need computational power exceeding our
capacity. We thus only selected optimal values for the English language. We also
had to set the upper limit of iterations to 500 although more iterations might
still produce better evaluation results.

Our second set of experiments assessed the performance of hidden layer net-
work (denoted NN-hidden layer in Section 4.6) and compared it with simple
neural network (analogous to log-linear model, NN-simple). We do not compare
our neural network implementation to other neural network toolkits, because
we could not find any suitable. We inspected several popular toolkits (Neural
Network Toolbox, FANN, NICO Toolkit, Encoq, Neuroph, neuralnet), but only

4http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html
5http://opennlp.apache.org/
6http://www.csie.ntu.edu.tw/~cjlin/liblinear/

http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html
http://opennlp.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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few provided the softmax activation function and none could represent the input
sparsely, which would decrease the performance by a factor of several thousands.7

In all three tasks, we implemented feature templates used in the respective
literature. In Sections 4.5.1,4.5.2 and 4.5.3, we refer to the original authors de-
scribing those feature templates. We opted for rather rich feature sets and did not
perform any manual feature engineering. The full lists of classification features
can be found in Appendix A.2.

In the following Sections 4.5.1,4.5.2 and 4.5.3, we describe the solutions adopt-
ed for each of the case studies in detail. The results reflect the situation of state
of the art in 2014.

4.5.1 Named Entity Recognition

Our first case study involves named entity recognition. We tested the selected
maximum entropy estimators (Sections 4.3.1 and 4.5) on the CoNLL-2003 shared
task English and German datasets (Tjong Kim Sang and De Meulder, 2003).
In this task, four classes are predicted: PER (person), LOC (location), ORG
(organization) and MISC (miscellaneous).8 It is assumed that the entities are non-
embedded, non-overlapping and annotated with exactly one label. We evaluate
our system with the publicly available evaluation script conlleval.9

The winning system of the CoNLL-2003 shared task was Florian et al. (2003)
with F1 88.76 for English and 72.41 for German. Current state-of-the-art for
English (90.80) was reported by Ratinov and Roth (2009) and for German (78.20)
by Faruqui and Padó (2010).

We reproduced most of the methodology from Ratinov and Roth (2009) ex-
cept for the estimator. Because our goal is to compare standard log-linear model
estimation methods such as GIS and L-BFGS, to artificial neural networks with
softmax layer, estimated via SGD, we employ these predictors instead of aver-
aged perceptron (Collins, 2002), which was used in Ratinov and Roth (2009).
The log-linear or neural network estimator outputs for each sequence of words its
probability of being or not being a named entity using a selected set of classifica-
tion features. The classification feature templates utilize results of morphological
analysis, two-stage prediction, word clustering and gazetteers. The list of clas-

7This chapter was written in 2014 when we carried out our initial experiments and the
situation has changed since then: for example, torch and TensorFlow were released.

8In order to handle multi-word named entities, we used a modified “BILOU-style” encod-
ing, in which we use just 11 classes instead of 17 defined by the usual BILOU encoding, see
Sections 2.2.2 and 5.2.

9http://www.cnts.ua.ac.be/conll2000/chunking/output.html

http://www.cnts.ua.ac.be/conll2000/chunking/output.html
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sification features can be found in Appendix A.2. The predicted probability
distribution can already be used to recognize named entities (the output of the
system would be the categorical value y ∈ Y which achieves the largest proba-
bility), however, this approach considers each sequence of words as an isolated
one. A common practice in NLP is to use the probability distribution in a global
context, i.e. a sentence. For each sentence, a Viterbi (Manning and Schütze,
1999) trellis is built and the predicted probabilities are used to estimate the trel-
lis transitions. The recognizer uses dynamic programming (Viterbi) to decode an
optimal sequence labeling using probabilities estimated either by the log-linear
model or an artificial neural network. The selection criterium for the optimal
sequence is such that maximizes the joint probability over the path in the trellis.

In this place, we would like to add a somewhat broader note: It is usually
very beneficial to design the global optimizer architecture in such a way that the
selected optimalization criterium is exactly the same or corresponds closely to the
evaluated measure and that the improving update steps directly correspond to
improvements of the overall selected score. This is not always straightforward, as
the selected measure may be complex. Let’s for example mention the structural
F-measure for hierarchical named entities (Section 2.3) or the semantic F1 labeled
score (Section 4.5.2). A common workaround for this problem is to decode the
predicted probabilities globally to maximize the joint probability of the sequence
via dynamic programming. An intriguing example of a globalizing approach
which optimizes the whole sequence with respect to the NER task is Lample
et al. (2016), which uses an artificial neural network combined with CRF layer to
decode whole sentences, thus gaining a determining advantage over our framework
described in Chapter 7 (Straková et al., 2016).

4.5.2 Semantic Role Labeling

As the second case study, we have chosen the Semantic Role Labeling CoNLL-
2009 shared task (Hajič et al., 2009), the closed challenge (without external data).
The task is to predict semantic dependencies based on the provided (automati-
cally predicted) morphological and syntactic analysis. The first part of the task is
to determine predicate senses, i.e., to perform word sense disambiguation (WSD)
on the predicates, followed by the core of the task – finding and labeling semantic
dependencies of the predicates in the sentence, known as semantic role label-
ing (SRL). Both subtasks, predicate classification and semantic role labeling, are
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then evaluated with the CoNLL-2009 shared task evaluation script10 for mea-
suring Semantic Labeled F1 score. The performance of the system is evaluated
with respect to a test set (gold data) by computing the recall, precision and F1
measure (2.3) of matched arcs in the semantic trees. The measure is labeled, that
means the type of the arc is considered and must be also predicted correctly.

The best participants’ semantic F1 labeled scores were 80.32 for Catalan Zhao
et al. (2009), 78.60 for Chinese Björkelund et al. (2009), 86.51 for English Che
et al. (2009), 79.71 for German Björkelund et al. (2009) and 80.46 for Spanish
Zhao et al. (2009).

We reproduced the methodology from Che et al. (2009) and Zhao et al. (2009).
For the first part of the task, the predicate sense classification, one large model
for all predicate senses is built. For the semantic role labeling, probabilities of
each word candidate (to be a predicate modifier) are estimated either with a
log-linear model or with an artificial neural network with softmax output layer.
The estimated probabilities are then used in a global decoder employing linear
programming (LPsolve).11

4.5.3 Part of Speech Tagging

The third case study evaluates the classifiers on the part-of-speech tagging task,
using the venerable Wall Street Journal corpus which is a part of the Penn Tree-
bank Marcus et al. (1993).12 The English language was trained on the standard
training portion (Sections 0-18) of the Wall Street Journal part of the Penn Tree-
bank, the system was tuned on the development set (Sections 19-21 in PTB/WSJ
in English) and tested on the testing section (Sections 22-24 in PTB/WSJ in En-
glish). The state-of-the-art accuracy achieved without external data is 97.33 by
Shen et al. (2007).13

We partially reproduced Spoustová et al. (2009), which is based on averaged
perceptron by Collins (2002), except that instead of averaged perceptron, we
utilized we used either a maximum entropy model to estimate the posterior prob-
abilities or an artificial neural network with softmax output layer, and decoded
the POS tags with the Viterbi algorithm.

10http://ufal.mff.cuni.cz/conll2009-st/scorer.html
11http://lpsolve.sourceforge.net/. Our preliminary experiments on English develop-

ment data show that linear programming decoding adds about 1% to the semantic labeled F1

measure compared to probability prediction without any (global) decoding.
12LDC Catalog No. LDC99T42.
13State of the art, as of 2014.

http://ufal.mff.cuni.cz/conll2009-st/scorer.html
http://lpsolve.sourceforge.net/
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English German
Maximum Entropy Toolkit by Zhang Le (L-BFSG) 87.64 75.93
The OpenNLP Maxent (GIS) 87.46 75.49
The LIBLINEAR package (dual coordinate descent) 88.02 76.54
NN-simple (SGD) 88.46 76.57
NN-hidden layer (SGD) 88.64 77.28

Table 4.2: F1 score in Named Entity Recognition CoNLL-2003 shared task.

Catalan Chinese Czech English German Spanish
Maximum Entropy Toolkit

76.92 75.69 85.98 81.90 77.00 78.04
by Zhang Le (L-BFGS)
The OpenNLP Maxent (GIS) 64.08† 74.21† 72.24† 79.27† 73.03† 63.98†

The LIBLINEAR package
77.40 76.70 N/A† N/A† 77.92 78.94

(dual coordinate descent)
NN-simple (SGD) 77.29 76.53 86.25 83.01 77.78 78.79
NN-hidden layer (SGD) 77.47 77.42 86.75 83.82 78.79 79.41

Table 4.3: Semantic F1 labeled score in Semantic Role Labeling CoNLL-2009
shared task. The results marked with † are explained in Section 4.6.1.

