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Recall that a partially observable Markov Ot>| Agent }At

decision process extends the Markov decision revzard

N\

process to a sextuple (S, A, p,v, O, 0), where| , e a——
the MDP components L SRS A
A .
® S is a set of states, éQtH{Obser"ation OJ:ﬁt Dynamics p |
e Ais a set of actions, r St St
* p(Sii1=8,Riy1 =7r|Si =84 =a) ~ J
P(ot+1 s L14+1 t y L1t

is a probability that action a € A will lead
from state s € S to 8’ € S, producing a reward r € R,
e v < [0,1] is a discount factor,

are extended by:

® (D is a set of observations,
® 0(O¢11|St+1, At) is an observation model, where observation O is used as agent input

instead of the state S;.
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A partially observable stochastic game (POSG) is a 9-tuple

. ) . . ity Environment Tl
(S, N, {A€INI} LN} [REEINIY P {0V} oy, ), where | sl i
® S is the set of all possible states, : . |
® N is the number of agents, at{ % izl |
| i : S def SR - A Al
o A’ is the set of all possible actions for agent i, with AT = Aﬁ
H . A’l Figure 1.3: Partially Observable Stochastic Game (POSG)
?/ 1

(¥ is the set of all possible observations for agent 1,

P(sii1 € S|st € S,a; € AY) is the transition model,

R : S x A" x & — R is the reward function for agent 1,

O'(wl,; € Vsti1 € S,al € A) is the observation model for agent i, a distribution of
observing w;_ ; after performing action a; leading to state s;1,

po is the initial state distribution,

v € [0, 1] is a discount factor.
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Partially Observable Stochastic Game Pl
We denote I Environment w:
® joint actions/policy/observation across all agents as vectors St 1_3_;';;{"’;
@2 (a4 By
® joint actions/policy/observation for all agents but agent ¢ as . Aﬁﬁ:ﬁ' ________

Figure 1.3: Partially Observable Stochastic Game (POSG)
Figure 1.3 of "Cooperative Multi-Agent Reinforcement

. def . . N "
—1 1 1—1 1+1 N Learning”,
a — (CL g o o o a ’ a T g oo oy a )’ https://dspace.cuni.cz/handle/20.500.11956,/127431
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However, when actually implementing POSG, various ambiguities exist in the order of execution.

Therefore, agent-environment cycle game (AECG) has been proposed,

a 12-tuple (S, N, { AV QNI LRIV LTiElNIY P LOSINIY v, 59,40, v) where

S is the set of all possible states,
N is the number of agents, including 0 for “environment” agent; [NV] = [N] U {0},

def

A is the set of all possible actions for agent 7, with A" = {0}, A" = Uz'e[NU] A,

()" is the set of all possible observations for agent 1,

T : S x A* — S is the deterministic transition function for agent 1,

P(si11 € S|s; € S) is the transition function for the environment,

Ri(ri,, €Rls; €S,j € [NV],a] € A, s;.1 € S) is the reward distribution for agent 1,
O (w,, € Q'|st11 € 8) is the observation model for agent i,

v(j € [NV]|s; € S,i € [NY],al € A") is the next agent function,

so € S is the initial state,

io € [NY] is the initial agent, ® v € [0,1] is a discount factor.
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Figure 1.3: Partially Observable Stochastic Game (POSG)  Figure 1.4: AEC diagram for MPE Simple Spread environment

It holds that for every POSG, there is an equivalent AECG, and vice versa.

® When starting with POSG, a single transition is represented as N+1 steps in AECG: first
the N agents sequentially act, storing all their actions in the state, and then the environment
performs the same transition as the POSG.

® Starting with AECG, we design POSG where the state is a triple (AECG state, actor to act,
reward to obtain), and every transition is one step from AECG.
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Depending on the reward function, there are several environment settings:
* fully cooperative, when Vi,V : R'(ss, as, 8t11) = R? (8¢, a4, 8111);

* zero-sum, when > .y R'(s;,a,8:41) = 0.

Informally, we talk about cooperative and competitive settings, but we refrain from defining
them exactly (the definitions that we had were incorrect).
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The MARL Problem Ukt

We define a trajectory T as a sequence of states and actions

def
T = (80, Qg, 81,Q1, 82, .. .),

where:

® S0~ po.
[ ] at ~J W("St)v
* si11 — P(]st,at).

A return for an agent ¢ and trajectory T is
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The MARL Problem

For a given policy 7, the expected return for agent 7 is

J' () CErn [Ri(‘r)],

where a probability of a trajetory T is

|7l

P(t|m) = po(s0) | [ P(siralse, ar)m(ayse):

t=0

For a given joing policy 7%, best response is

7 (7)) = argmax J' (7t 7w 0.
00

MARL Eval HideAndSeek RLHF
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It is unfortunately not clear what the goal of MARL should be, given that it is a multi-criterion
optimization problem.

One possibility is to seek for Nash equilibrium, which is a joint policy 7, fulfilling
Vi € [N],Vx' : J'(m,) > J'(n", m,").

In other words, 7, is a best response to 7_* for all agents 1.

A Nash equilibrium exists for any finite game (finite number of players, each with a finite
number of strategies). Unfortunately, there can be multiple Nash equilibria with different payoffs
(Nash equilibrium is just a “local” optimum).

® Stag hunt ® Prisoner's dilemma
A\B Stag Rabbit A\B Stay silent Testify
Stag | 2\2 | O0\1 Stay silent,  -1\-1 -3\0
Rabbit 1\0 1\1 Testify 0\-3 -2\-2
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MARL Training Schemes

NPFL139, Lecture 14 BEVINSE MARL Schemes MARL Algos MARL Eval HideAndSeek RLHF DPO 12/67



MARL Training Schemes Uz

Centralized Scheme

wh al
S Y -
@) a
~—-| Model ==
_&’3,_) LELQ,

Figure 3.1: Centralized scheme
Figure 3.1 of "Cooperative Multi-Agent Reinforcement Learning”, https://dspace.cuni.cz/handle/20.500.11956,/127431

A joint model for all agents, a single critic.
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Concurrent /Parameter-Sharing Scheme

a
Model |---- -
a' /a2
Model [-----
a2
Model | ---- -
Figure 3.2: Concurrent scheme Figure 3.3: Parameter Sharing Scheme

Each agent is trained independently. When the agents are homogenous, their models can be
optionally shared (the parameter-sharing scheme).

