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MuZero

The MuZero algorithm extends the AlphaZero by a trained model, alleviating the requirement
for a known MDP dynamics. It is evaluated both on board games and on the Atari domain.

At each time-step , for each of  steps, a model  with parameters , conditioned

on past observations  and future actions , predicts three future

quantities:

the policy ,

the value function ,

the immediate reward ,

where  are the observed rewards and  is the behaviour policy.
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MuZero – Model
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MuZero

At each time-step  (omitted from now on for simplicity), the model is composed of three

components: a representation function, a dynamics function, and a prediction function.

The dynamics function, , simulates the MDP dynamics and

predicts an immediate reward  and an internal state . The internal state has no explicit

semantics, its only goal is to accurately predict rewards, values, and policies.

The prediction function, , computes the policy and the value function,

similarly as in AlphaZero.

The representation function, , generates an internal state encoding the

past observations.

t

(r , s ) ←k k g  (s , a )θ
k−1 k

rk sk

(p , v ) ←k k f  (s )θ
k

s ←0 h  (o  , … , o  )θ 1 t
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MuZero

 

Figure 1 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – MCTS
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MuZero – MCTS

The MCTS algorithm is very similar to the one used in AlphaZero, only the trained model is
used. It produces a policy  and a value estimate .

All actions, including the invalid ones, are allowed at any time, except at the root, where the
invalid actions (available from the current state) are disallowed.

No states are considered terminal during the search.

During the backup phase, we consider a general discounted bootstrapped return

Furthermore, the expected return is generally unbounded. Therefore, MuZero normalize the
Q-value estimates to  range by using the minimum and the maximum the values

observed in the search tree until now:

π  t ν  t

G  =k  γ r  +∑
t=0

l−k−1
t
k+1+t γ v  .l−k

l

[0, 1]

 (s, a) =Q̄ .
max  Q(s , a ) − min  Q(s , a )s ,a ∈Tree′ ′ ′ ′

s ,a ∈Tree′ ′ ′ ′

Q(s, a) − min  Q(s , a )s ,a ∈Tree′ ′ ′ ′
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MuZero – Action Selection

To select a move, we employ the MCTS algorithm and then sample an action from the obtained
policy, .

For games, the same strategy of sampling the actions  as in AlphaZero is used. In the Atari

domain, the actions are sampled according to the visit counts for the whole episode, but with a
given temperature :

where  is decayed during training – for first 500k steps it is 1, for the next 250k steps it is

0.5 and for the last 250k steps it is 0.25.

While for the board games 800 simulations are used during MCTS, only 50 are used for Atari.

In case of Atari, the replay buffer consists of 125k sequences of 200 actions.

a  ∼t+1 π  t

a  t

T

π(a∣s) =  ,
 N(s, b)∑b

1/T

N(s, a)1/T

T
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MuZero – Training

During training, we utilize a sequence of  moves. We estimate the return using bootstrapping

as . The values  and  are used

in the paper, with batch size 2048 for the board games and 1024 for Atari.

The loss is then composed of the following components:

Note that in Atari, rewards are scaled by  for , and

authors utilize a cross-entropy loss with 601 categories for values , which they

claim to be more stable (this can be considered distributional RL).

Furthermore, in Atari the discount factor  is used, and the replay buffer elements are

sampled according to prioritized replay with priority ; importance sampling with

exponent  is used to account for changing the sampling distribution (  is used).

K
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t+k t
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β α = β = 1
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MuZero

  

ν  ,π  t t

a  t

Model

   p , v , r = μ  (o  , ..., o , a , ..., a )
s0

r , sk k

p , vk k

= h  (o  , ..., o  )θ 1 t

= g  (s , a )θ
k−1 k

= f  (s )θ
k ⎭

⎬
⎫

k k k
θ 1 t

1 k

Search

= MCTS(s  ,μ  )t
0

θ

∼ π  t

11/55NPFL139, Lecture 12 MuZero μ0Model μ0MCTS μ0Training AlphaZero Policy Target Gumbel-Max GumbelZero



MuZero
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MuZero – Evaluation

 

Figure 2 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – Atari Results

 

Table 1 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.

MuZero Reanalyze is optimized for greater sample efficiency. It revisits past trajectories by re-
running the MCTS using the network with the latest parameters, notably

using the fresh policy as target in 80% of the training updates, and
always using the fresh  in the bootstrapped target .