4.6 Results and Discussion

The results for Named Entity Recognition task are shown in Table 4.2, for Se-
mantic Recognition task in Table 4.3 and for Part of Speech Tagging task in
Table 4.4.

In all cases, the results fall well within the range of the top shared task par-
ticipant results and are competitive to the state-of-the-art results. We adopted
standard classification features from the respective literature without any manual
feature engineering. There is, however, some a priori linguistic knowledge includ-
ed in the fact that these classification features are task-specific and commonly
used. The focus of our contribution lies in the comparison of estimation methods
and models as they perform on the same, fixed classification feature set.

There appears a similar tendency in our case studies: statistical model trained
with stochastic gradient descent (NN-simple) achieves consistently similar or bet-
ter results compared to the log-linear estimators. In a comparison of a linear
and non-linear model (NN-simple vs. NN-hidden layer), higher-order hypothesis
achieved by the hidden layer in a neural network (NN-hidden layer) substantially
adds to the improvements in all our case studies.
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English
Maximum Entropy Toolkit by Zhang Le (L-BFGS) 96.92
The OpenNLP Maxent (GIS) 96.85
The LIBLINEAR package (dual coordinate descent) 96.97
NN-simple (SGD) 97.00
NN-hidden layer (SGD) 97.12

Table 4.4: Accuracy on Part of Speech Tagging of Wall Street Journal without
external data.

4.6.1 Semantic Role Labeling Dataset Issues

The results of the Semantic Role Labeling task, shown in Table 4.3, deserve
further explanation. The OpenNLP estimator results noticeably differ from the
others and some results of LIBLINEAR estimator are missing. Both these is-
sues are caused by the fact that the SRL predicate sense dataset contains very
large number of outcomes (2,777 for English as listed in Table 4.1). Although
we could have altered the SRL solution to decrease the number of outcomes,
because the potential senses are limited by the given verb lemma, we decid-
ed to keep it as a test of the computational robustness of the estimator. Fur-
thermore, training the word senses classification in a joint model overcomes the
inevitable data sparsity, should the models be split into one per each verb lem-
ma.

As discussed at the end of Section 4.4.3, the ability to represent only the seen
weights greatly improves the robustness.

4.6.2 Convergence Rate

Apart from the estimator accuracy, convergence rate can be crucial to the whole
experimental procedure. To demonstrate the convergence rate, we measured the
development data accuracy in relation to training time.14 The elapsed time of
all implementations was measured on an AMD Opteron CPU with 32 GB mem-
ory. The convergence comparison for the Named Entity Recognition task in the
English language is presented in Figure 4.2. For every estimator, the plot shows
accuracy after several training iterations, always starting with the accuracy after
the first one. The exception is the LIBLINEAR package, where various values

14We measured development data accuracy (rather than overall F1 measure) because it can
be calculated and printed out after each training step from inside the training procedure without
the need to save and reload the model and to carry out the decoding.
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Figure 4.2: Convergence rate including the startup time on English Named En-
tity Recognition CoNLL-2003 shared task. The graph shows development data
accuracy after elapsed user time.

of penalty parameter C were used to obtain results with different accuracy. The
convergence results for other data sets were very similar, and we do not present
them.

Both variants of our neural-network-based system converge to a competitive
accuracy in a very fast rate and in this sense exceed the compared maximum
entropy implementations.

Furthermore, the training time of a neural network with hidden layer is almost
as fast as that of a simple neural network, with a negligible convergence slow-
down.

4.6.3 Effect of Unseen Weight Value

As described in Section 4.4.3, the value of unseen weights is important in case
only the seen weights are present in the model. Figure 4.3 shows the effect of the
value of unseen weights. Interestingly, an estimator with an appropriate setting
of the unseen weight value can outperform an estimator representing both the
seen and unseen weights as well as an estimator which ignores them.
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Figure 4.3: The effect of unseen weights on the score of the POS Tagging task
(top) and the NER task (bottom). The dotted horizontal lines denote the score
achieved with both seen and unseen weights of network 4.1.A (with random seeds),
and the solid horizontal line is the average. The points correspond to neural
network estimators, which represent only seen weights and the value of unseen
weights is set to a constant.
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4.7 Conclusions

We have described and thoroughly evaluated our own implementation of an arti-
ficial neural network classifier with softmax output layer. Its main advantages are
robustness on large datasets, excellent training time and competitive accuracy.
The neural network based classifier achieves better performance and faster imple-
mentations and has already been successfully used in our in-house NLP software:
NameTag (Straková et al., 2014), a named entity recognizer, and Parsito (Straka
et al., 2015), a dependency syntax parser.



Chapter 5

Czech Named Entity Recognizer
with Softmax Neural Network

In this chapter, we describe a named entity recognizer for the Czech language
with a softmax neural network and sentence-level dynamic programming decod-
ing, which was published in Straková et al. (2013) and represented Czech state-
of-the-art until Straková et al. (2016), in which it was surpassed by a deeper NN
recognizer described in Chapter 7. NameTag1, a free software for named entity
recognition (Straková et al., 2014) is based on these results and is described in
Chapter 6. The recognizer reaches 82.82 F-measure on the Czech Named Entity
Corpus 1.0 and substantially outperforms previously published Czech named en-
tity recognizers (Ševčíková et al., 2007a; Kravalová and Žabokrtský, 2009; Konkol
and Konopík, 2011). On the English CoNLL-2003 shared task, we achieved 89.16
F-measure, reaching comparable results to the English state of the art (Ratinov
and Roth, 2009). The recognizer predicts named entity label probability distri-
bution with a softmax neural network and then decodes the optimal sequence
labeling with the Viterbi algorithm (dynamic programming). The classification
features utilize automatic morphological analysis, two-stage prediction, word clus-
tering and gazetteers (see Chapter 2).

5.1 System Overview

A simple overview of our named entity recognizer is described in Figure 5.1. The
system is based on softmax neural network classifier and then a Viterbi decoder
globally optimizes the labels for the sequence using the estimated probability
distribution on a sentence level.

1http://ufal.mff.cuni.cz/nametag

55
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Figure 5.1: System overview

First, the softmax neural network predicts for each word in a sentence the
full probability distribution of its classes and positions with respect to an entity
(BILOU encoding, see Sections 2.2.2 and 5.2). Consequently, a global optimiza-
tion via dynamic programming determines the optimal combination of classes
and named entities chunks (lengths). This procedure deals with the innermost
embedded entities and the system outputs one label per entity. Finally, the Czech
system output is post-edited with four rules to add containers (see Section 3.1.2).2

The whole pipeline runs two times, utilizing the output from the first stage
as additional classification features in the second stage.

5.2 Softmax Neural Network Classifier

In the first step, the softmax neural network task is to predict for each word the
named entity type and position within the entity. The positions are described
with a BILOU scheme (Ratinov and Roth (2009), see Section 2.2.2): B for multi-
word entity Beginning, I for Inside multiword entity, L for Last word of multiword
entity, U for Unit word entity and O for Outside any entity. This scheme results
in a large combination of predicted classes (4× |C|+ 1, where |C| is the number
of classes, 4 is for B-X, I-X, L-X, U-X and +1 for O).

Our classifier is our own implementation of an artificial neural network with
a softmax output layer without a hidden layer, see Figure 4.1.A in the previous
Chapter 4. For the classifier training, we implemented our own stochastic gradient
descent parameter estimation (Chapter 4).

Interestingly, in our first-step experiments we used a third-party maximum
entropy classifier, Maximum Entropy Modeling Toolkit for Python and C++3 to

2We automatically selected a subset of embedding patterns appearing in the training data
by sequential adding the rule that increased F-measure the most. There are no such rules for
English because the dataset does not contain embedded entities.

3http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html

http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html
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predict the labels probability distribution for each token. After experiments with
numerous third-party toolkits and libraries, we implemented our own robust and
efficient neural network classifier as described in Chapter 4.

In this place, we find it important to note that a simple artificial neural
network with a softmax output layer and without a hidden layer, such as the
one depicted in Figure 4.1.A, is computationally equivalent to maximum entropy
classifier. Both models differ only in the training algorithm which optimizes the
model parameters (see Chapter 4).

