NPFL139, Lecture 13

PlaNet, ST and Gumbel-softmayx,
DreamerV2+43, MERLIN

Milan Straka

= May 14, 2025

Charles L U

Charles University in Prague
Faculty of Mathematics and Physics

U=
st

el Institute of Formal and Applied Linguistics }
Umversnty LANGTECH S et " PP & unless otherwise stated

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax @ "DreamerV2 @ “DreamerV3 MERLIN 2/60

PlaNet Fx

In Nov 2018, an interesting paper from D. Hafner et al. proposed a Deep Planning Network
(PlaNet), which is a model-based agent that learns the MDP dynamics from pixels, and then
chooses actions using a CEM planner utilizing the learned compact latent space.

The PlaNet is evaluated on selected tasks from the DeepMind control suite

(a) Cartpole (b) Reacher (c) Cheetah (d) Finger (e) Cup (f) Walker

Figure 1 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

NPFL139, Lecture 13 JEZENE LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 3/60

In PlaNet, partially observable MDPs following the stochastic dynamics are considered:

The main goal is to train the first three — the transition function, the observation function, and

the reward function.

PlaNet

transition function:
observation function:
reward function:

policy:

st ~ p(8¢|St—1,a¢-1),

(3t)7
ry ~ P(Tt St)
(

atg ~ p at‘0<t7 a<t)

4/60

Algorithm 1: Deep Planning Network (PlaNet)

Input:

R Actionrepeat p(s¢ | st—1,a¢—1) Transition model
S Seed episodes p(o: | s¢) Observation model
C' Collect interval p(r¢ | s¢) Reward model

B Batch size q(st | o<t,a<¢) Encoder

L Chunk length p(e) Exploration noise

a Learning rate

1 Initialize dataset D with S random seed episodes.
2 Initialize model parameters 6 randomly.
3 while not converged do

// Model fitting
4 for update step s = 1..C do

5 Draw sequence chunks { (o, az,)L F}E, ~ D
uniformly at random from the dataset.

6 Compute loss £(6) from Equation 3.

7 Update model parameters 6 < 0 — aVyL(6).

// Data collection
8 01 ¢ env.reset ()

9 for time step t = 1.. (%1 do

10 Infer belief over current state ¢(s; | o<y, a<) from
the history.

1 a; < planner (q(s; | o<¢, a<t),p) . see
Algorithm 2 in the appendix for details.

2 Add exploration noise € ~ p(¢) to the action.

13 for action repeat k = 1..R do

14 ‘ rf,ofH < env.step (as)

15 Te, 0441 ZkRzl rF 054-1

16 ’D(—DU{(Ot;atart)fT:l}

Because an untrained agent will most likely not cover all needed
environment states, we need to iteratively collect new experience
and train the model. The authors propose S = 5, C' = 100,

B =50, L = 50, R between 2 and 8.

For planning, CEM algorithm (capable of solving all tasks with a
true model) is used; H = 12, I = 10, J = 1000, K = 100.

Algorithm 2: Latent planning with CEM

Input: H Planning horizon distance q(st | 0<¢,a<t) Current state belief
I Optimization iterations p(st | $t—1,a:—1) Transition model
J Candidates per iteration p(re | se) Reward model

K Number of top candidates to fit

1 Initialize factorized belief over action sequences ¢(ay.¢+5) < Normal(0, I).
2 for optimization iteration i = 1..1 do
// Evaluate J action sequences from the current belief.

3 for candidate action sequence j = 1..J do

4 ai:jt)-o—H ~ q(as+n)

s s prn ~ a(se | onas aram) T p(sy | sro1,al)))
‘ RO = S Blp(r, | 57))

// Re-fit belief to the K best action sequences.
v | K e argsort({RD}_)1

_ 1 (k) _ 1 (k)
8 | HtthH = % Dkek Ottt Ott+H = o7 2okek |Gpqr — ettt -

9 | q(apern) Normal(peerm, 07y pr 1)
10 return first action mean [i;.

PlaNet LatentModel RSSM ST Gumbel-Softmax @ DreamerV?2 @ “DreamerV3 MERLIN

5/60

First let us consider a typical latent-space model,
consisting of

transition function: s; ~ p(s¢|ss—1,a:1)

(d) Deterministic model (RNN) (b) Stochastic model (SSM) (c) Recurrent state-space model (RSSM)

observation function: Oy ~ p(ot\st),

reward function: 7 ~ p(r¢|ss).

The transition model is Gaussian with mean and variance predicted by a network, the
observation model is Gaussian with identity covariance and mean predicted by a deconvolutional
network, and the reward model is a scalar Gaussian with unit variance and mean predicted by a
neural network.

To train such a model, we turn to variational inference, and use an encoder

T)
q(su.r|onT,arr—1) = | [,_; 9(8t|8t—1, a1, 0¢), which is a Gaussian with mean and variance
predicted by a convolutional neural network.

LatentModel

6/60

Using the encoder, we obtain the following variational lower bound on the log-likelihood of the
observations (for rewards the bound is analogous):

log P(01:T |a1:T)

— log/Hp(st\st—l,at—l)P(0t|3t)dsl:T
t

> Z (I\Eq(st0<t,a<t) lng(Ot‘StZ - Eq(st_1|o§t_1,a<t_1)DKL (Q(St |0§t7 a’<t) Hp(st‘st—la a't—l))) y

t=1 ~~ N ~ /

reconstruction complexity

We evaluate the expectations using a single sample, and use the reparametrization trick to allow
backpropagation through the sampling.

LatentModel 7/60

To derive the training objective, we employ importance sampling and the Jensen’s inequality:
log p(o1.7|ay.7)

T
= log Ep(s,.0/a1) Hp 0t|5t)
t=1

N

— 1OgE (s1r|ovr,arT) Hp Ot|3t 8t|8t—17 at—l)/Q(3t|0§t7 a’<t)
t=1
T
> Ey(s1|ovrarr) Zlogp(ot\st) + log p(st]st-1,a:-1) — log q(s¢|o<t, a<y)
t=1
T
B Z (EE a(stlo<i,a-r) 108 p(0t|st2 ~ Bo(sislocracn) DKL (‘J(St\oéh a<t)|[p(st|st-1, at—1)),)'

t N

1 N~ N~

reconstruction complexity

LatentModel 8/60

The purely stochastic transitions struggle to store information for multiple timesteps. Therefore,
the authors propose to include a deterministic path to the model (providing access to all
previous states), obtaining the recurrent state-space model (RSSM):

