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Partially Observable MDPs

 Recall that a partially observable Markov
decision process extends the Markov decision
process to a sextuple , where

the MDP components

 is a set of states,

 is a set of actions,

is a probability that action  will lead

from state  to , producing a reward ,

 is a discount factor,

are extended by:

 is a set of observations,

 is an observation model, where observation  is used as agent input

instead of the state .
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Partially Observable Stochastic Game

 

Figure 1.3 of "Cooperative Multi-Agent Reinforcement
Learning",

https://dspace.cuni.cz/handle/20.500.11956/127431

A partially observable stochastic game (POSG) is a 9-tuple 

, where

 is the set of all possible states,

 is the number of agents,

 is the set of all possible actions for agent , with 

,

 is the set of all possible observations for agent ,

 is the transition model,

 is the reward function for agent ,

 is the observation model for agent , a distribution of

observing  after performing action  leading to state ,

 is the initial state distribution,

 is a discount factor.
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Partially Observable Stochastic Game

 

Figure 1.3 of "Cooperative Multi-Agent Reinforcement
Learning",

https://dspace.cuni.cz/handle/20.500.11956/127431

We denote

joint actions/policy/observation across all agents as vectors

joint actions/policy/observation for all agents but agent  as

a =def (a , … , a ) ∈1 N A ,Π

i

a−i =def (a , … , a , a , … , a ),1 i−1 i+1 N
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Agent-Environment Cycle Game

However, when actually implementing POSG, various ambiguities exist in the order of execution.
Therefore, agent-environment cycle game (AECG) has been proposed, 
a 12-tuple  where

 is the set of all possible states,

 is the number of agents, including  for “environment” agent; ,

 is the set of all possible actions for agent , with , ,

 is the set of all possible observations for agent ,

 is the deterministic transition function for agent ,

 is the transition function for the environment,

 is the reward distribution for agent ,

 is the observation model for agent ,

 is the next agent function,

 is the initial state,

 is the initial agent,  is a discount factor.

(S,N, {A }, {Ω }, {R }, {T },P , {O }, ν, s  , i  , γ)i∈[N ] i∈[N ] i∈[N ] i∈[N ] i∈[N ]
0 0
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Agent-Environment Cycle Game

 

Figure 1.3 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

 

Figure 1.4 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

It holds that for every POSG, there is an equivalent AECG, and vice versa.

When starting with POSG, a single transition is represented as N+1 steps in AECG: first
the N agents sequentially act, storing all their actions in the state, and then the environment
performs the same transition as the POSG.

Starting with AECG, we design POSG where the state is a triple (AECG state, actor to act,
reward to obtain), and every transition is one step from AECG.
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Environment Settings

Depending on the reward function, there are several environment settings:

fully cooperative, when ;

zero-sum, when .

Informally, we talk about cooperative and competitive settings, but we refrain from defining
them exactly (the definitions that we had were incorrect).

∀i, ∀j : R (s  ,a  , s  ) =i
t t t+1 R (s  ,a  , s  )j

t t t+1

 R (s  ,a , s  ) =∑i∈[N ]
i

t t t+1 0
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The MARL Problem

We define a trajectory  as a sequence of states and actions

where:

,

,

.

A return for an agent  and trajectory  is

τ

τ =def (s  ,a  , s  ,a  , s  , …),0 0 1 1 2

s  ∼0 ρ  0

a  ∼t π(⋅∣s  )t
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 γ r  .
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i
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The MARL Problem

For a given policy , the expected return for agent  is

where a probability of a trajetory  is

For a given joing policy , best response is

π i

J (π)i =def E  [R (τ )],τ∼π
i

τ

P (τ ∣π) =
def
ρ  (s  )  P (s  ∣s  ,a  )π(a  ∣s  ).0 0

t=0

∏
∣τ ∣

t+1 t t t t

π−i

(π )π̂i −i =def
 J (π ,π ).

π  i

arg max i i −i
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The MARL Goal

It is unfortunately not clear what the goal of MARL should be, given that it is a multi-criterion
optimization problem.

One possibility is to seek for Nash equilibrium, which is a joint policy  fulfilling

In other words,  is a best response to  for all agents .

A Nash equilibrium exists for any finite game (finite number of players, each with a finite
number of strategies). Unfortunately, there can be multiple Nash equilibria with different payoffs
(Nash equilibrium is just a “local” optimum).