However, the environment is then non-stationary, and using a replay buffer is problematic
because of changing policies of other agents.
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MARL Training Schemes Upt

Centralized Training with Decentralized Execution

Training Execution
w & o & al
------- Model 1 ---------~Model
- a
e \..\
i ' i
w L/a2 o a?
------- Model £ ----~ --------—>ModelfF------~

Figure 3.4: Centralized Training with Decentralized Execution (CT-DE)
Figure 3.4 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

Quite a common model, where the agents are independent, but the critics get the observations
and actions of all agents.
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MARL Algorithms
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Multi-Agent Deep Deterministic Policy Gradient Vet

itk T 1
1 1l === - Q (w,a)
W a . 9
. 1== Actor ! : Critic | ---- =
| I | r — =>
7
| | l 1w
w | | l |
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a | , ! |w_2
I 9 21 LT QZ(UJ a)
9, a | - )
ﬁ L= > ACtOI' __L____l___’ CI'Ith ______ >
Agent 2 ____ o
gent a )

Figure 3.5: Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

Figure 3.5 of "Cooperative Multi-Agent Reinforcement Learning”, https://dspace.cuni.cz/handle/20.500.11956,/127431
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Multi-Agent Deep Deterministic Policy Gradient Vet

Algorithm 3.1: Multi-Agent Deep Deterministic Policy Gradient
Input: initial policy parameters 6, Q-function parameters ¢, empty replay buffer D.

Alternatively, in multi-agent

: IS‘Zg::;get parameters equal to main parameters Garg < 6, Grarg < @. Settl ngs’ | n some eXperl mentS |t
3 Observe joint-observation w and select joint-action .. .
0 = clip(1t6(w) + €, Gioms Ghign), Where € ~ AV was beneficial to estimate the
4 Execute a in the environment. . .
5 Observe next observations w’, rewards r and done signal for each agent d. grad |ent for th e pO| |Cy u pd ate
6 Store (w,a,r,w’,d) in replay buffer D. . ; .
v ifall(d) is true then using the current policy instead
8 Reset environment state.
9 end if 1
10 Randomly sample a batch of transitions, B = {(w, a,r,w’,d)} from D. Of the aCtlon from the repl ay
11 for agent ¢ in [N] do .o : H
12 Compute targets bUfFer, |f the ||ne ].4' IS Changed
y(r W ) =1 (1 = &) (@ gy (@))- to
13 Update Q-function by one step of gradient descent using . 1 .
1 1
1 ) D -

Verg | 2, (Qelea) mulrtetd )’ Ve ] B \ Z Qw (w, Ho (w)) ’

14 Update policy by one step of gradient ascent using ind
1 ) S
Vi — Q’L , —z’ ).
B, ) we talk about Soft MADDPG.
15 Update target networks with
¢7éarg A ad)iarg + (1 - a)d)l
eéarg <~ Cyeéarg + (1 - a)az

16 end for

17 until convergence

Algorithm 3.1 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956,/127431
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Multi-Agent Twin Delayed DDPG Uz

a—l —————————— >
& wl al - = = =—1 C(Critic F--v Ql(w,a)

)
=~ Actor ! ; — Min} = = = = - >
! ! LT Critic | --*
| | I |
W | | I |
iy il
___I ___________ L I
a | : l |w_2
r 29 Critic F--
& == Actor |[--t---7---> — Min |- = = = — = >
——~| Critic f-=* __“¢wa)

Figure 3.6: Multi-Agent Twin Delayed DDPG (MATD3)

Figure 3.6 of "Cooperative Multi-Agent Reinforcement Learning”, https://dspace.cuni.cz/handle/20.500.11956,/127431
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Multi-Agent Twin Delayed DDPG VR

Algorithm 3.2: Multi-Agent Twin Delayed DDPG . . f
Input: initial policy parameters 8, Q-function parameters ¢1, ¢2, empty replay We Ca n a ga I n CO ns I d e r a S O t

buffer D.

1 Set target parameters equal to main parameters Giarg < 6, GPrarg,1 < @1, MA TD3 Va ri a nt

¢targ,2 — ¢2-

2 repeat
3 Observe joint-observation w and select joint-action
e () 1o ). b £ N Furthermore, we can also use the

4 Execute a in the environment. .. .. .

5 Observe next ob/serva.utions w’, rewards r and done signal for each agent d. m I n I m u m Of b Oth C rlt I Cs d u rl n g
6 Store (w, a,r,w’, d) in replay buffer D.

7 if all(d) is true then .

8 Reset environment state. pOI |Cy u pd ate (S h OW n to be

9 end if
10 Randomly sample a batch of transitions, B = {(w, a,r,w’,d)} from D. b f- : b G d
11 for agent ¢ in [N] do ene ICIaI y DDP _|_+ an
12 Compute target actions

R, SAC). The resulting algorithm is
13 Compute targets Ca”ed (SOft) MATD4

rw ) =r'+ (1 —d) min Q W', a).
) =7 - ) min Q)

14 Update Q-function by one step of gradient descent using

vje{1,2}: V! ! > (QZ;]. (w,a) - y(ri,w’,di)>2~

%\ Bl
! |B| (w,a,r,w’ . d)eB

15 if time to update policy function then
16 Update policy by one step of gradient ascent using
i L i —i i
Veﬁ Z Qy, (w,a™", py(w*)).