~__l
4

'
l
\

(a) Deterministic model (RNN) (b) Stochastic model (SSM) (c) Recurrent state-space model (RSSM)

deterministic state model: h; = f(ht_1,8:1,a:-1),

stochastic state function: s; ~ p(s; ht),

(
observation function: o; ~ p(o¢|hy, s¢),
reward function: 7, ~ p(r:|h:, s¢),
(

encoder: g ~ q(s¢|ht,0).
RSSM 9/60

Table 1: Comparison of PlaNet to the model-free algorithms A3C and D4PG reported by Tassa et al. (2018). The training
curves for these are shown as orange lines in Figure 4 and as solid green lines in Figure 6 in their paper. From these, we
estimate the number of episodes that D4PG takes to achieve the final performance of PlaNet to estimate the data efficiency
gain. We further include CEM planning (H = 12,1 = 10, J = 1000, K = 100) with the true simulator instead of learned
dynamics as an estimated upper bound on performance. Numbers indicate mean final performance over 5 seeds and 10

trajectories.
e,
%)
g En E E) = 8
T .5 éé o $ = &0 = a8 ==
. . SR 2 O =2 £33 =2z &
Method Modality Episodes © »n &H& O Ew Q0 B2
A3C proprioceptive 100,000 558 285 214 129 105 311
D4PG pixels 100,000 862 967 524 985 980 968
PlaNet (ours) pixels 1,000 821 832 662 700 930 951
CEM + true simulator simulator state 0 850 964 656 825 993 994
Data efficiency gain PlaNet over D4PG (factor) 250 40 500+ 300 100 90

RSSM

10/60

PlaNet — Ablations Urzt

Cartpole Swing Up Reacher Easy Cheetah Run
1000 ——— 1000
800 - 800 -
600 - 600 -
400 400 -
200 200
0 T T T 0 0 T T T
5 250 500 750 1000 5 250 500 750 1000 5 250 500 750 1000
Finger Spin Cup Catch Walker Walk
1000 pe================== 1000 e 1000
800 - 800 - ' 800 -
600 /\/ 600 - 600 -
400 - 400 4 400 -
200 - 200 - | 200 -
O 1 1 1 0 1 1 1 0 T T T
5 250 500 750 1000 5 250 500 750 1000 5 250 500 750 1000
—— PlaNet (RSSM) —— Stochastic (SSM) ——== DA4PG (100k episodes) _
Deterministic (GRU) —== A3C (100k episodes, proprio)

Figure 4 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 11/60

PlaNet — Ablations Urzt

Cartpole Swing Up Reacher Easy Cheetah Run
1000 1000 A 1000
800 - 800 - 800 -
600 - 600 - 600 -
400 - 400 - 400 -
200 - 200 - 200 -
0 T T T 0 T T T 0 T T T
5 250 500 750 1000 5 250 500 750 1000 5 250 500 750 1000
Finger Spin Cup Catch Walker Walk
1000 pe=========—=—==—==== 1000 Fee=s==s=ssss==s===1 1000
800 800 ’ 800
600 - 600 - | 600 -
400 - 400 - 400 -
200 200 - 200 -
0 T T T 0 T T T 0 T T T
5 250 500 750 1000 5 250 500 750 1000 5 250 500 750 1000
—— PlaNet = —— Random collection = === D4PG (100k episodes) _
—— Random shooting ——== A3C (100k episodes, proprio)

Figure 5 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

Random collection: random actions; random shooting: best action out of 1000 random segs.

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 12/60

Straight-Through (ST) Estimator

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax @ "DreamerV2 @ “DreamerV3 MERLIN 13/60

Consider that we would like to have discrete neurons on the hidden layer of a neural network.

Note that on the output layer, we relaxed discrete prediction (i.e., an arg max) with a
continuous relaxation — softmax. This way, we can compute the derivatives and also predict
the most probable class. (It is possible to derive softmax as an entropy-regularized arg max.)

However, on a hidden layer, we also need to sample from the predicted categorical distribution,
and then backpropagate the gradients.

ST 14/60

Stochastic Gradient Estimators

3) (©)]

£ Viog Py(2)

l/'\([)

<> Deterministic,
differentiable node
O Stochastic node

T Forward pass

JIPy(Z)

a0

dlogPy(Y)
a0

i Backpropagation

Figure 2: Gradient estimation in stochastic computation graphs. (1) Vg f(z) can be computed via
backpropagation if x(6) is deterministic and differentiable. (2) The presence of stochastic node
z precludes backpropagation as the sampler function does not have a well-defined gradient. (3)
The score function estimator and its variants (NVIL, DARN, MuProp, VIMCO) obtain an unbiased
estimate of Vg f(x) by backpropagating along a surrogate loss f log pg(z), where f = f(x) — b and
b is a baseline for variance reduction. (4) The Straight-Through estimator, developed primarily for
Bernoulli variables, approximates Vyz ~ 1. (5) Gumbel-Softmax is a path derivative estimator for
a continuous distribution y that approximates z. Reparameterization allows gradients to flow from

f(y) to 6. y can be annealed to one-hot categorical variables over the course of training.
Figure 2 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ DreamerV3 MERLIN 15/60

Consider a model with a discrete categorical latent variable z sampled from p(z;0), with a loss
L(z;w). Several gradient estimators have been proposed:

® A REINFORCE-like gradient estimation.
Using the identity Vgp(2z;0) = p(2;0)Vglogp(z;0), we obtain that

VoE. [L(z;w)] = E. [L(z;w)Valogp(z;0)].
Analogously as before, we can also include the baseline for variance reduction, resulting in
VoE: |L(z;w)] = E; [(L(2;w) — b) Ve logp(z; 0)].

® A straight-through (ST) estimator.

The straight-through estimator has been proposed by Y. Bengio in 2013. It is a biased
estimator, which assumes that Vgz ~ Vgp(z; @), which implies V,,.gyz ~ 1. Even if the

bias can be considerable, it seems to work quite well in practice.

ST 16,60

Gumbel-Softmax

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax @ "DreamerV2 @ “DreamerV3 MERLIN 17/60

The Gumbel-softmax distribution was proposed independently in two papers in Nov 2016
(under the name of Concrete distribution in the other paper).

It is a continuous distribution over the simplex (over categorical distributions) that can
approximate sampling from a categorical distribution.

Let z be a categorical variable with class probabilities p = (p1,p2, ..., PK).

Recall that the Gumbel-Max trick (based on a 1954 theorem from E. J. Gumbel) states that we
can draw samples z ~ P using

z = one-hot (arg max (gz' + log Pi)),

where g; are independent samples drawn from the Gumbel(0, 1) distribution.

To sample g from the distribution Gumbel(0, 1), we can sample u ~ U(0, 1) and then
compute g = — log(— logu).