5.3 Decoding

We search for the optimal combination of named entities in the whole sentence
with dynamic programming. As the initial values, the probabilities estimated by
the artificial neural network with a softmax neural layer are used. As mentioned
in Chapter 4, we consider the Viterbi algorithm a kind of dynamic programming
and use these algorithm names rather interchangeably. In our implementation of
the Viterbi algorithm, we prune the impossible trellis transitions (e.g., once B-X
starts, it can be followed either by I-X or L-X). Using this observation we can
decode a whole sentence using dynamic programming with O(NC) complexity,
where N is the number of words in the sentence.

Also, we were concerned with large growth of classes predicted by the classifier
in the first step. With the full BILOU scheme (see Section 2.2.2), there are 17
classes for English and 169 classes for Czech. With the previous observation, we
simplified the BILOU scheme from full B-X, I-X, L-X, U-X and O, to B-X, I,
L, U-X and O. With this simplified scheme, the number of predicted classes is
nearly halved.

5.4 Classification Features

We use a typical set of classification features for the NE task:

• current word form

• current word lemma,

• current part-of-speech tag

• current chunk (only English)

• the previous items applied to surrounding words in window ±2
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• various orthographic features (capitalization, punctuation, lowercase and
uppercase form of the word)

• suffixes and prefixes of length 4

• regular expressions identifying possible year, date and time (in Czech).

Feature selection was performed by sequentially (manually) adding new classi-
fication features to the feature set; we retained those features that have improved
the classification based on development data. In English, we used forms in most
of the classification features, while in Czech, we had to use lemmas because of
data sparsity due to the fact that Czech is a morphologically rich language. The
full list of classification features set used in our classifier can be found in Ap-
pendix A.2.

5.4.1 Two-stage Prediction

We use two-stage prediction, that is, we run our system two times in a row and
in the second run, we use the predictions made in the first run. We use the
information about the prediction of the previous and following five words and
about the previous predictions of the candidate word in the preceding window of
500 words.

5.4.2 Morphology

The Czech Named Entity Corpus is enriched with morphological tags and lem-
mas (the root version of the word) with Jan Hajič’s tagger shipped with Prague
Dependency Treebank 2.0 (Hajič et al., 2006).

We however obtained new morphological tags and lemmas with the Featurama
tagger,4, which is more recent and achieves state-of-the-art performance in Czech.
In even later versions of our NER recognizer (Straková et al. (2016),Chapter 7), we
use our own implementation of morphologic dictionary and tagger, MorphoDiTa
(Straková et al., 2014).5

Anyway, all these taggers use the Czech morphological system designed by Jan
Hajič (Hajič, 2004). The part of speech tags use a positional system, in which each
position within a 15-character string carries a certain morphologic information,
such as part of speech, detailed part of speech, number, case (linguistic case), etc.

4http://sourceforge.net/projects/featurama/
5http://ufal.mff.cuni.cz/morphodita

http://sourceforge.net/projects/featurama/
http://ufal.mff.cuni.cz/morphodita
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Lemma type Explanation, examples
Y given name (formerly used as default): Petr, John
S surname, family name: Dvořák, Zelený, Agassi, Bush
E member of a particular nation, inhabitant of a particular territory
G geographical name: Praha, Tatry (the mountains)
K company, organization, institution: Tatra (the company)
R product: Tatra (the car)
m other proper name: names of mines, stadiums, guerilla bases, etc.
H chemistry
U medicine
L natural sciences
j justice
g technology in general
c computers and electronics
y hobby, leisure, travelling
b economy, finances
u culture, education, arts, other sciences
w sports
p politics, government, military
z ecology, environment
o color indication

Table 5.1: Lemma term types as used in Hajič (2004) and Hajič et al. (2006).

From the NER perspective, it is important that in this morphological system,
lemmas are manually annotated with labels marking proper names, such as Y for
given names, S for surnames and G for geographical names (Hajič (2004), p. 121).
These labels act as gazetteers built inside the morphology (see Section 5.4.3).
A list of these lemma type descriptions is shown in Table 5.1. One can see
that these types can be used as useful classification features, although they do
not always directly correspond to the NE hierarchy in the Czech Named Entity
Corpus.

In English, we also retagged the data with Featurama tagger. Because the
Featurama tool does not support English lemmatization, the English data was
lemmatized by algorithm by Popel (2009). We also chunked the English data
with TagChunk6 (Daumé III and Marcu, 2005).

6http://www.umiacs.umd.edu/~hal/TagChunk/

http://www.umiacs.umd.edu/~hal/TagChunk/
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5.4.3 Gazetteers

Named entity recognizers rely substantially on external knowledge. For English,
we used 24 manually collected gazetteers of 1.8M items and for the Czech lan-
guage, we used 17 manually collected gazetteers of 148K items. We collected both
manually maintained gazetteers and automatically retrieved gazetteers from the
English and Czech Wikipedia (Kazama and Torisawa, 2007). We did not parse
the whole Wikipedia article content, we only listed the title in gazetteer when it
was filed under an appropriate category (e.g. “people”, “births”, “cities”, etc.).

As mentioned above, the Czech lemmas as designed by Hajič (2004) contain
manually inserted information about selected proper names.

5.4.4 Brown Clusters

Furthermore, we utilized Brown mutual information bigram clusters (Brown et al.,
1992; Liang, 2005), which we trained on Czech Wikipedia and downloaded for
English.7 We added these clusters respective to forms (English) and lemmas
(Czech) as new classification features, using cluster prefixes of length 4, 6, 10 and
20 (see Ratinov and Roth (2009)).

5.5 Results and Discussion

We call “baseline” the simplest model in which we used the common set of clas-
sification features in our model (see Appendix A.2), then selected the optimal
sequention of named entities using the probability distribution given by the clas-
sifier with dynamic programming and in Czech, post-edited the result with four
automatically discovered rules to retrieve container entities (see Section 5.1).

Table 5.2 shows the effect of more sophisticated classification features or pro-
cessing: (A) new tagging, lemmatization and chunking, (B) two stage prediction,
(C) gazetteers, (D) Brown clusters. The experiments (A), (B), (C) and (D) show
the system improvement after adding the respective feature to the baseline. The
last line of the table shows results after combining all features. All new features
and preprocessing steps improved the system performance over the baseline and
the gains were similar in both languages. In the Czech language, most of the im-
pact of adding gazetteers (C) is formed by the manually annotated proper name
labels in the morphology (Hajič, 2004; Hajič et al., 2006) while the manually col-
lected and Wikipedia extracted gazetteers did not yield substantial improvement.

7http://people.csail.mit.edu/maestro/papers/bllip-clusters.gz

http://people.csail.mit.edu/maestro/papers/bllip-clusters.gz
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English Czech
baseline 83.80 74.87
(A) new tags, lemmas and chunks 84.20 75.47
(B) two stage prediction 84.93 76.14
(C) gazetteers 86.20 76.15
(D) Brown clusters 85.88 76.67
all 89.16 79.23

Table 5.2: System development. The experiments (A), (B), (C) and (D) show
F-measure gains over the baseline on the test portion of the English and Czech
data.

All NEs One-word NEs Two-word NEs
P R F P R F P R F

Type: 84.46 74.61 79.23 87.70 79.97 83.66 81.85 77.10 79.40
Suptype: 88.27 78.00 82.82 92.07 84.00 87.85 84.12 79.24 81.60
Span: 91.56 82.56 86.83 94.00 87.90 90.85 90.28 86.09 88.13

Table 5.3: Detailed results for the Czech language. The table shows results for
one-word, two-word and all named entities. The three measures evaluated are
precision (P), recall (R) and F-measure (F).

Table 5.3 shows detailed results with precision, recall and F-measure for Czech
one-word, two-word and all named entities for comparison with similar tables pub-
lished in Ševčíková et al. (2007a) and Kravalová and Žabokrtský (2009). Table 5.4
and Table 5.5 compare the related work for Czech and English on the respective
datasets.

5.6 Conclusions

We have presented a new named entity recognizer and evaluated it for Czech and
English. We reached 82.82 F-measure for the Czech language and significantly
outperformed the existing Czech state of the art at that time. For English, we
achieved 89.16 F-measure. The named entity recognizer is available as an open-
source software NameTag (Straková et al. (2014),Chapter 6).
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Czech Types Supertypes
this work 79.23 82.82
Konkol and Konopík (2011) NA 72.94
Kravalová and Žabokrtský (2009) 68.00 71.00
Ševčíková et al. (2007a) 62.00 68.00

Table 5.4: System comparison for Czech language (F-measure on test data).