(w,a)eB

17 Update target networks with
Blarg € OBlarg + (1= )¢’
GZarg — aﬁéarg +(1- a)@i.

18 end if
19 end for
20 until convergence

Algorithm 3.2 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956,/127431
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MARL Evaluation
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MARL Evaluation, Simple Target

A
O ) )
RewardAr@_
// \\\‘
X x x
e ©g @
(a) Cooperative navigation (b) MPE Simple Spread (c) MPE Simple Target
_ _ o Figure 6.2: MPE Simple Collect
Flgure 6.1: (E,OOpflra:G”lg/e néiyl%ﬂaz}cz\n ¢ Reind . .y Figure 6.2 of "Cooperative Multi-Agent Reinforcement Learning”,
igure 6.1 o httf)?/?rgsll\;sce.gurlv_i.cé;e/%ansllg/ggg%?gl95%71,72’?531' https://dspace.cuni.cz/handle/20.500.11956,/127431
Reward is given for touching a landmark, and for unoccupied landmarks also for distance of the
nearest agent (orignally any agent, but easier variant is an agent not occupying a landmark).
The agents have non-negligible size and get negative reward for colliding.
Actions can be discrete (D, <, —, T, |; ST Gumbel-softmax is used) or continuous.
In the Simple Collect variant, the targets disappear after being occupied for some time, and a
new one appears on a random location.
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MARL Evaluation, Simple Target, Continuous Actions
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MATD3 — CT-DE

Soft MATD4 — CT-DE
MATD4 — CT-DE

Soft MATD3-FORK — CT-DE
MATD4-FORK — CT-DE
Soft MATD4-FORK — CT-DE
TD4 — Concurrent
MATD3-FORK — CT-DE
TD3 — Concurrent

TD4 — Centralized
TD4-FORK — Centralized
Soft MATD3 — CT-DE
TD3 — Centralized
TD3-FORK — Centralized
DDPG — Concurrent

TD4 — PS

TD4-FORK — Concurrent
TD3-FORK — PS

DDPG — PS

TD3 — PS

TD4-FORK — PS
TD3-FORK — Concurrent
MADDPG — CT-DE

Soft MADDPG — CT-DE
DDPG — Centralized

Figure 6.4: Training of MPE Simple Target Continuous

Figure 6.4 of "Cooperative Multi-Agent Reinforcement Learning”, https://dspace.cuni.cz/handle/20.500.11956,/127431
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MARL Evaluation, Simple Target, Continuous Actions

Algorithm — Scheme

Step 1000

Step 1500

Step 2000

MATD3 — CT-DE

Soft MATD4 — CT-DE
MATD4 — CT-DE

Soft MATD3-FORK — CT-DE
MATD4-FORK — CT-DE
Soft MATD4-FORK — CT-DE
TD4 — Concurrent
MATD3-FORK — CT-DE
TD3 — Concurrent

TD4 — Centralized
TD4-FORK — Centralized
Soft MATD3 — CT-DE
TD3 — Centralized
TD3-FORK — Centralized
DDPG — Concurrent

TD4 — PS

TD4-FORK — Concurrent
TD3-FORK — PS

DDPG — PS

TD3 — PS

TD4-FORK — PS
TD3-FORK — Concurrent
MADDPG — CT-DE

Soft MADDPG — CT-DE
DDPG — Centralized

204.55 &= 75.20
160.05 £+ 91.58
167.36 £ 93.70
181.43 + 120.70
176.10 + 103.08
173.04 + 121.90
124.86 + 56.81
165.90 &+ 109.04
141.68 £+ 95.89
165.42 + 99.01
147.53 £ 158.98
153.94 + 90.68
140.86 + 172.41
105.11 £+ 155.83
57.89 £ 158.75
79.51 £+ 31.69
53.72 £+ 52.19
66.37 + 36.13
69.52 £ 38.57
64.14 £ 99.31
46.26 £ 44.39
29.50 £ 58.41
36.53 + 121.71
-16.09 + 68.93
-76.77 £ 43.85

229.22 £+ 61.24
198.95 £ 60.09
197.96 £+ 83.78
196.62 £+ 115.77
207.62 £ 63.07
199.92 4 115.03
168.19 + 57.67
185.39 £ 121.30
166.04 £+ 94.70
175.77 £ 91.21
168.67 + 162.29
166.21 £+ 118.72
144.93 + 173.38
121.86 £+ 128.41
84.37 £ 156.04
86.90 + 24.38
74.92 £ 71.39
71.32 + 41.40
73.21 + 29.49
72.93 £ 110.74
52.97 £+ 61.03
49.89 £ 69.70
42.91 4+ 125.80
-7.41 £ 69.93
-76.46 £ 43.56

229.13 £+ 60.49
222.70 £ 63.45
209.31 £ 73.73
207.12 + 120.15
205.87 £ 54.62
200.56 £ 112.56
191.26 & 66.95
181.14 £+ 117.56
178.08 &+ 70.62
177.23 + 94.04
169.09 + 161.63
162.48 + 111.84
146.84 + 173.46
127.91 + 128.45
102.91 £+ 163.00
88.14 £+ 25.81
81.69 + 76.66
76.44 £+ 31.63
75.89 & 32.83
71.72 £ 107.94
07.93 £ 46.61
51.17 £ 79.36
46.68 + 130.79
-8.69 £ 71.27
-76.39 £ 40.30

NPFL139, Lecture 14 MARL

Table 6.3: Training of MPE Simple Target Continuous
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MARL Evaluation, Simple Target, Discrete Actions
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Soft MATD4 — CT-DE
Soft MATD3-FORK — CT-DE
MATD3-FORK — CT-DE
MATD4-FORK — CT-DE
MATD3 — CT-DE

TD4 — Concurrent
TD3-FORK — Concurrent
TD3 — Concurrent
TD4-FORK — Concurrent
MADDPG — CT-DE
TD3-FORK — PS