Stag hunt

A\B Stag Rabbit

Stag 2\2 0\1

Rabbit 1\0 1\1

 Prisoner's dilemma

A\B Stay silent Testify

Stay silent -1\-1 -3\0

Testify 0\-3 -2\-2

π  ∗

∀i ∈ [N], ∀π :i J (π  ) ≥i
∗ J (π ,π  ).i i

∗
−i

π  ∗
i π  ∗

−i i
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MARL Training Schemes
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MARL Training Schemes

Centralized Scheme
 

Figure 3.1 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

A joint model for all agents, a single critic.
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MARL Training Schemes

Concurrent/Parameter-Sharing Scheme
 

Figure 3.2 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

 

Figure 3.3 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

Each agent is trained independently. When the agents are homogenous, their models can be
optionally shared (the parameter-sharing scheme).

However, the environment is then non-stationary, and using a replay buffer is problematic
because of changing policies of other agents.
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MARL Training Schemes

Centralized Training with Decentralized Execution
 

Figure 3.4 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

Quite a common model, where the agents are independent, but the critics get the observations
and actions of all agents.
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MARL Algorithms
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Multi-Agent Deep Deterministic Policy Gradient

 

Figure 3.5 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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Multi-Agent Deep Deterministic Policy Gradient

 

Algorithm 3.1 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

Alternatively, in multi-agent
settings, in some experiments it
was beneficial to estimate the
gradient for the policy update
using the current policy instead
of the action from the replay
buffer; if the line 14 is changed
to

we talk about Soft MADDPG.

∇    Q  (ω,μ  (ω)),θ
i

∣B∣
1

ω

∑ φ
i

θ

18/67NPFL139, Lecture 14 MARL MARL Schemes MARL Algos MARL Eval HideAndSeek RLHF DPO



Multi-Agent Twin Delayed DDPG

 

Figure 3.6 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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Multi-Agent Twin Delayed DDPG

 

Algorithm 3.2 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

We can again consider a Soft
MATD3 variant.

Furthermore, we can also use the
minimum of both critics during
policy update (shown to be
beneficial by DDPG++ and
SAC). The resulting algorithm is
called (Soft) MATD4.
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MARL Evaluation
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MARL Evaluation, Simple Target

 

Figure 6.1 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

 

Figure 6.2 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

Reward is given for touching a landmark, and for unoccupied landmarks also for distance of the
nearest agent (orignally any agent, but easier variant is an agent not occupying a landmark).

The agents have non-negligible size and get negative reward for colliding.

Actions can be discrete (∅, ←, →, ↑, ↓; ST Gumbel-softmax is used) or continuous.

In the Simple Collect variant, the targets disappear after being occupied for some time, and a
new one appears on a random location.
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MARL Evaluation, Simple Target, Continuous Actions

 

Figure 6.4 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Target, Continuous Actions

 

Table 6.3 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Target, Discrete Actions

 

Figure 6.5 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Target, Discrete Actions

 

Table 6.4 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Confuse

 

Figure 6.3 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

Some number of cooperaing agents gets rewarded based on the minimum distance of any agent
to the target landmark; but are penalized based on the distance of a single adversary to the
target landmark.

The adversary gets rewarded based on its distance to the target landmark; however, it does not
know which landmark is the target one.

Actions can be again either discrete or continuous.
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MARL Evaluation, Simple Confuse, Continuous Actions

 

Figure 6.6 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Confuse, Continuous Actions

 

Table 6.5 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Confuse, Discrete Actions

 

Figure 6.7 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

30/67NPFL139, Lecture 14 MARL MARL Schemes MARL Algos MARL Eval HideAndSeek RLHF DPO



MARL Evaluation, Simple Confuse, Discrete Actions

 

Table 6.6 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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Multi-Agent Hide-and-Seek

As another example, consider https://openai.com/blog/emergent-tool-use/.

Here the agents are trained in the centralized training with decentralized execution settings,
using the PPO algorithm.
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Reinforcement Learning with Human Feedback
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Reinforcement Learning with Human Feedback

Let us assume our goal is to train a robot to cook eggs.

For such complex tasks, there might not be suitable reward functions available, and
implementing it manually might be difficult or infeasible.

If we have demonstrations for the seeked behavior, we might use inverse reinforcement learning
or imitation learning, but some behaviors might be difficult to demonstrate (like controlling a
robot with many degrees of freedom).
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Reinforcement Learning with Human Feedback

 

Figure 1 of "Deep Reinforcement Learning from Human Preferences",
https://arxiv.org/abs/1706.03741

A possible approach in such a case is to use
reinforcement learning with human
feedback, proposed in a 2017 paper.