Gumbel-Softmax 18/60

Gumbel-Softmax Uz

To obtain a continuous distribution, we relax the arg max into a softmax with temperature T°
as

e(gi+10gpi)/T
Zj elgj+logp;)/T "

& =

As the temperature 1" goes to zero, the generated samples become one-hot, and therefore the
Gumbel-softmax distribution converges to the categorical distribution p(z).

a) = Categorical T=0.1 7=0.5 7=1.0 7 =10.0
k=
(s
)
b)
)
o
@

category
Figure 1 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 19/60

The Gumbel-softmax distribution can be used to reparametrize the sampling of the discrete
variable using a fully differentiable estimator.

However, the resulting sample is not
discrete, it only converges to a discrete
sample as the temperature I" goes to zero.

If it is a problem, we can combine the
Gumbel-softmax with a straight-through
estimator, obtaining ST Gumbel-softmax, S

Deterministic,
differentiable node

Where we: () stochastic node
® discretize Yy as z = argmaxy, I

([~ I
assume VH 2z~ VB y' orin Other Figure 2: Gradient estimation in stochastic computation graphs. (1) Vg f(z) can be computed via

d 8_2 ~ 1 backpropagation if () is deterministic and differentiable. (2) The presence of stochastic node
words, 6y ~ . z precludes backpropagation as the sampler function does not have a well-defined gradient. (3)
The score function estimator and its variants (NVIL, DARN, MuProp, VIMCO) obtain an unbiased
estimate of Vg f(z) by backpropagating along a surrogate loss f log pg(z), where f = f(z) — b and
b is a baseline for variance reduction. (4) The Straight-Through estimator, developed primarily for
Bernoulli variables, approximates Vgz = 1. (5) Gumbel-Softmax is a path derivative estimator for
a continuous distribution y that approximates z. Reparameterization allows gradients to flow from
f(y) to 8. y can be annealed to one-hot categorical variables over the course of training.

PlaNet LatentModel RSSM ST Gumbel-Softmax @ “DreamerV2 @ “DreamerV3 MERLIN 20/60

Gumbel-Softmax Estimator Results

Table 1: The Gumbel-Softmax estimator outperforms other estimators on Bernoulli and Categorical
latent variables. For the structured output prediction (SBN) task, numbers correspond to negative
log-likelihoods (nats) of input images (lower is better). For the VAE task, numbers correspond to
negative variational lower bounds (nats) on the log-likelihood (lower is better).

SF DARN MuProp ST Annealed ST Gumbel-S. ST Gumbel-S.

SBN (Bern.) | 72.0 59.7 58.9 58.9 58.7 58.5 59.3
SBN (Cat.) | 73.1 67.9 63.0 61.8 61.1 59.0 59.7
VAE (Bern.) | 112.2 1109 109.7 116.0 111.5 105.0 111.5
VAE (Cat.) | 110.6 128.8 107.0 110.9 107.8 101.5 107.8

Table 1 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144

Bernoulli SBN Categorical SBN . X
Bernoulli VAE Categorical VAE
— SF —— SF 125 s

—— DARN I —+— SF —— SF

faud, ‘ ST —— DARN —+— DARN

—=— Slope-Annealed S I —=— Slope-Annealed ST —— ST = ST

—— MuProp —— MuProp —=— Slope-Annealed ST —=— Slope-Annealed ST
o —+— Gumbel-Softmax kR0 —+— Gumbel-Softmax —— MuProp —— MuProp
8 ST Gumbel-Softmax 8 \ ST Gumbel-Softmax —+— Gumbel-Softmax —+— Gumbel-Softmax
< < | ST Gumbel-Softmax ST Gumbel-Softmax
< L) _
5 5 ok 2
: & | W & g
g ERRNS : :
2" 2° g | g
> > <1 2
S =1 @ @
© © 10 v
o o
D [—
z z T |

M 105 D NN
RSB S s s et == ——
RIS AN
E) 0 0)
Steps (x1e3) Steps (x1e3)) 0 w0 0 T 20)
Steps (x1e3) Steps (x1e3)
(a) (b)
(a) (b)

Figure 3: Test loss (negative log-likelihood) on the structured output prediction task with binarized
MNIST using a stochastic binary network with (a) Bernoulli latent variables (392-200-200-392) and

Figure 4: Test loss (negative variational lower bound) on binarized MNIST VAE with (a) Bernoulli

(b) categorical latent variables (392-(20 x 10)-(20 x 10)-392). latent variables (784 — 200; 784)4an<; ’(’bC) iateg(?rlc/a'}?latent Var;ab}est§784 —'t /(12(2; X 1;))/—5 220).)
Figure 3 of "Categorical Reparameterization with Gumbel-Softmax", lgure « or “Lategorical keparameterization with Gumbelroortmax
https: //arxiv.org/abs/1611.01144 https: //arxiv.org/abs/1611.01144

NPFL139, Lecture 13 PlaNet

LatentModel RSSM ST Gumbel-Softmax @ “DreamerV2 @ “DreamerV3 MERLIN

21/60

Applications of Discrete Latent Variables

The discrete latent variables can be used among others to:

® allow the SAC algorithm to be used on discrete actions, using either Gumbel-softmax
relaxation (if the critic takes the actions as binary indicators, it is possible to pass not just
one-hot encoding, but the result of Gumbel-softmax directly), or a straight-through
estimator;

® model images using discrete latent variables
0 VQ-VAE, VQ-VAE-2 use “codebook loss” with a straight-through estimator

E1 92 83 EK

Embedding
Space

2,0 ~ q(z}x)

Encoder Decoder
Figure 1 of "Neural Discrete Representation Learning”, https://arxiv.org/abs/1711.00937

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 22/60

Applications of Discrete Latent Variables UL

® VQ-GAN combines the VQ-VAE and Transformers, where the latter is used to generate a
sequence of the discrete latents.

real/fake
Codebook Z\ (Transformer I \ flr|f|r
0 — .IIIII il | ARANAN:
] p(S)ZHiP(3i|3<i) rl sl el f
. . +— - —[‘
e | | I aaaE
N
N-1 3
j o
\\ \
S CNN
S o Discriminator
\\
~
~

CNN
Decoder

argmin, cz |2 — 2|
>

Encoder

guantization

Figure 2 of "Taming Transformers for High-Resolution Image Synthesis", https://arxiv.org/abs/2012.09841

NPFL139, Lecture 13 [EEPINE: LatentModel RSSM ST Gumbel-Softmax & DreamerV/2 @ “DreamerV3 MERLIN 23/60

PlaNet LatentModel RSSM ST Gumbel-Softmax @ “DreamerV2 @ DreamerV3 MERLIN

Applications of Discrete Latent Variables — DALL-E UL

® |n DALL-E, Transformer is used to model a sequence of words followed by a sequence of
the discrete image latent variables.

The Gumbel-softmax relaxation is used to train the discrete latent states, with temperature
annealed with a cosine decay from 1 to 1/16 over the first 150k (out of 3M) updates.