DDPG — Concurrent

Soft MADDPG — CT-DE
TD4 — PS

TD4-FORK — PS

DDPG — PS

TD3 —PS

TD3 — Centralized
TD3-FORK — Centralized
TD4-FORK — Centralized
TD4 — Centralized

DDPG — Centralized

Figure 6.5: Training of MPE Simple Target Discrete

Figure 6.5 of "Cooperative Multi-Agent Reinforcement Learning”, https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Target, Discrete Actions

Algorithm — Scheme

Step 1000

Step 1500

Step 2000

Soft MATD4-FORK — CT-DE

Soft MATD3 — CT-DE
MATD4 — CT-DE
Soft MATD4 — CT-DE

Soft MATD3-FORK — CT-DE

MATD3-FORK — CT-DE
MATD4-FORK — CT-DE
MATD3 — CT-DE

TD4 — Concurrent
TD3-FORK — Concurrent
TD3 — Concurrent
TD4-FORK — Concurrent
MADDPG — CT-DE
TD3-FORK — PS

DDPG — Concurrent

Soft MADDPG — CT-DE
TD4 — PS

TD4-FORK — PS

DDPG — PS

TD3 — PS

TD3 — Centralized
TD3-FORK — Centralized
TD4-FORK — Centralized
TD4 — Centralized
DDPG — Centralized

111.75 £ 77.96
101.32 £+ 83.43
104.05 £+ 66.35
92.24 £+ 75.62
75.79 £ 70.77

112.65 £+ 65.49

111.99 + 64.69
105.28 £+ 69.32
76.77 £ 42.61
70.46 £+ 61.78
82.29 + 59.64
74.34 £+ 50.74
98.26 + 92.25
66.57 £ 36.22
61.63 £+ 67.56
60.59 £+ 100.51
54.58 + 41.65
56.13 + 37.18
33.35 £ 69.91
32.00 £ 73.67
-32.49 + 32.23
-38.20 £ 34.78
-39.79 £ 27.42
-38.51 + 30.20
-41.75 + 29.24

157.47 £ 75.75

145.85 £ 88.63
150.05 £ 87.94
126.30 £+ 84.29
137.09 £+ 104.59
156.95 £+ 78.50
150.89 £ 85.10
127.97 £+ 67.64
106.56 £ 50.66
98.35 £ 98.07
109.08 £ 57.14
102.12 £+ 70.92
107.20 £ 112.55
77.96 £ 34.42
71.28 £ 70.27
71.92 + 106.74
65.69 + 36.96
63.85 + 44.07
46.41 £ 78.70
46.71 + 85.10
-34.73 £ 28.95
-38.26 + 31.54
-37.66 + 28.74
-38.95 + 30.45
-48.40 £ 31.10

181.75 £ 53.02

177.61 £ 89.56
172.31 + 46.00
166.52 £+ 98.42
165.54 + 84.61
163.67 £ 53.54
163.32 £+ 65.31
138.51 £+ 72.62
137.84 £+ 47.28
135.50 + 84.69
131.59 £+ 47.93
128.22 + 73.07
118.11 + 95.47
79.53 £ 29.01

77.90 £ 67.64

75.72 £ 108.28
74.00 £ 40.12

66.86 £ 34.37

55.19 £+ 82.42

02.29 £ 87.22

-34.45 £ 32.21
-37.41 + 32.86
-42.60 £+ 23.18
-42.84 £+ 36.64
-50.95 £ 31.73

Table 6.4 of "Cooperative Multi-Agent Reinforcement Learning”, https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Confuse ezt

(a) Optimal strategy (b) Suboptimal strategy

Figure 6.3: Physical Deception

Figure 6.3 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956,/127431

Some number of cooperaing agents gets rewarded based on the minimum distance of any agent
to the target landmark; but are penalized based on the distance of a single adversary to the
target landmark.

The adversary gets rewarded based on its distance to the target landmark; however, it does not
know which landmark is the target one.

Actions can be again either discrete or continuous.
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MARL Evaluation, Simple Confuse, Continuous Actions
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TD4-FORK — Concurrent
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TD4-FORK — PS
TD4-FORK — Centralized

Figure 6.6: Training of MPE Simple Confuse Continuous

Figure 6.6 of "Cooperative Multi-Agent Reinforcement Learning”, https://dspace.cuni.cz/handle/20.500.11956,/127431
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MARL Evaluation, Simple Confuse, Continuous Actions

Algorithm — Scheme

Step 1000

Step 1500

Step 2000

MATD4 — CT-DE

Soft MATD4 — CT-DE

Soft MATD3 — CT-DE

Soft MATD4-FORK — CT-DE
MATD4-FORK — CT-DE
MATD3 — CT-DE

TD3 — Concurrent

TD4 — Concurrent

Soft MATD3-FORK — CT-DE
MATD3-FORK — CT-DE

Soft MADDPG — CT-DE

TD3 — PS
DDPG — Concurrent
TD4 — PS

MADDPG — CT-DE

TD3 — Centralized
DDPG — Centralized
TD3-FORK — Concurrent
TD4-FORK — Concurrent
TD4 — Centralized

DDPG — PS

TD3-FORK — PS
TD3-FORK — Centralized
TD4-FORK — PS
TD4-FORK — Centralized

122.18 + 33.17

131.06 £+ 37.29

112.32 £+ 29.91
111.54 £ 21.17
112.46 £+ 31.82
113.12 £ 30.99
105.01 £+ 22.77
111.86 £+ 21.07
111.02 £+ 27.48
101.94 £+ 19.59
100.63 £+ 20.79
98.97 + 128.10
97.02 £ 32.39
96.92 + 123.85
80.88 £ 111.29
87.51 + 109.69
70.40 £ 109.99
2.43 £ 85.80
45.92 £ 84.69
68.44 £+ 118.04
73.56 = 118.83
62.00 £+ 114.66
2297 £ 98.41
31.90 + 118.33
14.61 £ 101.07