Because human feedback is costly, using as
little as feedback is desirable. Therefore, the
authors propose to use the feedback to train a
reward function, which can then be used by
classical RL algorithms.

A practical approach is for the human raters to
compare two video clips of agent's behavior.

Comparing two videos was found out to be
considerably easier than providing absolute numerical score.
Rating videos is nearly as fast as comparing individual states, but significantly more helpful.
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General Setting

We consider a partially observable MDP, where in time  agent obtains an observation  and

produces an action .

In the traditional RL setting, the environment would also produce the reward ; we will instead

predict a reward .

A trajectory segment is a sequence of observations and actions

We write  to indicate that a human rater preferred trajectory  over trajectory .

t o  t

a  t

r  t

(o  , a  )r̂ t t

σ = ((o  , a  ), (o  , a  ), … , (o  , a  )).0 0 1 1 k−1 k−1

σ ≻1 σ2 σ1 σ2
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Reinforcement Learning with Human Feedback

We maintain two models:

the policy , and

the reward function estimate .

The models are updated by three asynchronously running processes:

1. The policy  interacts with the environment, obtaining a set of trajectories .

The parameters of  are updated using a traditional RL algorithm utilizing the estimated

reward .

2. A pair of segments  from trajectories  generated in step 1 is selected

and sent to human rater for evaluation.

3. The reward estimate  is trained using supervised learning to fit the comparisons selected by

the annotators so far.

π : O → A

:r̂ O × A → R

π {τ , … , τ }1 i

π

r̂

(σ ,σ )1 2 {τ , … , τ }1 i

r̂
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Reinforcement Learning with Human Feedback

Optimizing the Policy
During policy optimization, we can utilize the usual RL algorithms. The main difference is that
the rewards are non-stationary; therefore, policy-gradient methods are preferred.

During training we normalize  to have zero mean and constant standard deviation

(the absolute values of the rewards are undetermined in our model).

Preference Collection
The visualization given to a rater is a video between 1 and 2 seconds long. The rater indicate
which of the segments they prefer, whether the segments are equally good, of that they were
not able to compare the two segments.

All human judgements are stored in a dataset  of triples , where  are the

compared segments and  is a distribution over  indicating which segment was deemed

better. The  is either one hot distribution when a single segment was preferred, or a uniform

distribution when a rater annotated both videos as being comparable.

r̂

D (σ ,σ ,μ)1 2 σ ,σ1 2

μ 1, 2
μ
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Reward Function Fitting

We follow the Bradley-Terry model, which is a binary probability model for the outcome of
pairwise comparisons between players

where  is a positive real-valued score assigned to player .

There are many possible parametrizations, Bradley and Terry used , in which case

Note that with a scaling factor 400 and base 10, this is equivalent to the Elo rating system with
Elo ratings  and :

P (  ) =

“i beats j”

 i > j  ,
p  + p  i j

p  i

p  i i

p  =i eβ  i

P (i > j) =  =
e + eβ  i β  j

eβ  i

 =
1 + eβ  −β  j i

1
σ(β  −i β  ).j

R  i R  j

P (i > j) =  =
1 + 10(R  −R  )/400j i

1
σ((R  −i R  )  ).j 400

log 10
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Reward Function Fitting

In our case, we assume that

To fit this model we minimize the cross-entropy between the observed distribution of human
rating  and these predictions:

The authors mention several tricks:

A whole ensemble of predictors are trained, each using randomly sampled |𝓓| examples
(with replacement) from 𝓓. The overall  is then defined by first independently normalizing

each of the predictors and then averaging the results.
A fraction  of the data is used as development data, and strength of -regularization is

set so that the development loss is between 1.1 and 1.5 of the training loss.
In the definition of , we assume there is a 10% chance of uniform random outcome.

(σ ≻P̂ 1 σ ) =2
 =

exp (o  , a  ) + exp (o  , a  )∑ r̂ t
1

t
1 ∑ r̂ t

2
t
2

exp (o  , a  )∑ r̂ t
1

t
1

σ( (o  , a  ) −∑ r̂ t
1

t
1 (o  , a  )).∑ r̂ t

2
t
2

μ

L = −E  [μ  log (σ ≻(σ ,σ ,μ)∼D1 2 1 P̂ 1 σ ) +2 μ  (σ ≻2P̂
2 σ )].1

r̂

1/e L2

P̂
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Reward Function Fitting

To select the queries for the raters, we

sample a large amount of pairs of trajectory segments of length ,

perform prediction on each pair using all the predictors in our ensemble,
choose the pairs with the highest variance in the predictions, which approximates the largest
uncertainty.

k
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Experiments

In first experiments, the authors attempted to solve existing RL benchmarks (Atari, MuJoCo)
without observing the true rewards, using human feedback instead.