Some hyperparameters were changed too – 2.0 samples were drawn per state instead of 0.1, the
value loss was weighted down to 0.25, and the -step return was reduced to .

v ←k f  (s )θ
k z  t

n n = 5
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MuZero – Planning Ablations

 

Figure 3 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.

(A) Go evaluation, two trained
models, each with 800
simulations corresponding to 0.1s
search.

(B) Atari evaluation, model
trained with 50 simulations.

(C) Ms. Pac-Man, R2D2 best
baseline.

(D) Ms. Pac-Man, different
number of simulations during
training, all evaluated with 50
simulations.
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MuZero – Planning Ablations

 

Figure S3 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.

(A-B) The search depth in
previous figure A and B.

(C-D) Policy improvement
when trained with 50
simulations and evaluated using
less simulations, in Ms. Pac-
Man and in Go, respectively.
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MuZero – Detailed Atari Results

 

Table S1 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero – Detailed Atari Results

 

Table S1 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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AlphaZero as Regularized Policy Optimization
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AlphaZero as Regularized Policy Optimization

Recall that in AlphaZero, actions are selected according to a variant of PUCT algorithm:

with a slightly time-increasing exploration rate .

The paper Jean-Bastien Grill et al.: Monte-Carlo Tree Search as Regularized Policy
Optimization, the authors have shown how to interpret this algorithm as a regularized policy
optimization.

a =∗ arg max  (Q(s, a) +a C(s)P (s, a)  ),
1 + N(s, a)

 N(s)

C(s) = log  +( 19625
1+N(s)+19625) 1.25 ≈ 1.25
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AlphaZero as Regularized Policy Optimization

Policy optimization is usually an iterative procedure, which in every step improves a current
policy  according to

where  is a -dimensional simplex and  is an optional (usually convex)

regularization term.

with , the above reduces to policy iteration (used for example in DQN);

with , if the policy is updated using a single gradient step, the algorithm reduces to

policy gradient;
when , we recover the Soft Actor Critic objective;

for  we get an analogue of the TRPO objective, which

motivated PPO;
the MPO algorithm (which we did not discuss) employs .

π  θ  0

π  θ′ =def
 q  y −

y∈S

arg max πθ  0

T R(y,π  ),θ  0

S ∣A∣ R : S →2 R

R = 0
R = 0

R(y,π  ) =θ  0 −H(y)
R(y,π  ) =θ  0 D  (π  ∥y)KL θ  0

R(y,π  ) =θ  0 D  (y∥π  )KL θ  0
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AlphaZero as Regularized Policy Optimization

Let us define the empirical visit distribution  as

The added plus ones makes the following analysis easier, but are not strictly necessary.

We also define the multiplier  as

With these definitions, we can rewrite the AlphaZero action selection to

π̂

(a∣s)π̂ =def
 .

∣A∣ +  N(s, b)∑b

1 + N(s, a)

λ  N

λ  (s)N =def
C(s) ⋅  .

∣A∣ +  N(s, b)∑b

  N(s, b)∑b

a =∗ arg max  (Q(s, a) +a λ  ⋅N  ).
(a∣s)π̂

π  (a∣s)θ
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AlphaZero as Regularized Policy Optimization

For notational simplicity, we will represent  as a vector , where , and

similarly the policies as , .

Furthermore, for two vectors , let  denote element-wise division with 

With this notation, the action selection can be succinctly written as

a =∗ arg max  (Q(s, a) +a λ  ⋅N  )
(a∣s)π̂

π  (a∣s)θ

Q(s, a) q q  =a Q(s, a)
π  θ π̂

a, b  

b
a (  )  

b
a

i =def
 .

b  i

a  i

a =∗ arg max  (q +a λ   ).N
π̂

π  θ
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AlphaZero as Regularized Policy Optimization

Let  be the solution of the following objective:

The solution to this objective can be computed explicitly as

where  is set (using binary search) such that the result is a proper distribution.

Note that , because  must be at most 1.

Furthermore, , because we need  and we combine 

 with the fact that  is a decreasing

function of .

Note the  decreasing the regularization for increasing number of simulations.