131.30 £+ 30.50

129.13 £ 31.19
121.77 £ 28.70
120.62 £ 33.04
115.03 £+ 32.07
116.09 & 30.69
111.73 + 31.89
112.31 £ 21.51
110.57 £ 32.56
105.07 £ 22.73
103.23 £ 24.06
100.34 + 123.74
100.35 + 26.67
98.33 + 120.15
82.77 £ 105.02
87.82 + 108.53
82.32 £ 109.73
42.99 + 69.73
72.06 £ 90.34
68.00 £ 120.47
72.27 £ 124.91
61.09 + 113.96
43.69 £ 93.67
44.34 4+ 122.45
24.73 £ 104.00

133.66 = 27.11

127.84 £+ 28.16
126.46 £+ 35.92
123.30 + 33.84
119.04 £+ 36.35
118.65 & 29.63
116.86 = 33.29
112.78 £+ 24.54
107.96 + 25.47
106.14 £+ 31.57
105.31 £+ 21.57
100.67 + 127.73
98.67 £ 24.01
96.89 + 124.90
91.45 £+ 119.99
88.24 £+ 102.05
83.46 + 115.35
77.41 £ 37.24
76.21 £ 74.87
70.01 £ 116.58
66.27 + 125.84
60.19 + 119.57
49.01 £+ 102.98
38.96 + 115.48
18.10 £ 105.13

Table 6.5 of "Cooperative Multi-Agent Reinforcement Learning”, https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Confuse, Discrete Actions
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Figure 6.7: Training of MPE Simple Confuse Discrete

Figure 6.7 of "Cooperative Multi-Agent Reinforcement Learning”, https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Confuse, Discrete Actions

Algorithm — Scheme

Step 1000

Step 1500

Step 2000

Soft MATD4 — CT-DE
MATD4 — CT-DE
MATD4-FORK — CT-DE
TD3 — Concurrent

Soft MATD3-FORK — CT-DE
TD4-FORK — Concurrent
Soft MATD4-FORK — CT-DE
TD3-FORK — Concurrent
TD4 — Concurrent

TD4 — PS

TD4-FORK — PS
TD3-FORK — PS
MATD3 — CT-DE

DDPG — Concurrent

TD3 — PS

Soft MATD3 — CT-DE
MATD3-FORK — CT-DE
MADDPG — CT-DE

Soft MADDPG — CT-DE
DDPG — PS

TD3-FORK — Centralized
DDPG — Centralized
TD4-FORK — Centralized
TD3 — Centralized

TD4 — Centralized

130.73 + 64.02

133.16 £+ 62.79

118.88 £+ 30.88
117.66 + 70.83
114.68 + 76.54
110.27 £ 25.70
117.52 + 36.84
109.80 £ 28.23
107.70 £ 25.13
110.53 £ 93.17
113.83 £ 136.90
107.67 £ 93.65
95.42 £ 91.09
98.94 + 27.85
94.36 + 148.68
89.92 + 105.15
79.58 £ 108.00
76.21 £ 79.41
67.05 £ 78.25
64.00 £ 155.87
-56.95 £ 34.65
-59.94 + 37.19
-60.94 + 33.82
-63.76 £+ 30.93
-65.01 £ 34.23

134.33 £ 67.35

137.66 £ 60.18

133.05 £ 35.41
121.21 £ 68.82
117.71 £ 75.47
120.18 + 32.67
122.71 + 40.63
112.24 £+ 31.18
112.05 £+ 30.07
108.77 £ 95.13
114.20 £ 129.01
109.83 4= 93.05
107.58 + 103.40
100.38 £ 26.36
95.72 £ 151.30
91.97 £+ 109.25
90.22 + 110.49
82.52 £+ 86.87
67.61 £ 75.00
60.61 £ 157.34
-58.02 + 33.39
-60.30 + 36.79
-65.66 + 32.61
-69.51 + 28.80
-65.31 £ 34.02

131.67 £ 60.95

130.77 £ 62.34
126.85 + 31.52
122.93 + 73.97
121.95 £+ 73.92
121.65 &= 33.89
120.39 & 33.28
113.66 = 31.04
113.13 £+ 32.46
111.26 £+ 90.47
108.52 4+ 115.81
107.64 £+ 96.69
105.22 + 104.55
98.39 £ 25.54
92.01 £+ 153.11
91.08 + 108.21
87.85 £ 109.62
87.00 £ 92.56
80.64 £ 65.77
60.46 £ 159.04
-60.90 £+ 40.31
-64.07 £ 38.17
-65.76 + 32.89
-67.00 + 32.73
-70.42 £ 35.32

Table 6.6 of "Cooperative Multi-Agent Reinforcement Learning”, https://dspace.cuni.cz/handle/20.500.11956/127431
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Multi-Agent Hide-and-Seek

As another example, consider https://openai.com/blog/emergent-tool-use/.

Here the agents are trained in the centralized training with decentralized execution settings,
using the PPO algorithm.
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Reinforcement Learning with Human Feedback
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Reinforcement Learning with Human Feedback Vet

Let us assume our goal is to train a robot to cook eggs.

For such complex tasks, there might not be suitable reward functions available, and
implementing it manually might be difficult or infeasible.

If we have demonstrations for the seeked behavior, we might use inverse reinforcement learning
or imitation learning, but some behaviors might be difficult to demonstrate (like controlling a
robot with many degrees of freedom).
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A possible approach in such a case is to use
reinforcement learning with human
feedback, proposed in a 2017 paper.

Because human feedback is costly, using as
little as feedback is desirable. Therefore, the
authors propose to use the feedback to train a
reward function, which can then be used by
classical RL algorithms.

compare two video clips of agent's behavior.

® Comparing two videos was found out to be
considerably easier than providing absolute numerical score.

predicted
reward

RL algorithm

reward predictor

j observak

human
feedback

«

action

Y

environment

Figure 1: Schematic illustration of our approach:
the reward predictor is trained asynchronously
A practical approach is for the human raters to from comparisons of trajectory segments, and the

agent maximizes predicted reward.