English F-measure
Ratinov and Roth (2009) 90.80
Suzuki and Isozaki (2008) 89.92
Ando and Zhang (2005) 89.31
this work 89.16
Florian et al. (2003) 88.76
Chieu and Ng (2003) 88.31
Finkel et al. (2005), Stanford parser 86.86

Table 5.5: System comparison for English language (F-measure on test data).



Chapter 6

NameTag: An Open-Source Tool
for Named Entity Recognition

In this chapter we describe an open-source tagger: NameTag is a free software for
named entity recognition which achieves state-of-the-art performance on Czech
to our best knowledge. The tagger can be trained with custom data. The tool
is released as free software under Mozilla Public License 2.0 and is distributed
along with trained linguistic models which are free for non-commercial use under
the CC BY-NC-SA license. The release includes standalone tools, C++ libraries
with Java, Python, Perl and C# bindings and a web service.

This work was presented at a demo session of ACL 2014 (Straková et al.,
2014) along with MorphoDiTa.1 The original paper describes both NameTag
and MorphoDita, we however include only the named entity recognizer release
description in this chapter.

The binary, C++ library, Python, Perl, Java and C# bindings, the web ser-
vice, demo and documentation can be found online at http://ufal.mff.cuni.

cz/nametag.

6.1 Introduction

Our aim was to implement a NE recognizer which would

• be well suited and trainable for languages with very rich morphology and
thus a large tagset of possibly several thousand plausible combinations of
morphologically related attribute values,

• provide excellent, preferably state-of-the-art results for Czech,

1Morphological Dictionary and Tagger, http://ufal.mff.cuni.cz/morphodita
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• be distributed along with trained linguistic models for Czech,

• allow the user to train custom models for any language,

• be extremely efficient in terms of RAM and disc usage,

• offer a full end-to-end solution for users with little computational linguistics
background,

• be distributed as a library without additional dependencies,

• offer API in different programming languages,

• be open-source, free software.

Following these requirements, we developed a named entity recognizer. The
software performance and resource usage are described in Section 6.3 and the
release and licensing condition information is given in Section 6.4. We conclude
the chapter in Section 6.5.

6.2 NER Methodology

The NE recognizer is an implementation of a research project described in Chap-
ter 5 and in Straková et al. (2013). The recognizer is based on a softmax neural
network classifier, described in Chapter 4, which predicts, for each word in a sen-
tence, the probability distribution of its classes and positions with respect to
an entity. Consequently, a global optimization via dynamic programming deter-
mines the optimal combination of classes and named entities chunks (lengths).
The classification features utilize morphological analysis, two-stage prediction,
word clustering and gazetteers and are described in Chapter 5.

The recognizer is available either as a pre-trained implementation with linguis-
tic models for Czech, or as a package which allows custom models to be trained
using any NE-annotated data.

For training the recognizer, Czech Named Entity Corpus (Ševčíková et al.
(2007a), Chapter 3) was used. In this corpus, Czech entities are classified into
a two-level hierarchy classification: a fine-grained set of 42 classes or a more coarse
classification of 7 super-classes. Like other authors, we report the evaluation on
both hierarchy levels.

6.3 Software Performance

For comparison with previous work, we report results for the first version of the
Czech Named Entity Corpus (CNEC 1.1). The linguistic models released with
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System
F-measure F-measure
(42 classes) (7 classes)

Ševčíková et al. (2007a) 62.00 68.00
Kravalová and Žabokrtský (2009) 68.00 71.00
Konkol and Konopík (2013) NA 79.00
Straková et al. (2013) 79.23 82.82
NameTag CNEC 1.1 77.88 81.01
NameTag CNEC 2.0 77.22 80.30

Table 6.1: Evaluation of the Czech NE recognizers.

Corpus Words / sec RAM Model size

CNEC 1.1 40K 54MB 3MB
CNEC 2.0 45K 65MB 4MB

Table 6.2: Evaluation of the NE recognizer throughput, RAM and model size.

NameTag are trained on the most current version of the Czech Named Entity
Corpus (CNEC 2.0). We report our results for both CNEC 1.1 and CNEC 2.0 in
Table 6.1.

We designed NameTag as light-weight, efficient software with low resource
usage. Table 6.2 shows the system word throughput, allocated RAM and the
serialized model size (on disc) for NameTag.

6.4 Release

NameTag is a free software under Mozilla Public License 2.0 and its linguistic
models are free for non-commercial use and distributed under CC BY-NC-SA
license, although for some models the original data used to create the model may
impose additional licensing conditions. NameTag can be used as:

• a standalone tool,

• C++ library with Java, Python, Perl and C# bindings,

• a web service,

• an on-line web demo.

NameTag is platform independent and does not require any additional li-
braries.
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The pre-compiled binaries and source code are available on GitHub, the lan-
guage models are available from the LINDAT/CLARIN infrastructure and the
documentation can be found at the project website.2 The web services and de-
mo for the Czech and English languages are also provided by LINDAT/CLARIN
infrastructure.

6.5 Conclusion

We released an efficient, light-weight NE tagger, which is available to a wide
audience as an open-source, free software with rich API and also as an end-
to-end application. The tagger reaches state-of-the-art results for Czech and is
distributed with the models. We hope the release for Czech will prove useful for
broad audience, for example for shared tasks which include Czech language data.

2http://ufal.mff.cuni.cz/nametag

http://ufal.mff.cuni.cz/nametag


Chapter 7

Neural Networks for Featureless
Named Entity Recognition in
Czech

This chapter describes the thesis author’s recent advances in the field of named
entity recognition, with focus in Czech (Straková et al., 2016). The complete
source code is available at GitHub.1

We present a completely featureless, language agnostic named entity recog-
nition system. Following recent advances in artificial neural network research,
the recognizer employs parametric rectified linear units (PReLU), word embed-
dings and character-level word embeddings based on gated recurrent units (GRU).
Without any feature engineering, only with surface forms, lemmas and tags as
input, the network achieves excellent results in Czech NER and surpasses the
current state of the art of previously published Czech NER systems, which use
manually designed rule-based orthographic classification features. Furthermore,
the neural network achieves robust results even when only surface forms are
available as input. In addition, the proposed artificial neural network can use
the manually designed rule-based orthographic classification features and in this
combination, it exceeds the current state of the art by a wide margin.

7.1 Introduction

Recent years have seen a dramatic progress in the field of artificial neural net-
works. Undoubtedly, the ascend of artificial neural networks was started by the
publication of reliable and computationally feasible ways of using tokens as classi-

1https://github.com/strakova/ner_tsd2016
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fication features in artificial neural networks in so called word embeddings (Bengio
et al. (2003); Mikolov et al. (2013), also see Section 7.2).

Another paradigm-changing publication introduces the long short-term mem-
ory units (LSTMs, Hochreiter and Schmidhuber (1997)). In simple words, LSTMs
are specially shaped small units of artificial neural networks designed to process
a sequence as a whole. LSTMs have been shown to capture non-linear and non-
local dynamics in sequences (Hochreiter and Schmidhuber, 1997) and have been
used to obtain many state-of-the-art results in sequence labelling (Ling et al.,
2015; Lample et al., 2016; Yang et al., 2016).

Recently, a gated linear unit (GRU) was proposed by Cho et al. (2014) as an
alternative to LSTM, and was shown to have similar performance, while being
less computationally demanding.

In this chapter, we use artificial neural networks employing parametric recti-
fied linear units (PReLU), word embeddings and character-level word embeddings
based on gated linear units (GRU). First, we introduce word embeddings and
character-level word embeddings in Section 7.2 and we describe the data and the
evaluation procedure in Section 7.3. The comparison to related work is provided
in Section 7.4. We further describe our artificial neural network architecture in
Section 7.5. We report our results and discussion in Section 7.6 and we conclude
in Section 7.7.

7.2 Word Embeddings

Simply said, word embeddings (Bengio et al., 2003; Mikolov et al., 2013) are
a mapping from a large, discrete space of language vocabulary into a dramatically
smaller continuous space of real-valued vectors. These vectors are then used as
input for some higher-level NLP problem, in a similar way as words from a lexicon.
For example, they can be used as input layer of an artificial neural network.

The main motivation for word embeddings is a continuous representation of
words in a language, which normally occupy a discrete space. To explain the
reasons why a continuous representation of language in a Rn space is so much
more advantageous, we consider that a vast majority of NLP tasks can be reduced
to an estimation of probability P (Y |X; θ) of a (categorical) event Y conditioned
by an even X (see Section 4.2). A major problem for such estimation in NLP is
data sparsity.