π̄

π̄ =
def

arg max  (q y −y∈S
T λ  D  (π  ∥y)).N KL θ

=π̄ λ   ,N
α − q

π  θ

α ∈ R

α ≥ max  (q  +b∈A b λ  π  (b))N θ (a)π̄

α ≤ max  (q  ) +b∈A b λ  N  (a) =∑a π̄ 1
  ≤∑a max  (q  )+λ  −q  b b N a

λ  π  (a)N θ
  =∑a λ  N

λ  π  (a)N θ 1  ∑a α−qa
λ  π  (a)N θ

α ≥ max  q  b b

λ  ≈N 1/  N
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AlphaZero as Regularized Policy Optimization

In the paper, it is proven that the action  selected by the AlphaZero algorithm fulfills

In other words,  “tracks” .

Furthermore, it can be also shown that for the selected action ,

until in the limit, the two distributions coincide.

If you are interested in the proof, see Appendix D (pages 19-22).

a∗

a =∗ arg max  (  (q −a ∂N(s, a)
∂ T π̂ λ  D  (π  ∥ ))).N KL θ π̂

π̂ π̄

a∗

(a ∣s) ≤π̂ ∗ (a ∣s),π̄ ∗
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AlphaZero as Regularized Policy Optimization

The  can be used in the AlphaZero algorithm in several ways:

Act: the action in self-play games could be sampled according to  instead of ;

Search: during search, we could sample the actions stochastically according to  instead of

the PUCT rule;

Learn: we could use  as the target policy during training instead of ;

All: all of the above.

π̄

(⋅∣s  )π̄ root π̂

π̄

π̄ π̂
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AlphaZero as Regularized Policy Optimization

 

Figure 1 of "Monte-Carlo Tree Search as Regularized Policy Optimization",
https://arxiv.org/abs/2007.12509

 

Figure 5 of "Monte-Carlo Tree Search as Regularized Policy Optimization",
https://arxiv.org/abs/2007.12509
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AlphaZero as Regularized Policy Optimization

 

Figure 2 of "Monte-Carlo Tree Search as Regularized Policy Optimization",
https://arxiv.org/abs/2007.12509

 

Figure 3 of "Monte-Carlo Tree Search as Regularized Policy Optimization",
https://arxiv.org/abs/2007.12509
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AlphaZero as Regularized Policy Optimization

 

Figure 4 of "Monte-Carlo Tree Search as Regularized Policy Optimization", https://arxiv.org/abs/2007.12509
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Gumbel-Max Trick
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Gumbel-Max Trick

Let  be a categorical variable with class probabilities .

The Gumbel-Max trick (based on a 1954 theorem from E. J. Gumbel) states that we can draw
samples  using

where  are independent samples drawn from the 

 distribution.

To sample  from the distribution , we can

sample  and then compute

z p = (p  , p  , … , p  )1 2 K

z ∼ p

z = one-hot (  (g  +
i∈{1,…,K}
arg max i log p  )),i

g  i

Gumbel(0, 1)

g Gumbel(0, 1)
u ∼ U(0, 1)

g = − log(− log u).
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Gumbel Distribution

First recall that exponential distribution  has

The standard  distribution has

The Gumbel distribution can be used to model the distribution of maximum of a number of
samples from the exponential distribution: if  is a maximum of  samples from the 

distribution, we get that

which converges to  for .

Exp(λ)

PDF(x;λ) = λe ,    CDF(x;λ) =−λx 1 − e .−λx

Gumbel(0, 1)

PDF(x) = e ,    CDF(x) =−x−e−x

e .−e−x

x~ N Exp(1)

P ( −x~ logN ≤ x) = P ( ≤x~ x+ logN) = CDF  (x+Exp(1) logN) =
N

(1 −  ) ,
N

e−x N

e =−e−x
CDF  (x)Gumbel(0,1) N → ∞
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Gumbel-Max Trick Proof

To prove the Gumbel-Max trick, we first reformulate it slightly.

Let  be logits of a categorical distribution (so that the class probabilities ), and

let . Then

We first observe that the theorem is invariant to a scalar shift of logits, so we can without loss
of generality assume that  and .

For convenience, denote .