\3

S

s 1 P

Lor a1y A ;
s eig Y

6.

(a) a tapir made of accordion.
a tapir with the texture of an
accordion.

NPFL139, Lecture 13 PlaNet

(b) an illustration of a baby (c¢) a neon sign that reads (d) the exact same cat on the
hedgehog 1in a christmas “backprop”. a neon sign that top as a sketch on the bottom
sweater walking a dog reads “‘backprop”. backprop
neon sign
Figure 2 of "Zero-Shot Text-to-Image Generation", https://arxiv.org/abs/2102.12092

LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 25/60

DreamerV2

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax @ "DreamerV2 @ “DreamerV3 MERLIN 26/60

DreamerV2 UL

The PlaNet model was followed by Dreamer (Dec 2019) Atari Performance

and DreamerV2 (Oct 2020), which train an agent using B Model-based
reinforcement learning using the model alone. After 200M B Model-free
environment steps, it surpasses Rainbow on a collection 1.6 1
of 55 Atari games (the authors do not mention why they 4 5 _
do not use all 57 games) when training on a single GPU
for 10 days per game.

2.0

Human Gamer
0.8 +

During training, a policy is learned from 486B compact 04 1
states “dreamed” by the model, which is 10,000 times 0.0 -

more than the 50|\/I ol?servatlons from the real Q}\O 0@* \Q$ 0Q$ Q}Q’\' N
environment (with action repeat 4). N Q?\Q e@(ﬁ\ 6\((\
: < <
Interestingly, the latent states are represented as a vector © L AO o
. . . . igure 1 o astering Atari with Discrete VVorl oaels”,
of several categorical variables — 32 variables with 32 https: //arxiv.org/abs/2010.02193

classes each are utilized in the paper.

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 27/60

DreamerV2 — Model Learning Uz

The model in DreamerV?2 is learned using the RSSM, collecting agent experiences of
observations, actions, rewards, and discount factors (0.995 within episode and 0 at an episode
end). Training is performed on batches of 50 sequences of length at most 50 each.

recurrent model: h; = f,(hi—1,8t—1,0¢-1), * E 2 E

representation model: s; ~ q,(s¢|h, 1),
transition predictor: §; ~ S| h (W TTT] |
P t ~ Po(5tlhe), man_snjl)
image predictor: T; ~ T hy. s EEEEE Ny
gep t pQO(t| ty t)7 T IT]|°
reward predictor: 7 ~ p,(7¢|ht, St), Ry —
discount prediCtor: ’Vt ~ pQO (’S/t | ht) St) . Figure 2 of "Mastering Atari with Discrete World Models",

https://arxiv.org/abs,/2010.02193

Algorithm 1: Straight-Through Gradients with Automatic Differentiation

sample = one_hot (draw(logits)) # sample has no gradient
probs = softmax(logits) # want gradient of this
sample = sample + probs — stop_grad(probs) # has gradient of probs

Algorithm 1 of "Mastering Atari with Discrete World Models", https: //arxiv.org/abs/2010.02193

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 28/60

The following loss function is used:

T
£(90) — Eqw(sl;T\al;T,wl;T) [Z o]'nggo (',Et ’ht7 St)]'nggo (rt|ht7 St)]'nggo (’Yt|ht7 St)

t:]. N J/
1mage\l:)g loss rewar(;Tog loss dlscount log loss
+BDxr, [%p(st‘hta ;) Hpgo(st‘ht)] } :
KITlross

In the KL term, we train both the prior and the encoder. However, regularizing the encoder
towards the prior makes training harder (especially at the beginning), so the authors propose
KL balancing, minimizing the KL term faster for the prior (o« = 0.8) than for the posterior.

Algorithm 2: KL Balancing with Automatic Differentiation

kl _loss = alpha +* compute_kl (stop_grad(approx_posterior), prior)
+ (1 - alpha) * compute_kl (approx_posterior, stop_grad(prior))

PlaNet LatentModel RSSM ST Gumbel-Softmax @ “DreamerV2 @ "DreamerV3 MERLIN 29/60

DreamerV2 — Policy Learning Uz

The policy is trained solely from the model, ; ""1 rz as r4 A
starting from the encountered posterior states i
and then considering H = 15 actions simulated \/ \/ \/
o o //

in the compact latent state.

We train an actor predicting 7y (a;|s;) and a
critic predicting

Ve (St) — Epcpvﬁw [ZTZt(H:’:t—H Yr!)rt] .

The critic is trained by estimating the truncated
A-return as

>

Figure 3 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

(1= Nve(Zer) + AV, if t < H,

VA =1 +
CTTY e () if ¢ = H.

and then minimizing the MSE.
NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 30/60

The actor is trained using two approaches:

® the REINFORCE-like loss (with a baseline), which is unbiased, but has a high variance (even
with the baseline);

® the reparametrization of discrete actions using a straight-through gradient estimation, which
is biased, but has lower variance.

H-1 . \
L(Y) =Ep, 1, [Z (—plog Ty (at|st) stop_gradient(V;* — v, (st)z

t:]. N

NV
reinforce

~(1-pV) —nH(als))|

NV NV
dynamics backprop entropy regularizer

For Atari domains, authors use p = 1 and n = 1073 (they say it works “substantially better”),
while for continuous actions, p = 0 works “substantially better” (presumably because of the
bias in case of discrete actions) and 7 = 10™* is used.

@ "DreamerV2 31/60

The authors evaluate on 55 Atari games. They argue that the commonly used metrics have
various flaws:
® gamer-normalized median ignores scores on half of the games,
® gamer-normalized mean is dominated by several games where the agent achieves super-
human performance by several orders.

They therefore propose two additional ones:
® record-normalized mean normalizes with respect to any registered human world record for
each game; however, in some games the agents still achieve super-human-record

performance;
® clipped record-normalized mean additionally clips each score to 1; this measure is used as

the primary metric in the paper.