Because an estimation of a probability distribution always depends on a lim-
ited amount of data, the coverage of the observable events (i.e., words of the
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language) in discrete space is low and we have to deal with unseen or rare events.
This problem becomes exceedingly difficult as we try to estimate probabilities of
word n-grams and is referred to as the curse of dimensionality.

Having moved from a discrete space to a continuous one, where dimensions
in Rn space correspond to certain properties in words (such as word similarity),
even rare and unseen words can produce reliable results, exploiting the similarity
to the seen training words.

Although the data sparsity problem is most obvious in out-of-vocabulary
words, the representation of words in Rn space in which the dimensions are
shared between words, is beneficial for all words, because it makes the available
data dense.

Another advantage of word embeddings as they are currently understood is
that they seem to “embed” linguistic knowledge in them. Certain linguistic mean-
ing such as sentiment or gender can be assigned to certain dimensions in the vector
(e.g., Bolukbasi et al. (2016)). This kind of interpretability of word embeddings
is very convenient from linguists’ point of view.

Last but not least, the function usually maps the tokens from a large-dimen-
sional space of the language vocabulary in to a drastically lower space of real-
valued vectors (a typical size of a word embedding vector is usually between tens
and hundreds), which makes the implementation and further training of artifi-
cial neural networks with such word embeddings on the input computationally
efficient.

For morphologically rich languages, word embeddings appear rather too coarse
for many tasks, especially for those where the structure of the word such as
prefixes and suffixes, is crucial. Therefore, the ideas go further in publication
of character-level word embeddings (Santos and Zadrozny, 2014), which recently
improved the state of the art in POS-tagging (Ling et al., 2015).

Finally, another objective which word embeddings follows, is that they can
be estimated (trained) in a completely unsupervised way on a large, unlabeled
corpus. In such case, word embeddings represent a versatile representation of
words which can be further used as an input for a higher-level NLP task. Another
way to construct word and character-level word embeddings is to train them
specifically for the task jointly with the artificial neural network, in an end-to-
end fashion. Currently, both approaches seem to be beneficial and a combination
of both kinds of embeddings can be used jointly, such as in Dyer et al. (2015),
in which these two approaches are called pretrained word embeddings and learned
word embeddings.
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7.3 Experiment Setting: Data and Evaluation

We consider Czech named entity recognition (NER): Given a text, either raw
(with surface forms only) or morphologically analyzed and POS-tagged (with
forms, lemmas and POS-tags), the goal of the NER system is to identify and
classify special entities such as proper names, cities, etc., into pre-defined classes.

We conduct our experiments on all available Czech NER corpora, so that we
are able to compare with all available related work in Czech NER: Czech Named
Entity Corpus (CNEC)2 1.0 (Ševčíková et al., 2007a; Kravalová and Žabokrt-
ský, 2009), CNEC 2.0, CoNLL-based Extended CNEC 1.1 (Konkol and Konopík,
2013), CoNLL-based Extended CNEC 2.0.3.

CoNLL-based Extended CNEC 1.1 and 2.0 are based on the respective original
CNEC corpora, but they use only the coarser 7 classes and assume that entities
are non-nested and labeled with one label.

For a comparison with the English state of the art, we evaluated our NER
system on CoNLL-2003 shared task dataset (Tjong Kim Sang and De Meulder,
2003). In this dataset, four classes are predicted: PER (person), LOC (location),
ORG (organization) and MISC (miscellaneous). The named entities are non-
nested and annotated with exactly one label.

For the original CNEC 1.0 and CNEC 2.0, we present results for both fine-
grained and coarse-grained classes hierarchy and we evaluate our results with
the script provided with the corpora, which computes F-measure of the entities
annotated in the first annotation round, see Section 3.1.2 and Kravalová and
Žabokrtský (2009).

For the CoNLL-based Extended CNEC 1.1 and 2.0, we present results for the
7 classes present in these corpora and evaluate our results using the standard
CoNLL evaluation script conlleval.

Similarly, the English CoNLL-2003 dataset is evaluated with CoNLL evalua-
tion script conlleval.

7.4 Related Work

Czech named entity recognition (NER) has become a well-established field. Fol-
lowing the publication of the Czech Named Entity Corpus (Ševčíková et al., 2007a;
Kravalová and Žabokrtský, 2009), several named entity recognizers for Czech have
been published: (Kravalová and Žabokrtský, 2009; Konkol and Konopík, 2011;

2http://ufal.mff.cuni.cz/nametag
3http://home.zcu.cz/~konkol/cnec2.0.php

http://ufal.mff.cuni.cz/nametag
http://home.zcu.cz/~konkol/cnec2.0.php
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Straková et al., 2013; Konkol and Konopík, 2013, 2014; Konkol et al., 2015) and
even a publicly available Czech named entity recognizer exists, see Chapter 6.

All these works use manually selected rule-based orthographic classification
features, such as first character capitalization, existence of special characters in
the word, regular expressions designed to reveal particular named entity types.
Also gazetteers are extensively utilized. A wide selection of machine learning tech-
niques (decision trees (Ševčíková et al., 2007a), SVMs (Kravalová and Žabokrt-
ský, 2009), maximum entropy classifier (Straková et al., 2013), CRFs (Konkol
and Konopík, 2013)), clustering techniques (Konkol et al., 2015) and stemming
approaches (Konkol and Konopík, 2014) – see Section 2.4 for details.) is applied
to the task.

The contribution of this chapter is that we use artificial neural networks with
parametric rectified linear units, word embeddings and character-level word em-
beddings, which do not need manually designed classification features or gazet-
teers, and still surpass the current state of the art in Czech.

In Demir and Özgür (2014), the authors present a semi-supervised learning
approach based on neural networks for Czech and Turkish NER utilizing word
embeddings (Mikolov et al., 2013), but there are some differences in the neural
network design and in classification features used. Instead regularized averaged
perceptron, we use parametric rectified linear units, character-level word embed-
dings and dropout. The NER system in Demir and Özgür (2014) does not use
morphological analysis, it is therefore similar to our experiments with only surface
forms as input. However, the system does use “type information of the window
ci, i.e. is-capitalized, all-capitalized, all-digits, ...” etc. Our system surpasses
these results even without using such features.

English named entity recognition has a successful tradition in computational
linguistics and the English NER state of the art Ratinov and Roth (2009) has
recently been pushed forward by Lin andWu (2009); Chiu and Nichols (2015); Luo
et al. (2015); Lample et al. (2016); Yang et al. (2016). We present a comparison
with these works in Section 7.6. The most similar to our proposed neural network
design is Lample et al. (2016). The authors propose a very similar network with
LSTMs, word embeddings and character-level word embeddings. However, while
we classify each word separately and use Viterbi to perform the final decoding,
Lample et al. (2016) employs LSTMs combined with CRF layer to decode whole
sentences, which brings a determining advantage over our framework as we show
in Section 7.6.
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Figure 7.1: Artificial neural network, general diagram.

7.5 The Artificial Neural Network Classifier

For each word (and its context), we compute the probability distribution of la-
beling this word with BILOU-encoded (Ratinov and Roth (2009), Section 2.2.2)
named entities. We then determine the best consistent assignment of BILOU-
encoded entities to the words in the sentence using the Viterbi algorithm.

We compute the probability distribution for each word using an artificial neu-
ral network, shown in Figure 7.1. The input layer consists of representations of
surface forms (and optionally lemmas and POS tags) of the word andW previous
and W following words. The input layer is connected to a hidden layer of para-
metric rectified linear units (He et al., 2015) and the hidden layer is connected to
the output layer which is a softmax layer producing probability distribution for
all possible named entity classes in BILOU encoding.

We represent each word using a combination of the following (also please see
Figure 7.2):

• word embedding: Word embeddings (see Section 7.2 are vector representa-
tions of low dimension. We generated the word embeddings using word2vec

of Mikolov et al. (2013) and we chose the Skip-gram model with negative
sampling.4

• character-level word embedding: To overcome drawbacks of word embed-
4We used the following options: -cbow 0 -window 5 -negative 5 -iter 1
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Figure 7.2: Word form representation as an input to artificial neural network.

dings (embeddings for different words are independent; unknown words
cannot be handled), several orthography aware models have been proposed
(Santos and Zadrozny, 2014; Ling et al., 2015), which compute word repre-
sentation from the characters of the word.