® Rating videos is nearly as fast as comparing individual states, but significantly more helpful.

RLHF
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We consider a partially observable MDP, where in time ¢ agent obtains an observation 0; and
produces an action ay.

In the traditional RL setting, the environment would also produce the reward 7;; we will instead
predict a reward 7(0, a;).

A trajectory segment is a sequence of observations and actions

o = ((00,a0),(01,a1),...,(0k-1,ar-1)).

We write 0! > o2 to indicate that a human rater preferred trajectory ol over trajectory o2
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We maintain two models:

® the policy m: O — A, and
® the reward function estimate 7 : O x A — R.

The models are updated by three asynchronously running processes:

1. The policy 7 interacts with the environment, obtaining a set of trajectories {7,..., 7'}

The parameters of 7 are updated using a traditional RL algorithm utilizing the estimated

reward 7.

1

2. A pair of segments (o1, 0?) from trajectories {71,..., 7'} generated in step 1 is selected

and sent to human rater for evaluation.

3. The reward estimate 7 is trained using supervised learning to fit the comparisons selected by
the annotators so far.
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Optimizing the Policy

During policy optimization, we can utilize the usual RL algorithms. The main difference is that
the rewards are non-stationary; therefore, policy-gradient methods are preferred.

During training we normalize 7 to have zero mean and constant standard deviation

(the absolute values of the rewards are undetermined in our model).

Preference Collection

The visualization given to a rater is a video between 1 and 2 seconds long. The rater indicate
which of the segments they prefer, whether the segments are equally good, of that they were

not able to compare the two segments.

1 ;2

102, 1), where o1, 02 are the

All human judgements are stored in a dataset D of triples (o
compared segments and p is a distribution over 1, 2 indicating which segment was deemed
better. The gt is either one hot distribution when a single segment was preferred, or a uniform
distribution when a rater annotated both videos as being comparable.
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We follow the Bradley-Terry model, which is a binary probability model for the outcome of
pairwise comparisons between players

. . Di
Pl1>7 )=
(\/-/)pﬂrp]’

“? beats 57
where p; is a positive real-valued score assigned to player 1.

There are many possible parametrizations, Bradley and Terry used p; = eP | in which case

ePi 1

P(i>j) = efi + ebi - 1+ ePi—bi :a(ﬂi_ﬂj)'

Note that with a scaling factor 400 and base 10, this is equivalent to the Elo rating system with
Elo ratings R; and R;:

1

Pl >j) = 1 4+ 10(R;—R:)/400 - ‘7((Ri -

log 10
Rj) Zgoo )
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In our case, we assume that

5¢ 1 2 exp ) 7 (Ot7a’t) — 5 ol al) — ST 7(02. a2
P(o" = 07) = exp > 7 (Ot,at)—l—expz (ot,a?) — (Z (0;,a;) — > 7(0f, t))

To fit this model we minimize the cross-entropy between the observed distribution of human
rating pt and these predictions:

L=-E 5 gy 1 log P(o' = 02) + ps P(0? ah)].

The authors mention several tricks:

® A whole ensemble of predictors are trained, each using randomly sampled |D| examples
(with replacement) from D. The overall 7 is then defined by first independently normalizing

each of the predictors and then averaging the results.
® A fraction 1/e of the data is used as development data, and strength of L?-regularization is

set so that the development loss is between 1.1 and 1.5 of the training loss.
® |n the definition of P, we assume there is a 10% chance of uniform random outcome.
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Reward Function Fitting V=

To select the queries for the raters, we

® sample a large amount of pairs of trajectory segments of length k,
® perform prediction on each pair using all the predictors in our ensemble,
(]

choose the pairs with the highest variance in the predictions, which approximates the largest
uncertainty.
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In first experiments, the authors attempted to solve existing RL benchmarks (Atari, MuJoCo)
without observing the true rewards, using human feedback instead.

For comparison, synthetic feedback (instead of human feedback) was also considered in these
tasks, where P(O‘l - 02) is defined by using the real reward of the trajectory segments.

For MuJoCo, 700 human ratings were used; for Atari, 5.5k queries were sent to human raters.
Overall the ratings took between 30 minutes and 5 hours for every experiment.
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Experiments: MuJoCo Urzt
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timestep Lle7 timestep 1le7 timestep Lle7 timestep 1le6
Figure 2: Results on MuJoCo simulated robotics as measured on the tasks’ true reward. We compare
our method using real human feedback (purple), our method using synthetic feedback provided by
an oracle (shades of blue), and reinforcement learning using the true reward function (orange). All
curves are the average of 5 runs, except for the real human feedback, which is a single run, and
each point is the average reward over five consecutive batches. For Reacher and Cheetah feedback
was provided by an author due to time constraints. For all other tasks, feedback was provided by
contractors unfamiliar with the environments and with our algorithm. The irregular progress on

Hopper is due to one contractor deviating from the typical labeling schedule.

Figure 2 of "Deep Reinforcement Learning from Human Preferences", https://arxiv.org/abs/1706.03741
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Experiments: Atari Fx
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Figure 3: Results on Atari games as measured on the tasks’ true reward. We compare our method using
real human feedback (purple), our method using synthetic feedback provided by an oracle (shades of
blue), and reinforcement learning using the true reward function (orange). All curves are the average
of 3 runs, except for the real human feedback which is a single run, and each point is the average

reward over about 150,000 consecutive frames.
Figure 3 of "Deep Reinforcement Learning from Human Preferences", https://arxiv.org/abs/1706.03741
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The authors also demonstrated the effectiveness of human feedback in tasks without available
reward functions:

® the Hopper robot was trained to perform a
backflip using 900 queries in less than an hour;

® the Half-Cheetah was trained to move while
standing on just one leg via 800 queries;