@ "DreamerV2 32/60

DreamerV2 — Results UL
Gamer Median Gamer Mean Record Mean Clipped Record Mean
0.45 A
2.4 1 40 A 0.24 -
1.8 - 30 - 0.30 - 0.16 - —
1.2 - 20 - 0.15 - 008 -
0.6 A 10 A
i} _ 0.00 - 0.00 1
O'O I I I I I O I I I I I I I I I I I I I I I
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
—— DreamerV2 —— IQN —— Rainbow C51 DQN 1e8
Figure 4 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193
Agent Gamer Median Gamer Mean Record Mean Clipped Record Mean
DreamerV?2 2.15 42.26 0.44 0.28
DreamerV2 (schedules) 2.64 31.71 043 0.28
IMPALA 1.92 16.72 0.34 0.23
IQN 1.29 11.27 0.21 0.21
Rainbow 1.47 9.95 0.17 0.17
Cs1 1.09 8.25 0.15 0.15
DQN 0.65 3.28 0.12 0.12
Table 1 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193
Scheduling anneals actor gradient mixing p (from 0.1 to 0), entropy loss scale, KL, Ir.
NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 33/60

Latent Variables KL Balancing Image Gradients Reward Gradients

0.24 - 0.24 - 0.24 A 0.24 A

0.18 A 0.18 A 0.16 - 0.18 A

0.12 - 0.12 - 0.08 - 0.12 A

0.06 - 0.06 - 0.00 0.06 -

O'OO_I 1 1 1 1 0'OO_I 1 1 1 1 . 1 1 1 1 1 O.OO_I 1 1 1 1
0.0 0.5 1.01.5 2.0 0.0 0.5 1.01.5 2.0 0.0 0.5 1.01.5 2.0 0.0 0.5 1.0 1.5 2.0
—— Categorical —— Enabled —— Enabled — Enabled 1€8

Gaussian Disabled Disabled Disabled

Agent Gamer Median Gamer Mean Record Mean Clipped Record Mean

DreamerV?2 1.64 13.39 0.36 0.25

No Layer Norm 1.66 11.29 0.38 0.25

No Reward Gradients 1.68 14.29 0.37 0.24

No Discrete Latents 0.85 3.96 0.24 0.19

No KL Balancing 0.87 4.25 0.19 0.16

No Policy Reinforce 0.72 5.10 0.16 0.15

No Image Gradients 0.05 0.37 0.01 0.01

PlaNet LatentModel RSSM ST Gumbel-Softmax @ "DreamerV/2 @ “DreamerV3 MERLIN 34/60

Categorical latent variables outperform Gaussian latent variables on 42 games, tie on 5 games
and decrease performance on 8 games (where a tie is defined as being within 5%).

The authors provide several hypotheses why could the categorical latent variables be better:

® (Categorical prior can perfectly match aggregated posterior, because mixture of categoricals
is categorical, which is not true for Gaussians.

® Sparsity achieved by the 32 categorical variables with 32 classes each could be beneficial for
generalization.

® (Contrary to intuition, optimizing categorical variables might be easier than optimizing
Gaussians, because the straight-through estimator ignores a term which would otherwise
scale the gradient, which could reduce exploding/vanishing gradient problem.

® (Categorical variables could be a better match for modeling discrete aspect of the Atari
games (defeating an enemy, collecting reward, entering a room, ...).

@ "DreamerV?2

35/60

Aleorithm Reward Image Latent Single Trainable Atari Accelerator
& Modeling Modeling Transitions GPU Parameters Frames Days

DreamerV?2 22M 200M 10
SimPLe X 74M 4M 40
MuZero X X 40M 20B 80
MuZero Reanalyze X X 40M 200M 80

World Model Behavior Common

Dataset size (FIFO) — 2-10% Imagination horizon H 15 Environment steps per update — 4

Batch size B 50 Discount vy 0.995 MPL number of layers — 4

Sequence length L 50 A-target parameter A 0.95 MPL number of units — 400

Discrete latent dimensions — 32 Actor gradient mixing p 1 Gradient clipping — 100

Discrete latent classes — 32 Actor entropy loss scale n 1-1073 Adam epsilon € 1075

RSSM number of units — 600 Actor learning rate — 4-1075 Weight decay (decoupled) — 106

KL loss scale B 0.1 Critic learning rate — 1-1074

KL balancing o 0.8 Slow critic update interval — 100

World model learning rate — 2.1074

Reward transformation — tanh

PlaNet LatentModel RSSM ST Gumbel-Softmax @ “DreamerV2 @ “DreamerV3 MERLIN 36/60

DreamerV3

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax @ "DreamerV2 @ "DreamerV3 MERLIN 37/60

a Atari ProcGen

57 tasks, 200M steps 16 tasks, 50M steps

900 70 -

600 3 501 3 E

o) 30 o] o

30019 £ ol

o 10 o o (=

0

Ataril00k Proprio Control

26 tasks, 400K steps
130

90
50
10

900

—_ —_
J]]
S £
© ©
0] 0]
— —
(@) (@)

Tuned experts

18 tasks, 500K steps

DMLab

30 tasks, 100M steps

70
50
30
10

R2D2+
10x data
IMPALA
10x data

PPO

Visual Control
20 tasks, 1M steps

900

Dreamer

—_
]
S
©
o
—
(@)

B Unified configuration

Minecraft
1 task, 100M steps

2
o
Qo
c
©
o

Dreamer

BSuite
23 tasks

—_
]
£
©
0]
—
O

b

121

Minecraft Diamond

— Max
Mean
100K 1M 10M 100M
Env steps

Figure 1: Benchmark summary. a, Using fixed hyperparameters across all domains, Dreamer
outperforms tuned expert algorithms across a wide range of benchmarks and data budgets. Dreamer
also substantially outperforms a high-quality implementation of the widely applicable PPO algorithm.
b, Applied out of the box, Dreamer learns to obtain diamonds in the popular video game Minecraft
from scratch given sparse rewards, a long-standing challenge in artificial intelligence for which

previous approaches required human data or domain-specific heuristics.

PlaNet

LatentModel RSSM ST

Gumbel-Softmax

@ZZZDrea merV?2

@ "DreamerV3 MERLIN

38/60

DreamerV3

———

-

vl

(c) DMLab (d) Minecraft

(a) Control Suite

Figure 2: Four visual domains considered in this work. DreamerV 3 succeeds across these diverse
domains, ranging from robot locomotion and manipulation tasks over Atari games with 2D graphics

to complex 3D domains such as DMLab and Minecraft that require spatial and temporal reasoning.
Figure 2 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v1

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 39/60

DreamerV3

h,) > h,
4 Z3

(a) World Model Learning (b) Actor Critic Learning

Figure 3: Training process of DreamerV3. The world model encodes sensory inputs into a discrete
representation z; that is predicted by a sequence model with recurrent state h; given actions a;. The
inputs are reconstructed as learning signal to shape the representations. The actor and critic learn

from trajectories of abstract representations predicted by the world model.
Figure 3 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v1

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 40/60

DreamerV3

Context Input Open Loop Prediction

True

Model

T=0 5 10 15 20 25 30 35 40 45 50

Figure 5: Multi-step video predictions in DMLab (top) and Control Suite (bottom). From 5 frames
of context input, the model predicts 45 steps into the future given the action sequence and without
access to intermediate images. The world model learns an understanding of the underlying 3D

structure of the two environments. Refer to Appendix H for additional video predictions.
Figure 5 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v1

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ DreamerV3 MERLIN 41/60

To be able to predict rewards and returns in different scales, the Transformations
authors propose to use symmetrical and shifted logarithm: 8 1 — symlog

log
symlog(z) = sign(z) log (|z| + 1),

71— identity
symexp(z) < sign() (exp(|z|) — 1).