We hypothesized that character-level word embeddings such as published in
Ling et al. (2015) have the potential to increase the performance of Czech
NER system. Our assumption was that Czech as a morphologically rich
language would benefit from character-level word embeddings rather than
word embeddings especially in cases where no morphological analysis is
available.

We use bidirectional GRUs (Cho et al., 2014; Graves and Schmidhuber,
2005) in line with Ling et al. (2015): we represent every Unicode character
with a vector of C real numbers, and we use GRUs to compute two outputs,
one for word characters and the other one for reversed word characters, and
we then concatenate the two outputs, as shown in Figure 7.3.

• prefix and suffix: For comparison with character-level word embeddings, we
also include “poor man’s substitution for character-level word embeddings”
– we encode first two and last two characters encoded as one-hot vectors. We
hypothesize that character-level word embeddings as a more sophisticated
approach should perform better.
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Figure 7.3: Character-level word embeddings diagram.

• tag: We encode part-of-speech tags as one-hot vectors.

• manually designed classification features: We also publish a combination
of our neural network framework with traditional manually designed rule-
based orthographic classification features. We use quite a limited set of
classification features inspired by Straková et al. (2013): capitalization in-
formation, punctuation information, number information and Brown clus-
ters (Brown et al., 1992). We do not use gazetteers, context aggregation,
prediction history nor two-stage decoding.

The network is trained with AdaGrad (Duchi et al., 2011) and we use dropout
(Srivastava et al., 2014) on the hidden layer. We implemented our neural network
in Torch7 (Collobert et al., 2011a), a scientific computing framework with a wide
support for machine learning algorithms.

We tuned most of the hyperparameters on development portion of CNEC 1.0
and used them for all other corpora. Notably, we utilize window size W = 2, hid-
den layer of 200 nodes, dropout 0.5, minibatches of size 100 and learning rate 0.02
with decay. We adapt the dimension C of the character-level word embeddings for
every corpus separately, choosing either 32 or 64. All reported experiments use
an ensemble of 5 networks, each using different random seed, with the resulting
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distributions being an average of individual networks distributions. The training
of a single network took half a day on a single CPU to stabilize performance on
development data. During evaluation of testing data, we add the development
set to the training data, a technique proposed in context of NER by Ratinov and
Roth (2009).

We trained the word embeddings of dimension 200 on English Gigaword Fifth
Edition corpus and on Czech SYN (Hnátková et al., 2014). We also lemmatized
the corpora with MorphoDiTa (Straková et al., 2014) in order to pretrain the
lemma embeddings (the word embeddings of lemmas).

7.6 Results and Discussion

We present two groups of experiments with low and high complexity depend-
ing on the available network input: experiments in which only surface forms were
used, a putatively more difficult task as no linguistic knowledge is available to the
NER system; and experiments with morphologically analyzed and POS-tagged
text. We automatically generate lemmas and POS-tags from surface forms with
MorphoDiTa (Straková et al., 2014), an open source tagger and lemmatizer.

Table 7.1 presents results of all experiments. Our baseline is an artificial neural
network with only surface forms encoded as word embeddings. We then add more
computational complexity to the network: WE stands for word embeddings of
forms and lemmas, CLE stands for character-level word embeddings of forms and
lemmas, 2CH stands for first two and last two characters of forms, lemmas and
POS tags, and CF stands for experiments with traditional classification features.

We shall now present and discuss all results in Table 7.1 and we start with
experiments without morphological analysis or POS-tagging, where surface forms
are available only.

7.6.1 Experiments with Surface Forms in Czech

This group of experiments dealt with situations in which only surface forms are
available as input. Since most of the previous literature heavily depends on
manually selected language-dependent features, as well as on gazetteers and more
or less linguistically motivated variants of lemmatization and stemming, the only
work to be directly compared with is Demir and Özgür (2014). Demir and Özgür
(2014) use a similar, semi-supervised neural network based approach. Their final
system which uses word embeddings, capitalization and punctuation information,
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Corpus

Experiment/Related Work

Original Original Extended Extended English
CNEC 1.0 CNEC 2.0 CNEC 1.1 CNEC 2.0 CoNLL-2003

Types Supt. Types Supt. Classes Classes Classes
f+WE (baseline) 63.24 69.61 63.33 68.87 63.48 63.91 67.99
f+CLE 71.43 76.13 70.50 75.80 69.59 70.06 82.65
f+WE+2CH 69.73 74.49 69.44 74.31 75.15 74.36 79.40
f+WE+CLE 73.30 78.11 73.10 77.89 73.33 73.80 84.08
f+WE+CLE+2CH 73.71 78.32 72.81 77.87 76.72 77.18 84.29
f+WE+CLE+2CH+CF 73.73 78.50 72.91 77.65 78.21 78.20 86.06
f,l,t+WE 80.07 83.21 77.45 80.92 78.42 78.18 87.92
f,l,t+CLE 75.63 80.88 74.38 79.85 75.32 76.02 83.70
f,l,t+WE+2CH 80.46 83.85 78.32 82.09 79.68 79.48 89.37
f,l,t+WE+CLE 80.64 84.06 78.62 82.48 80.11 80.41 89.74
f,l,t+WE+CLE+2CH 80.92 84.18 78.63 82.41 80.88 80.79 89.71
f,l,t+WE+CLE+2CH+CF 81.20 84.68 79.23 82.78 80.73 80.73 89.92
Kravalová and Žabokrtský (2009) 68.00 71.00 – – – – –
Konkol and Konopík (2011) – 72.94 – – – – –
Konkol and Konopík (2013) – 79.00 – – 74.08 – 83.24
Straková et al. (2013) 79.23 82.82 – – – – –
Konkol and Konopík (2014) – – – – 74.23 74.37 –
Demir and Özgür (2014) – – – – 75.61 – –
Konkol et al. (2015) – – – – 74.08 – 89.44
Ratinov and Roth (2009) – – – – – – 90.80
Lin and Wu (2009) – – – – – – 90.90
Passos et al. (2014) – – – – – – 90.90
Chiu and Nichols (2015) – – – – – – 90.77
Luo et al. (2015) – – – – – – 91.20
Lample et al. (2016) – – – – – – 90.94
Yang et al. (2016) – – – – – – 91.20

Table 7.1: Experiment results and comparison with related work. Columns denote
corpora, rows our experiments or related work. The first group of rows describes
our experiments with surface forms only (f), the second group our experiments
with forms, lemmas and POS-tags (f,l,t). WE stands for word embeddings, CLE
for character-level word embeddings, 2CH for first two and last two characters, CF
for traditional classification features. The third group of rows describes related
work in Czech NER, and the fourth group related work in English NER.
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prefixes, suffixes, context aggregation and prediction history, achieves CoNLL F-
measure 75.61 for CoNLL-based Extended CNEC 1.1. We surpass these results
with CoNLL F-measure 76.72, using only word embeddings, character-level word
embeddings and first two and last two characters. If the traditional features are
added, we even achieve CoNLL F-measure 78.21.

7.6.2 Experiments with Lemmas and POS Tags in Czech

Table 7.1 presents a comparison with related work on all available Czech NER cor-
pora. The row denoted f,l,t+WE+CLE+2CH+CF is our best setting, including
manually selected classification features. Our proposed network clearly exceeds
the current state of the art on all Czech corpora in measures selected by the
authors of the respective corpora.

We shall now focus our discussion on featureless neural networks. The pro-
posed architecture exceeds the current Czech state of the art solely with pre-
trained word embeddings (see row f,l,t+WE in Table 7.1), without requiring
manually designed rule-based orthographic features, gazetteers, context aggre-
gation, prediction history or two-stage decoding. The effect is even stronger with
character-level embeddings and optionally first two and last two characters.

In this place, we would like to discuss the contribution of character-level word
embeddings. In the introduction of this work, we hypothesized that character-
level word embeddings would improve the Czech NER strongly. They did quite
predictably improve some of the results, indeed in cases when morphological
analysis was not available (row f+CLE) and they were also more successful in
comparison with word embeddings (compare f+WE and f+CLE) in such set-
tings. Character-level word embeddings also contribute more information than
our “poor man’s” replacement of first two and last two characters. Noticeably,
character-level word embeddings did not contribute so noticeably when morpho-
logical analysis and POS-tagging was available. This effect can be easily in-
terpreted by the training data size: while character-level word embeddings are
trained end-to-end for the NER task solely on the NER corpus, the morphological
analysis is trained on a much larger corpus (by a factor of 10 in the Czech case)
with morphological annotation.