For comparison, synthetic feedback (instead of human feedback) was also considered in these
tasks, where  is defined by using the real reward of the trajectory segments.

For MuJoCo, 700 human ratings were used; for Atari, 5.5k queries were sent to human raters.
Overall the ratings took between 30 minutes and 5 hours for every experiment.

(σ ≻P̂ 1 σ )2
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Experiments: MuJoCo

 

Figure 2 of "Deep Reinforcement Learning from Human Preferences", https://arxiv.org/abs/1706.03741
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Experiments: Atari

 

Figure 3 of "Deep Reinforcement Learning from Human Preferences", https://arxiv.org/abs/1706.03741
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Experiments: Novel Behavior

The authors also demonstrated the effectiveness of human feedback in tasks without available
reward functions:

the Hopper robot was trained to perform a
backflip using 900 queries in less than an hour;

the Half-Cheetah was trained to move while
standing on just one leg via 800 queries;

in Enduro, the agent was trained to keep the
same speed as other cars using 1 300 queries.
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Ablations: MuJoCo

 

Figure 5 of "Deep Reinforcement Learning from Human Preferences", https://arxiv.org/abs/1706.03741

random queries: queries
picked uniformly at random
instead of according to
variance of predictions;

no ensemble: a single
predictor is trained; random
queries are implied;

no online queries: all
queries generated at the
beginning of the training;

no regularization: w/o
validation  condition;

no segments: rate only
images, not videos;

target: instead of fitting  using comparison, we fit given real  using MSE.

L2

r̂ r
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Ablations: Atari

 

Figure 6 of "Deep Reinforcement Learning from Human Preferences", https://arxiv.org/abs/1706.03741
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Instructions: MuJoCo

Look at the clips and select the one in which better things happen. Only decide on events
you actually witness in the clip.

Here’s a guide on what constitutes good and bad behavior in each specific domain:
Hopper: the “center” of the robot is the joint closest to the pointy end. The first
priority is for the center of the robot to move to the right (moving to the left is worse
than not moving at all). If the two robots are roughly tied on this metric, then the
tiebreaker is how high the center is.

Cheetah: the robot should move to the right as fast as possible.

Pendulum: the pendulum should be pointing approximately up. There will be a lot of
ties where the pendulum has fallen and a lot of “can’t tells” where it is off the side of
the screen. If you can see one pendulum and it hasn’t fallen down, that’s better than
being unable to see the other pendulum.

If both clips look about the same to you, then click “tie”. If you don’t understand what’s
going on in the clip or find it hard to evaluate, then click “can’t tell”.
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Instructions: Atari

First play the game yourself for 5 minutes. Before providing feedback to the AI, play the
game yourself for a five minutes to get a sense of how it works. It’s often hard to tell what
the game is about just by looking at short clips, especially if you’ve never played it before.

Look at the clips and select the one in which better things happen. For example, if the left
clip shows the AI shooting an enemy ship while the right clip shows it being shot by an
enemy ship, then better things happen in the left clip and thus the left clip is better. Only
decide on actions you actually witness in the clip.

Here’s a guide on what constitutes good and bad play in each specific game:
Breakout: hit the ball with the paddle, break the colored blocks, and don’t let the ball
fall off the bottom of the screen

Pong: knock the ball past the opponent’s orange paddle on the left (good), and don’t
let it go past your green paddle on the right (bad)

Don’t worry about how the agent got into the situation it is in (for instance, it doesn’t
matter if one agent has more lives, or is now on a more advanced level); just focus on what
happens in the clip itself.
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Learning to Summarize from Human Feedback

RLHF was used to improve summarization in a 2020 paper.

The Reddit TL;DR dataset and CNN/Daily Mail dataset were utilized. The Reddit TL;DR
contains 3M posts from reddit.com with summaries written by original posters; the authors
filtered the data (including requiring the summaries to be between 24 and 48 tokens) and kept
123 169 posts with ~5% kept as a validation set.

The following models were considered:

Pretrained models: Pretrained LLMs, with several high-quality examples in the prompt.