The loss could then be . . : . .
-12 -6 0 6 12

def 1 2
L(0) = 5 (f (z;0) — symlog(y)) Figure 4: The symlog func-
tion compared to logarithm

and we can reconstruct the original quantity as and identity.

] = Symexp (f(:z:; 0))

We can use this approach to predict also a whole distribution, trained using twohot loss:
B = symexp ([-20,...,20)), 9 < softmax (f (; 9))TB, L£(6) = — twohot” log 4.

@ "DreamerV3 42/60

The world model is the same as in DreamerV2, here using the original notation:

RSSM sequence model: he = fo(hi—1, St—1,a1-1),
RSSM encoder: St ~ (St he,),
RSSM dynamics predictor: 3 ~ p,(5:|ht),
decoder: Tt ~ Po(Zt|he, St),
reward predictor: Tt ~ Dy (Tt e,y St),

(
continue predictor: & ~ p,(¢¢|ht, st).

The observations are transformed using the symlog function, both on the encoder input and
decoder targets.

@ "DreamerV3 43/60

The overall world model loss is:

[Z Bpredﬁpred) + 5dyn£dyn(¢) + /Brepﬁrep(()o))},
t=1 vl 0 \16-“ \01/

where the individual components are

Lored(¢) = —log py (¢ |he, ¢) — log py (1e| he, 8¢) — log py (ct| e, st),
Lagn(p) £ max (1, Dt (sgao(selhus)| po(silhe)),

Lip(9) 2 max (1L, Dr(ao(silhe, @) || s(po(silhe))).

To stabilize training, the authors use free bits (clipping the dynamics and representation losses
below 1 nat ~ 1.44 bits) and parametrize the categorical distributions of the encoder, dynamics
predictor, and actor distribution as a mixture of 1% uniform and 99% neural network output.

@ "DreamerV3 44/60

The critic is trained to predict from the current state z; = {hy, s¢/8;: } the return v:(2¢;) as
a categorical distribution over exponentially spaced bins B.

As target, the boostrapped A-return is used during training:

R? d:ef Tt + ’}’Et((]. —)\)’Ut -+)\Ri\—kl)’

where for the imaginary horizon T = 16, we use just the bootstrapped return R = or.

The critic is trained using a mixture of imaginary trajectories {h;, §;} with loss scale 8, = 1
and trajectories sample from the replay buffer {h;, s;} with loss scale B,¢ppa = 0.3.

The training is stabilized by a regularization loss of the critic to its exponentially moving
average of its own parameters, allowing to use the current network for computing the returns.

@ "DreamerV3

45 /60

The actor is trained using entropy-regularized REINFORCE loss, for both discrete and
continuous actions:
T

L(6) = — ng ((Ri\ — vy(2;)/ max(1, S)) log m(as|2¢;0) + nH[w(at|s)t; 9)],
t=1
where the returns are normalized using

S = EMA (Quantile(R;, 0.95) — Quantile(R;, 0.05), 0.99).

During training, uniform sampling is used, even if authors mention that prioritized replay
improved performance.

Each batch is a combination of online data (from the current interactions) and data sampled
from the replay buffer and then followed by the actor and the world model.

The replay ratio is the number of time steps trained for every single step collected from the
environment (without action repeat); e.g., for a replay ratio of 32, action repeat (frame skip) 4,
and batches of 64 sequences of 16 steps, a gradient update is performed every 4 - 64 -

16/32 = 128 environment steps.

@ "DreamerV3 46/60

UEL

DreamerV3 A
a Robustness techniques ¢ Model size scaling
14 task mean Crafter DMLab Goals
100+ — Dreamer 20 500 -
X No obs symlog -]
c | — No retnorm (advnorm) 5 |
5 20 , — No symexp twohot (Huber) g 10 250
3 No KL balance & free bits o
0 - . — Without all OF————— 0
0 50 100 hOUR@ 0 20 40 0 100 200
Env steps (%) Env steps (10°) Env steps (10°)
-400M -200M -100M -=50M —25M —12M
b Learning signals d Replay scaling
14 task mean Crafter DMLab Goals
Q 100 18 450
S — Dreamer c 300
€ 50 No reward & value grads 2 9
% — No reconstruction grads £ 150
© 90 - - oO+—— o+——————
0 50 100 0 10 20 0 100 200
Env steps (%) Env steps (10°) Env steps (10°)

-64 -32 -16 -8 -4 -2 -1

Figure 6 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v2

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 47/60

DreamerV3

Atari Atari
Atlantis Breakout
1.2M 300
£ 2K
2 800K 200
@ 1K
@ 400K 100
o O — 0
0 10M 20M 0 10M 20M
DMLab DMLab
Goals Small Nonmatching
300 1.8K
£ y 0 1.2K
5 200 . '
Q2 100 600
0 0 0
0 10M 20M 0 10M 20M
ProcGen ProcGen
Bossfight Caveflyer
9 8
c
E 6 6 300
£ 3 4 150
o
0 5M 10M 0 5M 10M
Visual Control Visual Control
Acrobot Sparse Humanoid Run
240 120/ __100
c g 75
5 160 801 c
@ 401 5 50
lod 80 E 25
0.
0+ 0
0 5M 10M 0 4M
Env Steps Env Steps

Atari Crafter
Montezuma Reward
16
12
8
4
0 10M 20M 0 2.5M 5M
PinPad PinPad
Five Six
1.5K
1K

0 5M 10M 0 5M 10M

Proprio Control Proprio Control

Dog Run Reacher Hard

900

600

300

0

0 4M 0 5M 10M
Normalized
Task Mean
— Dreamer

—— No obs symlog

—— No retnorm (advnorm)

—— No symexp twohot (Huber)
—— No KL balance & free bits
—— Without all

0 50 100

Env Steps (%)

Figure 17 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v2

NPFL139, Lecture 13 PlaNet

LatentModel RSSM ST

Gumbel-Softmax

@ “DreamerV?2 @ DreamerV3 MERLIN

48/60

DreamerV3

NPFL139, Lecture 13 PlaNet

Atari Atari Atari
Atlantis Breakout Montezuma
3001
1.2M 2.4K
c
S 800K 2001 1.6K
@ 400K 100 800
0 0 01
0 20M 0 20M 0 20M
DMLab DMLab PinPad
Goals Small Nonmatching Five
1.8K
. 300 60 Lok
5 200 40 '
g 100 20 600
0] 0 01
0 20M 20M 0 10M
ProcGen ProcGen Proprio Control
Bossfight Caveflyer Dog Run
8
. ° 300
< 6
2 ° 200
Q 4
-4 3 100
W
01 2 I 0
0 10M 0 10M 0 6M
Visual Control Visual Control Normalized
Acrobot Sparse Humanoid Run Task Mean
300 100
> S 75
c K
5 200 50/ -
2 100 5 >0
-4 251 E 25
0 0 o!
0 10M 0 6M 0 100