’E-i-

e

® in Enduro, the agent was trained to keep the
same speed as other cars using 1 300 queries.
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Ablations: MuJoCo =
® random queries: queries poon 2K s ——SImmer cheetsh
picked uniformly at random  “| /‘/J
instead of according to B o] ) b |
variance of predictions; " 200 / / %
® no ensemble: a single O LA LS | L W LA
predlctor |S tralned random ‘ Cant . “reacher te7 'dou'ble-p'endu'lumlﬁ . ‘pendAqum' Le7
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® no regularization: w/o _ i e S i
. . 2 e Figure 5: Performance of our algorithm on MuJoCo tasks after removing various components, as
validation L Cond|t|0nv described in Section Section 3.3. All graphs are averaged over 5 runs, using 700 synthetic labels
each.
PY no Segments rate Only Figure 5 of "Deep Reinforcement Learning from Human Preferences", https://arxiv.org/abs/1706.03741
images, not videos;
® target: instead of fitting 7 using comparison, we fit given real r using MSE.
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Ablations: Atari
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Figure 6: Performance of our algorithm on Atari tasks after removing various components, as
described in Section 3.3. All curves are an average of 3 runs using 5,500 synthetic labels (see minor
exceptions in Section A.2).
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Figure 6 of "Deep Reinforcement Learning from Human Preferences", https://arxiv.org/abs/1706.03741
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® ook at the clips and select the one in which better things happen. Only decide on events
you actually witness in the clip.
® Here's a guide on what constitutes good and bad behavior in each specific domain:
O Hopper: the “center” of the robot is the joint closest to the pointy end. The first

priority is for the center of the robot to move to the right (moving to the left is worse
than not moving at all). If the two robots are roughly tied on this metric, then the

tiebreaker is how high the center is.
O Cheetah: the robot should move to the right as fast as possible.

O Pendulum: the pendulum should be pointing approximately up. There will be a lot of
ties where the pendulum has fallen and a lot of “can’t tells” where it is off the side of
the screen. If you can see one pendulum and it hasn't fallen down, that's better than

being unable to see the other pendulum.

® |f both clips look about the same to you, then click “tie". If you don't understand what's
going on in the clip or find it hard to evaluate, then click “can't tell”.
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First play the game yourself for 5 minutes. Before providing feedback to the Al, play the
game yourself for a five minutes to get a sense of how it works. It's often hard to tell what
the game is about just by looking at short clips, especially if you've never played it before.

Look at the clips and select the one in which better things happen. For example, if the left
clip shows the Al shooting an enemy ship while the right clip shows it being shot by an
enemy ship, then better things happen in the left clip and thus the left clip is better. Only
decide on actions you actually witness in the clip.

Here's a guide on what constitutes good and bad play in each specific game:
O Breakout: hit the ball with the paddle, break the colored blocks, and don't let the ball

fall off the bottom of the screen

O Pong: knock the ball past the opponent’s orange paddle on the left (good), and don't
let it go past your green paddle on the right (bad)

Don't worry about how the agent got into the situation it is in (for instance, it doesn't
matter if one agent has more lives, or is now on a more advanced level); just focus on what
happens in the clip itself.
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RLHF was used to improve summarization in a 2020 paper.

The Reddit TL;DR dataset and CNN/Daily Mail dataset were utilized. The Reddit TL;DR
contains 3M posts from reddit.com with summaries written by original posters; the authors
filtered the data (including requiring the summaries to be between 24 and 48 tokens) and kept
123 169 posts with ~5% kept as a validation set.

The following models were considered:
® Pretrained models: Pretrained LLMs, with several high-quality examples in the prompt.

® Supervised baselines: Finetuned variants of the above models trying to predict the
summaries from the filtered TL;DR dataset.

® Reward models: Starting from the supervised baselines, RLHF was applied. A new output
linear layer producing a single scalar was added to the model and the model was trained to
predict rating 7g(x, y;) that corresponds the most to the observed ratings according to the

Bradley-Terry model:

L= _E(a:,yg,yl,i)ND [log(a(rg (:13, yz) — T (213, yl—z)))} .
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Learning to Summarize from Human Feedback UL
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Figure 2: Diagram of our human feedback, reward model training, and policy training procedure.
Figure 2 of "Learning to summarize from human feedback", https://arxiv.org/abs/2009.01325
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The human feedback policies are then trained using the reward model.

Generating the entire summary is considered a sequence of actions, each being a generation of a
single BPE token, and the PPO algorithm is used with the following reward:

R(z,y) = ro(z,y) — Blog [7EX (y|z) /7T (yz)],

where the per-token KL term serves two purposed:

® it acts as an entropy bonus to avoid collapsing to a single node;
® it ensures the policy does not learn to produce completely different outputs too different
from those the reward model saw during reward fitting.
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Learning to Summarize from Human Feedback Uz
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Figure 1: Fraction of the time humans prefer our models’ summaries over the human-generated
reference summaries on the TL;DR dataset.*Since quality judgments involve an arbitrary decision
about how to trade off summary length vs. coverage within the 24-48 token limit, we also provide
length-controlled graphs in Appendix F; length differences explain about a third of the gap between

feedback and supervised learning at 6.7B.
Figure 1 of "Learning to summarize from human feedback", https://arxiv.org/abs/2009.01325

In total, 64 832 ratings were collected, and they were publicly released.
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Figure 4: Transfer results on CNN/DM. (a) Overall summary quality on CNN/DM as a function of
model size. Full results across axes shown in Appendix G.2. (b) Overall scores vs. length for the
6.7B TL;DR supervised baseline, the 6.7B TL;DR human feedback model, and TS fine-tuned on
CNN/DM summaries. At similar summary lengths, our 6.7B TL;DR human feedback model nearly

matches TS5 despite never being trained to summarize news articles.
Figure 4 of "Learning to summarize from human feedback”, https://arxiv.org/abs,/2009.01325
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Figure 6: Reward model performance versus
data size and model size. Doubling amount of
training data leads to a ~1.1% increase in reward
model validation accuracy, whereas doubling
the model size leads to a ~1.8% increase. The
6.7B model trained on all data begins approach-
ing the accuracy of a single human.
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Figure 5: Preference scores versus degree of

reward model optimization. Optimizing against
the reward model initially improves summaries,

but eventually overfits, giving worse summaries.