7.6.3 English Experiments

Our best result (row f,l,t+WE+CLE+2CH+CF) achieves F-measure 89.92, which
is near the English state of the art. To our best knowledge, the current best result
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on English was published in Luo et al. (2015), which performs joint named entity
classification and linking, and Lample et al. (2016); Yang et al. (2016), which are
most similar to our work.

Lample et al. (2016), also proposed neural network architecture with word
embeddings and character-level word embeddings. Nevertheless, in Lample et al.
(2016) sentence-level decoding using bidirectional LSTMs/GRUs with addition-
al CRF layer is used, while our framework decodes the entities using Viterbi
algorithm on probability distributions of named entity classes.

7.6.4 Drawbacks of the Proposed Architecture

The proposed neural network architecture is apparently a very strong framework.
But does it have any drawbacks? We would now like to share our thoughts on
problems we encountered in development of this architecture.

While the artificial neural network achieves excellent results with automati-
cally retrieved features such as word embeddings and character-level word em-
beddings, one could argue that the whole framework is elegant, but conceptually
complicated. Understanding the underlying mathematics and procedures to im-
plement character-level word embeddings seems a challenging task. (We do not
speak about word embeddings, as the word2vec tool exists, which can be used
as a blackbox.)

Also, the training procedure for an artificial neural network is known to be
time demanding. In our case, it took half a day to train the system in the full
setting on a single CPU to stabilize accuracy on development data. On the other
hand, once the neural network is fully trained, the prediction step is efficient,
because it requires only a single forward pass.

Finally, a certain experience with neural networks is required to set up the
architecture and tune the hyperparameters.

7.7 Conclusions

We presented an artificial neural network based NER system which achieves excel-
lent results in Czech NER and near state-of-the-art results in English NER with-
out manually designed rule-based orthographic classification features, gazetteers,
context aggregation, prediction history or two-stage decoding. Our proposed ar-
chitecture exceeds all Czech published results, using only forms, lemmas and POS
tags encoded as word embeddings and achieves even better results in combination
with character-level word embeddings, prefixes and suffixes. Finally, it surpasses
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the current state of the art of Czech NER in combination with traditional classi-
fication features by a wide margin. The proposed neural network also yields very
robust results without morphological analysis or POS-tagging, when only surface
forms are available. As our future work, we plan to improve our decoding in line
with Lample et al. (2016) and implement this work as part of NameTag (Straková
et al., 2014). Currently, the related materials and source code are available at
GitHub.5

5https://github.com/strakova/ner_tsd2016

https://github.com/strakova/ner_tsd2016
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Chapter 8

Conclusions

The goal of this thesis was to develop and describe a neural network based named
entity recognizer with focus on the Czech language and we believe that we ac-
complished this task amply. The contribution of this thesis is a major advance
in state-of-the-art of the Czech NER and it was published in peer reviewed pro-
ceedings (Kravalová and Žabokrtský, 2009; Straková et al., 2013, 2014, 2016), as
encyclopedic entry (Straková, 2015) and a book chapter (Straková et al., 2017).
The thesis author is the leading researcher and the main author of these publica-
tions and also published as co-author in other NLP-related fields (Agirre et al.,
2009; Straková and Pecina, 2010; Kim and Straková, 2012; Straka et al., 2015,
2016). The thesis author is also one of the authors of the open-source named
entity recognizer NameTag (Straková et al., 2014).1

The theoretical work in named entity recognition is collected in this thesis.
We introduced the reader into named entity recognition field in Chapter 2 and
we described the Czech Named Entity Corpus together with its thorough eval-
uation in Chapter 3. We published our in-house experiments with robust and
efficient artificial neural networks with softmax output layer in Chapter 4 and
our simple neural network based recognizer in Chapter 5. The open-source soft-
ware for named entity recognition, NameTag, was described in Chapter 6. We
finalized our work with a featureless, state-of-the-art named entity recognizer
based on artificial neural network with softmax output layer, word embeddings
and character-level word embeddings, in Chapter 7.

In the following paragraphs, we would like to share a discussion and retro-
spective of our previous work and design choices.

Firstly, although the bias of the Czech Named Entity Corpus towards un-
naturally dense occurrence of named entities caused by the biased selection of

1http://ufal.mff.cuni.cz/nametag
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sentences for annotation was not a problem for our automatic named entity sys-
tems (please see Chapter 3), we spent a nonnegligible amount of mental energy
and time (=money) revising this decision, and measuring its effects. Also, the
dense occurrence selection was performed on the sentence-level, resulting in a cor-
pus consisting of independent sentences. The absence of whole documents makes
entity linking in our corpus intractable, i.e., it disallows to extend the annota-
tion of named entities by linking the entity mentions in the text to entities in
a knowledge base.2

Furthermore, we found out that some of the heated discussions topics ap-
peared less important when faced with real world applications. For example,
a typical requirement for a named entity recognition system from a commercial
subject usually comes up with a custom named entity classification system: Ei-
ther an extremely simple one (only personal names are to be retrieved) or an
unusual one (a certain set of classes which does not clearly map to CNEC or
CoNLL annotation or is completely our of domain) is required. In this sense, the
thesis author sees her future work in either an unsupervised or low resource NE
system, or at least a very versatile one, maybe with data pretrained on a large
unlabelled corpus in a semi-supervised way in the lines of Chapter 7. To sum up,
it was beneficial for our team to step out of academic environment and deliver
real-world solutions for third parties with NameTag (Chapter 6).

In the future of the field, the thesis author sees the introduction of the re-
cent advances in artificial neural networks into named entity recognition as well
as into other NLP tasks as the most probable way of this area development.
Especially, word embeddings and their variants (various character-level word em-
beddings and end-to-end trained embeddings) are showing very promising results
and will surely form the nearest future in named entity recognition and NLP in
general.

In the annotation area, the thesis author is expecting the creation of entity
linking corpora as well as named entities bound with ontologies and semantic
networks.

To conclude, the main contribution of this thesis is a consistent research in
Czech named entity recognition, with state-of-the-art results in Czech (Kraval-
ová and Žabokrtský, 2009; Straková et al., 2013, 2016). The output of our re-
search is available for the broad community as an open-source project NameTag3

2However, the reconstruction of the sentence context from the original corpora (Czech Na-
tional Corpus, http://ucnk.ff.cuni.cz) is viable.

3http://ufal.mff.cuni.cz/nametag

http://ucnk.ff.cuni.cz
http://ufal.mff.cuni.cz/nametag
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(Straková et al., 2014). Furthermore, the most recent research (Straková et al.,
2016) is also available at GitHub.4

4https://github.com/strakova/ner_tsd2016

https://github.com/strakova/ner_tsd2016
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Appendix

A.1 Efficient Log-linear Modeling and Softmax
Neural Networks

This Appendix includes detailed information about the methodology used in
Chapter 4.

Tables A.1, A.2, A.3 and A.4 describe the trainer settings for the respective
tasks.

System English German
Maximum Entropy Toolkit by Zhang Le (L-BFGS) 80, 0.5 150, 0.5
OpenNLP Maxent (GIS) 500, 0 500, 0
LIBLINEAR C = 1 C = 1
NN-simple (SGD) 40, 0.5 30, 0.5
NN-hidden layer (SGD) 50, 0.5 20, 0.5

Table A.1: Optimal number of iterations and Gaussian σ2 for Named Entity
Recognition CoNLL-2003 shared task. LIBLINEAR optimized parameter is the
penalty parameter C.

System Catalan Chinese Czech English German Spanish
Maximum Entropy Toolkit

40, 0 50, 0.5 100, 1 50, 1 40, 1 80, 0
by Zhang Le (L-BFGS)
OpenNLP Maxent (GIS) 500, 0
LIBLINEAR C = 1 C = 1 C = 1 C = 1 C = 1 C = 1
NN-simple (SGD) 40, 1 10, 0.5 10, 0.5 20, 0.5 20, 0.5 50, 0
NN-hidden layer (SGD) 30, 0 50, 0 40, 0 40, 0 30, 0 50, 0

Table A.2: Optimal number of iterations and Gaussian σ2 for Semantic Role
Labeling CoNLL-2009 shared task, predicate senses subtask. LIBLINEAR opti-
mized parameter is the penalty parameter C.
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System Catalan Chinese Czech English German Spanish
Maximum Entropy Toolkit

130, 0.5 130, 0.5 150, 0.5 150, 0.5 120, 0 120, 0.5
by Zhang Le (L-BFGS)
OpenNLP Maxent (GIS) 500, 0
LIBLINEAR C = 1 C = 1 C = 1 C = 1 C = 1 C = 1
NN-simple (SGD) 30, 0.5 50, 0 40, 0 20, 0 20, 1 50, 0
NN-hidden layer (SGD) 50, 0.5 20, 1 30, 0.5 50, 1 20, 0.5 40, 1

Table A.3: Optimal number of iterations and Gaussian σ2 for Semantic Role La-
beling CoNLL-2009 shared task, semantic roles subtask. LIBLINEAR optimized
parameter is the penalty parameter C.