Env Steps

Env Steps

Env Steps (%)

Crafter
Reward
16
12
8
4
0 5M
PinPad
Six
1K1
5001 j
0.
0 10M

Proprio Control
Reacher Hard

900
600
300

o

10M

—— Dreamer
—— No reward & value grads
—— No reconstruction grads

Figure 18 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v2

Latent

Model

RSSM

ST

Gumbel-Softmax

@ “DreamerV?2 @ DreamerV3 MERLIN

49/60

Env Action Env Replay GPU Model
Benchmark Tasks Steps Repeat Instances Ratio Days Size
Minecraft 1 100M 1 64 32 8.9 200M
DMLab 30 100M 4 16 32 2.9 200M
ProcGen 16 50M 1 16 64 16.1 200M
Atari 57 200M 4 16 32 7.7 200M
Atari100K 26 400K 4 1 128 0.1 200M
BSuite 23 — 1 1 1024 0.5 200M
Proprio Control 18 500K 2 16 512 0.3 12M
Visual Control 20 IM 2 16 512 0.1 12M

Table 2: Benchmark overview. All agents were trained on a single Nvidia A100 GPU each.

Parameters 12M 25M 50M 100M 200M 400M
Hidden size (d) 256 384 512 768 1024 1536
Recurrent units (8d) 1024 3072 4096 6144 8192 12288
Base CNN channels (d/16) 16 24 32 48 64 96
Codes per latent (d/16) 16 24 32 48 64 96

Table 3: Dreamer model sizes. The number of MLP hidden units defines the model dimension,
from which recurrent units, convolutional channels, and number of codes per latent are derived. The

number of layers and latents is constant across model sizes.

PlaNet LatentModel

RSSM

ST

Gumbel-Softmax

@ZZZDrea merV?2

@ "DreamerV3

MERLIN

50/60

DreamerV3

Name Symbol Value Actor Critic
General Imagination horizon H 15
. Discount horizon 1/(1—=7) 333
— 6
Replay N apacity 510 Return lambda A 0.95
Batch size B 16 Critic 1 1 Ié; 1
Batch length r o4 Cridlossseale o L
Activation o RMSNorm + SiLU ritic replay loss scale repval)
. _5 Critic EMA regularizer — 1
Learning rate — 4 %10 .\
. .. Critic EMA decay — 0.98
Gradient clipping — AGC(0.3)
Optimizer — LaProp(e = 10-20) | Actorloss scale Bro !
Actor entropy regularizer i 3x 1074
World Model Actor unimix — 1%
Reconstruction loss scale Bored) Actor RetNorm s'cal'e S Per(R,95) — Per(R,5)
. Actor RetNorm limit L 1
Dynamics loss scale Bayn 1 Actor RetN d 0.99
Representation loss scale Brep 0.1 ctor RetNori decay - :
Latent unimix — 1%
Free nats — 1

Table 4: Dreamer hyperparameters. The same values are used across all benchmarks, including
proprioceptive and visual inputs, continuous and discrete actions, and 2D and 3D domains. We do

not use any hyperparameter annealing, prioritized replay, weight decay, or dropout.
Table 4 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v1

PlaNet LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ DreamerV3 MERLIN 51/60

NPFL139, Lecture 13

MERLIN

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax @ "DreamerV2 @ "DreamerV3 MERLIN 52/60

In a partially-observable environment, keeping all information in the RNN state is substantially
limiting. Therefore, memory-augmented networks can be used to store suitable information in
external memory (in the lines of NTM, DNC, or MANN models).

We now describe an approach used by Merlin architecture (Unsupervised Predictive Memory in
a Goal-Directed Agent DeepMind Mar 2018 paper).

a. RL-LSTM b. RL-MEM
POLICY d
ses & t
LR N] 6 ” LR N
() L))
o IS ~ =
ht Mt’< """"" k‘t ht
my
ENVIRONMENT POLICY ENVIRONMENT
(L, v, 41, T3) > Ot —» & 0 e (Lt L) e Ty G| =<
T ENCODER Policy Loss T ENCODER Policy Loss
b Q1 o (g1

MERLIN 53/60

Let M be a memory matrix of size Npem X 2|e]. b IRL-MEM

Assume we have already encoded observations as e; and previous
action a;_1. We concatenate them with K previously read vectors
and process them by a deep LSTM (two layers are used in the FRONET

Paper) to Compute ht' (I, v, me_1, Ty)—> Ot —> € ...

ssssssssss

o (1

Then, we apply a linear layer to h;, computing K key vectors
ki,...,kx of length 2|e| and K positive scalars 81, ..., Bk.

Reading: For each %, we compute cosine similarity of k; and all memory rows M ;, multiply

the similarities by 8; and pass them through a softmax to obtain weights w;. The read vector
is then computed as M w;.

Writing: We find one-hot write index v, to be the least used memory row (we keep usage
indicators and add read weights to them). We then compute V. < YUt + (1 —)0y, and
retroactively update the memory matrix using M < M + v, |e;, 0] + v,.[0, e;].

MERLIN

54/60

However, updating the encoder and memory content purely using RL is inefficient. Therefore,
MERLIN includes a memory-based predictor (MBP) in addition to policy. The goal of MBP is
to compress observations into low-dimensional state representations z and storing them in

memory.

We want the state variables not only to faithfully represent the data, but also emphasise
rewarding elements of the environment above irrelevant ones. To accomplish this, the authors
follow the hippocampal representation theory of Gluck and Myers, who proposed that
hippocampal representations pass through a compressive bottleneck and then reconstruct input
stimuli together with task reward.

In MERLIN, a (Gaussian diagonal) prior distribution over z; predicts next state variable

conditioned on history of state variables and actions p(2z}"" |z¢-1,a¢1,...,21,a1), and
posterior corrects the prior using the new observation 0, forming a better estimate

prior prior
Q(zt|ot7zt 7zt—17at—17"°7z17a’1)‘|_zt

MERLIN

55/60

To achieve the mentioned goals, we add two terms to the loss.

We try reconstructing input stimuli, action, reward and return using a sample from the state

variable posterior, and add the difference of the reconstruction and ground truth to the loss.

between the prior and the posterior.