Supervised baselines: Finetuned variants of the above models trying to predict the
summaries from the filtered TL;DR dataset.

Reward models: Starting from the supervised baselines, RLHF was applied. A new output
linear layer producing a single scalar was added to the model and the model was trained to
predict rating  that corresponds the most to the observed ratings according to the

Bradley-Terry model:

r  (x, y  )θ i

L = −E  [ log(σ(r  (x, y  ) −(x,y  ,y  ,i)∼D0 1 θ i r  (x, y  )))].θ 1−i
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http://reddit.com/


Learning to Summarize from Human Feedback

 

Figure 2 of "Learning to summarize from human feedback", https://arxiv.org/abs/2009.01325
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Learning to Summarize from Human Feedback

The human feedback policies are then trained using the reward model.

Generating the entire summary is considered a sequence of actions, each being a generation of a
single BPE token, and the PPO algorithm is used with the following reward:

where the per-token KL term serves two purposed:

it acts as an entropy bonus to avoid collapsing to a single node;
it ensures the policy does not learn to produce completely different outputs too different
from those the reward model saw during reward fitting.

R(x, y) =def
r  (x, y) −θ β log [π  (y∣x)/π (y∣x)],φ

RL SFT
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Learning to Summarize from Human Feedback

 

Figure 1 of "Learning to summarize from human feedback", https://arxiv.org/abs/2009.01325

In total, 64 832 ratings were collected, and they were publicly released.
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Learning to Summarize from Human Feedback

 

Figure 4 of "Learning to summarize from human feedback", https://arxiv.org/abs/2009.01325
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Learning to Summarize from Human Feedback

 

Figure 6 of "Learning to summarize from human feedback", https://arxiv.org/abs/2009.01325

 

 

Figure 5 of "Learning to summarize from human feedback", https://arxiv.org/abs/2009.01325
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Training LMs to Follow Instructions with Human Feedback

In 2022, InstructGPT (ChatGPT predecessor) was trained to follow instructions using human
feedback.

 

Figure 2 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155
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Training LMs to Follow Instructions with Human Feedback

The same Bradley-Terry model is used to train the reward function.

To speed up comparison collection, the authors presented the labelers between  and 

 responses to rank, producing  comparisons for every prompt.

However, the comparisons in a single prompt are very correlated, so sampling them randomly
during an epoch caused the model to overfit. Instead, all  comparisons were used in a single

batch, which is also more efficient (only  passes of the reward model, compared to 

passes).

The loss function for the reward model is analogous to before:

K = 4
K = 9  ( 2

K)

 ( 2
K)

K  ( 2
K)

L = −  E  [ log(σ(r  (x, y  ) −
 ( 2

K)

1
(x,y  ,y  )∼Dw l θ w r  (x, y  )))].θ l
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Training LMs to Follow Instructions with Human Feedback

The SFT models are finetuned using the trained reward model again using the PPO algorithm,
employing the following objective:

The authors also proposed a variant called PPO-ptx., which also includes an additional
supervised term in the objective:

E  [r  (x, y) −(x,y)∼D  

π  φ
RL θ β log (π  (y∣x)/π (y∣x))].φ

RL SFT

E  [r  (x, y) −(x,y)∼D  

π  φ
RL θ β log (π  (y∣x)/π (y∣x))]+φ

RL SFT γE  [ log(π  (x))].x∼D  pretrain φ
RL
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Training LMs to Follow Instructions with Human Feedback

 

Figure 1 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155
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Training LMs to Follow Instructions with Human Feedback

 

Figure 3 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155
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Training LMs to Follow Instructions with Human Feedback

 

Figure 4 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155

61/67NPFL139, Lecture 14 MARL MARL Schemes MARL Algos MARL Eval HideAndSeek RLHF DPO



Training LMs to Follow Instructions with Human Feedback

 

Figure 28 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155
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Training LMs to Follow Instructions with Human Feedback

 

Figure 29 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155
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Direct Preference Optimization
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Direct Preference Optimization

 

Figure 1 of "Direct Preference Optimization: Your Language Model is Secretly a Reward Model", https://arxiv.org/abs/2305.18290
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Direct Preference Optimization

 

Figure 2 of "Direct Preference Optimization: Your Language Model is Secretly a Reward Model", https://arxiv.org/abs/2305.18290
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Direct Preference Optimization

 

Figure 3 of "Direct Preference Optimization: Your Language Model is Secretly a Reward Model", https://arxiv.org/abs/2305.18290
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