This figure uses an earlier version of our reward
model (see rm3 in Appendix C.6). See Appendix
H.2 for samples from the KL 250 model.
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In 2022, InstructGPT (ChatGPT predecessor) was trained to follow instructions using human

feedback.

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

NPFL139, Lecture 14 MARL

Explain the moon
landing to a 6 year old

\j

)

2

Some people went
to the moon...

Figure 2 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155

MARL Schemes

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

MARL Algos

Explain the moon
landing to a 6 year old
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Explain gravity.. Explain war..

o o

Moon is natural People went to
satellite of.. the moon...
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MARL Eval

HideAndSeek

Step 3

Training LMs to Follow Instructions with Human Feedback

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.
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The same Bradley-Terry model is used to train the reward function.
To speed up comparison collection, the authors presented the labelers between K = 4 and
K = 9 responses to rank, producing (12{) comparisons for every prompt.

However, the comparisons in a single prompt are very correlated, so sampling them randomly
during an epoch caused the model to overfit. Instead, all (12{) comparisons were used in a single

batch, which is also more efficient (only K passes of the reward model, compared to (12{)
passes).

The loss function for the reward model is analogous to before:

L= _([](-’)]E(a:,yw,yl)wl) [log(a(rg (CB, yw) —To (w7 yl)))] .
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Training LMs to Follow Instructions with Human Feedback

The SFT models are finetuned using the trained reward model again using the PPO algorithm,
employing the following objective:

E(w,y)wDﬂgL [TH (CE‘, y) — B log (WgL (y|x)/7TSFT (y‘x))] ‘

The authors also proposed a variant called PPO-ptx., which also includes an additional
supervised term in the objective:

E(ay)~D g [ro(z,y) — Blog (mg" (yle) /7" (y[2)) ]| + VEsrDyrn [108(m5" (2))].
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Training LMs to Follow Instructions with Human Feedback Uz

|»

% /
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N
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I(.,L) =0 PPO-ptx
= PPO
£ 044
(CUD ) -0 SFT
g GPT (prompted)
0 GPT
=
; 0.2

1.3B 6B 1758

Model size

Figure 1: Human evaluations of various models on our API prompt distribution, evaluated by how
often outputs from each model were preferred to those from the 175B SFT model. Our InstructGPT
models (PPO-ptx) as well as its variant trained without pretraining mix (PPO) significantly outperform
the GPT-3 baselines (GPT, GPT prompted); outputs from our 1.3B PPO-ptx model are preferred to
those from the 175B GPT-3. Error bars throughout the paper are 95% confidence intervals.

Figure 1 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155
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Training LMs to Follow Instructions with Human
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Figure 3: Preference results of our models, measured by winrate against the 175B SFT model. Left:

results on prompts submitted to GPT models on the API; Right: results on prompts submitted to
InstructGPT models on the API; Top: results from held-out labelers; Bottom: results from training
labelers. We omit GPT (prompted) from the evals on prompts submitted to GPT-3 models (left) as
these prompts are already designed to perform well for GPT-3, as opposed to prompts submitted to
InstructGPT models (right).

Feedback

Figure 3 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155
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Training LMs to Follow Instructions with Human Feedback et

: : . : o Uses language appropriate
Attempts correct instruction Follows explicit constraints Hallucinations for customer assistant
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Figure 4: Metadata results on the API distribution. Note that, due to dataset sizes, these results are
collapsed across model sizes. See Appendix E.2 for analysis that includes model size. Compared
to GPT-3, the PPO models are more appropriate in the context of a customer assistant, are better at
following explicit constraints in the instruction and attempting the correct instruction, and less likely

to ‘hallucinate’ (meaning, making up information on closed domain tasks like summarization).
Figure 4 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155
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Figure 28: Zero-shot performance of our models on various public NLP datasets. The 175B PPO
models consistently show performance regressions, which is mitigated by adding updates on the
pretraining data during fine-tuning. Few-shot performance is shown in Figure 29. Error bars for
translation are not available because we use a software package that does not report them.

Figure 28 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155
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Figure 29: Few-shot performance of our models on various public NLP datasets (compare to zero-shot
performance shown in Figure 28

Figure 29 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155
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Direct Preference Optimization UL

A
Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
it label rewards i
) : > Eyl —> reward model LM policy 't_—yw > L_ - > final LM
| —"
preference data maximum sample completions preferencedata .
likelihood reinforcement learning likelihood

Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.

In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, without an explicit reward function or RL.
Figure 1 of "Direct Preference Optimization: Your Language Model is Secretly a Reward Model", https://arxiv.org/abs,/2305.18290
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Figure 2: Left. The frontier of expected reward vs KL to the reference policy. DPO provides the highest expected
reward for all KL values, demonstrating the quality of the optimization. Right. TL;DR summarization win
rates vs. human-written summaries, using GPT-4 as evaluator. DPO exceeds PPO’s best-case performance on

summarization, while being more robust to changes in the sampling temperature.
Figure 2 of "Direct Preference Optimization: Your Language Model is Secretly a Reward Model", https://arxiv.org/abs/2305.18290
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Figure 3: Left. Win rates computed by GPT-4 for Anthropic-HH one-step dialogue; DPO is the only method
that improves over chosen summaries in the Anthropic-HH test set. Right. Win rates for different sampling
temperatures over the course of training. DPO’s improvement over the dataset labels is fairly stable over the

course of training for different sampling temperatures.
Figure 3 of "Direct Preference Optimization: Your Language Model is Secretly a Reward Model", https://arxiv.org/abs/2305.18290
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