We also add KL divergence of the prior and the posterior to the loss, to ensure consistency

c. MERLIN READ-ONLY POLICY
MEMORY-BASED PREDICTOR " ") L.")
TGO
sue Q &)
i 2 A O
PRIOR) ‘ & 4 o
: ~ = Input
€t —» nt +— 4 h/t <=1 mt —3P> Neural Network
ENVIRONMENT T T QS& == Memory read/write
ENCODER KL Loss S Sample
5 Sum
(I ty Uty Te—1, :l-‘;f) Ot q <t 4 — . > nt A —- k) :?or::):;;’tn:;;:t—z?e?(et:‘iji;
POSTERIOR Policy Loss / Stopped gradient
l DECODER
T | Ao~ " i~
(ItaRta Uty At—1,Tt—1, T;E)
Reconstruction Loss
PlaNet LatentModel RSSM ST Gumbel-Softmax @ "DreamerV?2 @ DreamerV3 MERLIN

56,/60

MERLIN — Algorithm UL

Algorithm 1 MERLIN Worker Pseudocode

/I Assume global shared parameter vectors 6 for the policy network and y for the memory-
based predictor; global shared counter 7" := 0

/I Assume thread-specific parameter vectors ¢, x’

// Assume discount factor v € (0, 1] and bootstrapping parameter A € [0, 1]

Initialize thread step counter ¢ := 1

repeat
Synchronize thread-specific parameters ¢’ := 0; x' := x If not terminated, run additional step to compute V" (241, log m41)
Zero model’s memory & recurrent state if new episode begins and set Ry := V™ (241,1log m41) // (but don’t increment counters)
lstart 1= 1 Reset performance accumulators A := 0; £ := 0; H := 0
repeat for k from ¢ down to t,, do
Prior N (117, log ¥7) = p(hs—1,m-1) 0, if k is environment termination
e = enc(o,) L otherwise
Posterior N (pf, log 38) = q(ey, hy_1, my_1, pif, log) i
Sample z; ~ N (¢, log ©f) Ry =1 + 7 R
Policy network update A, = rec(h,_, 7, StopGradient(z,)) O =1 + VeV (2hg1,10g Tpy1) — V7™ (25, log 7
Policy distribution 7, = 7 (hy, StopGradient(z;)) A =0+ (YN Aga
Sample a; ~ L:=L+ L, (Eq.7)
hy = rec(hy_1, my, 2¢) A = A+ A log 7y [ag]
Update memory with z; by Methods Eq. 2 H :=H — Oenwropy »_; Tk|t] log m[i] (Entropy loss)
Ry, 0] = dec(z, ¢, at) end for
Apply a; to environment and receive reward r; and observation o1 dx' ==V L
t=t+1;T:=T+1 b :=Vy(A+H)
until environment termination or ¢ — tg,x == Twindow Asynchronously update via gradient ascent § using df’ and x using dx’

until 7" > T\,
Algorithm 1 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https: //arxiv.org/abs/1803.10760

NPFL139, Lecture 13 JEEI\E: LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 57/60

MERLIN

a Memory Game b o 9 0
10+ g 2
. U4HN Y4NN 4Y4HN
i XTeYy XTeY XTeWY
o e TSN NEER MYEEY
3 gm0 PR FaE PEXE
) = RL-LSTM i— 4 _g
E = RL-MEM :_3 -g o , e e
g L2 URINN Y4 NN Y4HN
; XTeY XTe4 XTeY
L Y2y W2y)z
0 T T T T T
. — 1 . PTXS 3TXE FTXKS
Number of Environment Steps 108
C Large Environment d Large Environment
s f 15000
250 | 5-14000
» &= RL-LSTM H
5 200 .| = RLMEM ~13000 3
g 190 - - 12000 2
-% 100 o _-‘5-11000 S
o =z
50 yf = e 5—10000
0 s [T) 9000
0.0 0.5 1.0 1.5 20
Number of Environment Steps 10°

NPFL139, Lecture 13 PlaNet

Figure 2 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760

LatentModel RSSM ST

Gumbel-Softmax @ “DreamerV2

@ “DreamerV3

MERLIN

58,60

MERLIN Uz

a bs WERLNMEP @m LS @e LMEM C MERLIN Return Prediction
W® 10| «@e MERLINConvnet e RL-LSTM Convnet «@= RL-MEM Convnet
=y 15.0
130 88 | ==—0—0—0—3 33 135
5 120 <ty g8 e H 12
o 110 % ag > 10.5
(o} £ 4. =
5 100 o8 S 9.0
=
8§ 90 |* %5 2 7.5
o OE o
T 80 [x 6.0
2 . B < 45
o 8 3 El :
£ 60 o= 2- 2 3.0
F =1 =
50 55 — 15
40 S8 0.0
—_———— 82 0 ; . : :)
1 2 3 4 4 5 6 7 8 Z 0 2 4 6 8 10
Sub-Eplsodes Sub-Episodes
d ec
3.0 2 250
g E 1.0
.
I+ o
25 £
& s 200 B 0s
S 20 - 5
2 S 150 °
2 1 2 06
5 1.5 s I:
£ MERLN 3 2
gos =ar ri g 02
[+4 3 =
0.0 2 0 0.0
T T T | 2 r T T T 1 [i = » 1
-30 -20 -10 o w 107" 10° 10 10° 10° 10 10 10 10 10
Agent Steps to Goal Return Cost Coefficient Return Cost Coefficient
c
]
2
©
>
c
[
v
Q
(]
= Read Head 2 Read Head 3
a4
w
=
@
- g 800 — Agent
H Z w0 | = Read Head 1
s N =3 ‘e Read Head 2
= = 600 -
So T ‘e Read Head 3
& G o0
2w
Eg S
5 2
O © 200 -]
o o
4 8§ '
—. —. = @ 0 . . . T)
t=-20 t=-10 t=-5 O 5 -40 0 20 10 0
Agent Steps to Goal Agent Steps to Goal

Figure 3 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax @ “DreamerV2 @ “DreamerV3 MERLIN 59/60

MERLIN URRL

alpha=0.1 alpha=1 alpha=5 alpha=10 alpha=100 alpha=1000 alpha=0.1 alpha=1 alpha=5 alpha=10 alpha=100 alpha=1000
& % -
a o
=2 . . e : = - —_—
© m© -
c c
2 2
b . e . " . 4 2 s
) P e] - W e B - AR o =B o nn R @]
5])
= =
o xz
g 8
o o
alpha=0.1 alpha=1 alpha=5 alpha=10 alpha=100 alpha=1000 alpha=0.1 alpha=100 alpha=1000

Prior
Prior

a’ih3=1 0
IIIIIIIIIIIIIIII‘IIIIIII"|||||I|I .y ® ™ w o oy B

Extended Figure 3 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760

NPFL139, Lecture 13 [SFINES LatentModel RSSM ST Gumbel-Softmax @ DreamerV2 @ "DreamerV3 MERLIN 60/60

E'iha=1 alpha=5

- r - 1 -

Obéewaﬁon
L
L
L
:
H

erior

Posterior

Observation

P