System English
Maximum Entropy Toolkit by Zhang Le (L-BFGS) 200, 1
OpenNLP Maxent (GIS) 50, 0.5
LIBLINEAR C = 1
NN-simple (SGD) 25, 0.5
NN-hidden layer (SGD) 30, 1

Table A.4: Optimal number of iterations and Gaussian σ2 for Part of Speech
tagging. LIBLINEAR optimized parameter is the penalty parameter C.

A.2 Classification Features

This Appendix lists classification features used in our classifiers described in
Chapter 4, Chapter 5 and Chapter 7.

Tables A.5, A.6, A.7 and A.8 list classification feature templates used in
Named Entity Recognition, Semantic Role Labeling predicate sense classification
and semantic role classification and Part of Speech Tagging, respectively.
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Formi={−2,−1,0,1,2} WikiPersonCategoryGazetteer
Lemmai={−2,−1,0,1,2} WikiLocationCategoryGazetteer
POSi={−2,−1,0,1,2} WikiOrganizationCategoryGazetteer
Windowi={−2,−1,0,1,2} WikiNamedObjectCategoryGazeteer
FirstRunLabeli={−2,−1,0,1,2} WikiArtWorkCategoryGazeteer
PredictionHistoryWindow (i={−500..0}) WikiFilmCategoryGazeteer
FirstCapFormi={−2,−1,0,1,2} WikiSongsCategoryGazeteer
AllCapFormi={−2,−1,0,1,2} StopWordsGazetteerGazeteer
MixedCapFormi={−2,−1,0,1,2} StopWordsMySQLGazeteer
EndsWithPeriodFormi={−2,−1,0,1,2} FirstPersonPronounGazetteer
InternalPeriodFormi={−2,−1,0,1,2} PersonPronounGazetteer
InternalApostropheFormi={−2,−1,0,1,2} DayGazetteer
InternalHyphenFormi={−2,−1,0,1,2} MonthGazetteer
InternalAmpFormi={−2,−1,0,1,2} CoNLL2003LOCGazetteer
InternalPunctuationFormi={−2,−1,0,1,2} CoNLL2003ORGGazetteer
PossessiveMarkFormi={−2,−1,0,1,2} CoNLL2003MISCGazetteer
NegativeMarkFormi={−2,−1,0,1,2} CoNLL2003PERGazetteer
LowercaseFormi={−2,−1,0,1,2} Suffixi={1,2,3,4}

UppercaseFormi={−2,−1,0,1,2} Prefixi={1,2,3,4}

TokenLengthFormi={−2,−1,0,1,2} BrownCluster
SimplifiedPOSi={−2,−1,0,1,2} BrownClusterPrefixi={4,6,10,20}

ManuallyCollectedCountryGazetteer
ManuallyCollectedCityGazetteer
ManuallyCollectedFirstNameGazetteer
ManuallyCollectedLastNameGazetteer

Table A.5: Classification feature templates for Named Entity Recognition
CoNLL-2003 shared task inspired by Ratinov and Roth (2009).

ConstituentPOSPattern Predicate
ConstituentPOSPattern+DepRelation PredicateChildrenPOS
ConstituentPOSPattern+DepwordLemma PredicateChildrenPOSNoDup
ConstituentPOSPattern+HeadwordLemma PredicateChildrenREL
DepRelation PredicateChildrenRELNoDup
DepRelation+Headword PredicateLemma
DepRelation+HeadwordLemma PredicatePOS
DepRelation+HeadwordPOS PredicateLemma−1

FirstLemma PredicateLemma−1+PredicateLemma
FirstPOS PredicateLemma+PredicateLemma+1

FirstWord PredicateLemma+1

Headword Predicate−1+Predicate
HeadwordLemma Predicate−1

HeadwordPOS Predicate+Predicate+1

LastLemma Predicate+1

LastPOS PredicatePOS−1

LastWord PredicatePOS+1

PFEAT
PFEATSplit
PFEATSplitRemoveNULL

Table A.6: Classification feature templates for Semantic Role Labeling CoNLL-
2009 shared task, predicate sense classification subtask. Features adopted from
Che et al. (2009) and Zhao et al. (2009).
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ChildrenPOS DepwordLastWord
DepwordChildrenPOS Path
ChildrenPOSNoDup Path+RelationPath
DepwordChildrenPOSNoDup PathLength
ChildrenREL PFEAT
DepwordChildrenREL DepwordPFEAT
ChildrenRELNoDup PFEATSplit
DepwordChildrenRELNoDup DepwordPFEATSplit
ConstituentPOSPattern PFEATSplitRemoveNull
DepwordConstituentPOSPattern DepwordPFEATSplitRemoveNull
ConstituentPOSPattern+DepRelation PositionWithPredicate
DepwordConstituentPOSPattern+DepwordDepRelation Predicate
ConstituentPOSPattern+DepwordLemma Depword
DepwordConstituentPOSPattern+DepwordLemma PredicateLemma
ConstituentPOSPattern+HeadwordLemma PredicateSense
DepwordConstituentPOSPattern+DepwordHeadwordLemma PredicateSense+DepRelation
DepRelation PredicateSense+DepwordLemma
DepwordDepRelation PredicateSense+DepwordPOS
DepRelation+DepwordLemma SiblingsPOS
DepwordDepRelation+DepwordLemma DepwordSiblingsPOS
DepRelation+Headword SiblingsPOSNoDup
DepwordDepRelation+DepwordHeadword DepwordSiblingsPOSNoDup
DepRelation+HeadwordLemma SiblingsREL
DepwordDepRelation+DepwordHeadwordLemma DepwordSiblingsREL
DepRelation+HeadwordLemma+DepwordLemma SiblingsRELNoDup
DepwordDepRelation+DepwordHeadwordLemma+DepwordLemma DepwordSiblingsRELNoDup
DepRelation+HeadwordPOS RelationPath
DepwordDepRelation+DepwordHeadwordPOS UpPath
DepwordLemma UpPathLength
DepwordLemma+HeadwordLemma UpRelationPath
DepwordLemma+DepwordHeadwordLemma UpRelationPath+HeadwordLemma
DepwordLemma+RelationPath Distance
PredicatePOS Predicate−1
DepwordPOS Depword−1
DepwordPOS+HeadwordPOS PredicateLemma−1
DepwordPOS+DepwordHeadwordPOS DepwordLemma−1
FirstLemma PredicatePOS−1
DepwordFirstLemma DepwordPOS−1
FirstPOS Predicate+1
DepwordFirstPOS Depword+1
FirstPOS+DepwordPOS PredicateLemma+1
DepwordFirstPOS+DepwordPOS DepwordLemma+1
FirstWord PredicatePOS+1
DepwordFirstWord DepwordPOS+1
Headword PredicateSense+PredicateLemma
DepwordHeadword PredicateSense+PredicatePOS
HeadwordLemma PredicateSense+DepwordPOS
DepwordHeadwordLemma FirstDepRelation
HeadwordLemma+RelationPath Predicate+ChildrenRELNoDup
DepwordHeadwordLemma+RelationPath PredicatePOS+ChildrenRELNoDup
HeadwordPOS DepwordFirstDepRelation+Depword
DepwordHeadwordPOS DepwordLastDepRelation+Depword
LastLemma Depword+Depword+1
DepwordLastLemma Depword+DepwordChildrenPOS
LastPOS DepwordPOS+DepwordChildrenPOSNoDup
DepwordLastPOS DepwordLemma+PredicateLemma
LastWord PredicateLemma+PredicateLemma+1

Table A.7: Classification feature templates for Semantic Role Labeling CoNLL-
2009 shared task, semantic roles subtask. Features adopted from Che et al. (2009)
and Zhao et al. (2009).

Form Num Suffix1 Prefix1
Form−1 Cap Suffix2 Prefix2
Form−2 Dash Suffix3 Prefix3
Form+1 POS−1 Suffix4 Prefix4
Form+2 POS−1 POS−2

Table A.8: Classification feature templates for POS tagging.
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