We will use both the  and  of a  distribution:

l  i π  ∝i el  i

g  ∼i Gumbel(0, 1)

π  =k P(k = arg max  (g  +i i l  )).i

 e =∑i
l  i 1 π  =i el  i

u  i =def
g  +i l  i

PDF CDF Gumbel(0, 1)

  

PDF(g  )i

CDF(g  )i

= e ,−g  −ei
−g  i

= e .−e−g  i
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Gumbel-Max Trick Proof

To finish the proof, we compute

=P(k = arg max  (g  + l  ))i i i P (u  ≥k u  , ∀  )i i=k

= P (u  )  P (u  ≥∫ k ∏
i=k

k u  ∣u  ) du  i k k

= P (g  ∣g  =∫ k k u  −k l  )  P (g  ≤k ∏
i=k

i u  −k l  ∣u  ) du  i k k

= e  e du  ∫ l  −u  −ek k
l  −u  k k ∏

i=k
−el  −u  i k

k

= π  e e du  ∫ k
−u  −π  ek k

−u  k
∏

i=k
−π  ei

−u  k

k

= π  e du  k ∫
−u −e  π  k

−uk ∑
i i

k

= π  e dg  =k ∫
−g  −ek

−g  k

k π  ⋅k 1 = π .k
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Gumbel AlphaZero and MuZero

35/55NPFL139, Lecture 12 MuZero μ0Model μ0MCTS μ0Training AlphaZero Policy Target Gumbel-Max GumbelZero



Gumbel AlphaZero and MuZero

In AlphaZero, using the MCTS visit counts as the target policy fails to improve the policy for
small number of visits.

 
 

Figure 2 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO

In Ivo Danihelka et al.: Policy Improvement by Planning with Gumbel, several
AlphaZero/MuZero improvements are proposed; among other a different target policy, which
guarantees improvement.
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Gumbel AlphaZero and MuZero

Let  be a categorical distributions parametrized with . Let  be a vector of

independent Gumbel(0, 1) random variables.

The Gumbel-Max trick states that

has a distribution .

The Gumbel-Max trick can be generalized to Gumbel-Top-k trick, capable of producing 

actions without replacement by considering the top  scoring actions :

π logits(a) g ∈ Rk

A = arg max  (g(a) +a logits(a))

A ∼ π

n

n argtop(g + logits,n)

  

A  1

A  2

⋮

A  n

= arg max  (g(a) + logits(a)),a

= arg max  (g(a) + logits(a)),a=A   1

= arg max  (g(a) + logits(a)).a∈{A  ,…,A  } 1 n−1
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GumbelZero, A. Guaranteed Policy Improvement

A. Guaranteed Policy Improvement
For a small number of simulations, PUCT does not guarantee policy improvement.

Consider for example three actions with prior policy  and action values 

.

The PUCT rule will select the first two actions.
However, the value function of any policy considering just the first two actions is 0, which is
worse than the value function of the prior policy.

In GumbelZero, we start by sampling  actions without replacement using the Gumbel-Max

trick with Gumbel noise .

Our first attempt is to define a one-hot policy selecting an action  such that

where  can be any monotonically increasing transformation.

(50%, 30%, 20%)
(0, 0, 1)

n

g

A  n+1

A  =n+1  (g(a) +
a∈{A  ,…,A  }1 n

arg max logits(a) + σ(q(a))),

σ
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GumbelZero, A. Guaranteed Policy Improvement

 

Algorithm 1 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO
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GumbelZero, A. Guaranteed Policy Improvement

The policy choosing the action

guarantees policy improvement, i.e., .

Considering a fixed Gumbel noise , we get that

either the action chosen on both sides is the same and we get an equality, or
the action on the left side is different, meaning it has larger .

Finally, if the inequality holds for any , it holds also in expectation. With the Gumbel-Max

trick transforming the expectation of the right side to sampling an action , we get the

required .

A  =n+1  (g(a) +
a∈{A  ,…,A  }1 n

arg max logits(a) + σ(q(a)))

E[q(A  )] ≥n+1 E  [q(a)]a∼π

g

q(  (g(a) +
a∈{A  ,…,A  }1 n

arg max logits(a) + σ(q(a)))) ≥ q(  (g(a) +
a∈{A  ,…,A  }1 n

arg max logits(a))),

q(a)

g

a ∼ π

E[q(A  )] ≥n+1 E  [q(a)]a∼π
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GumbelZero, B. Planning on Stochastic Bandit

B. Planning on Stochastic Bandit
When we get only an estimate  of the action-value function, it is probably beneficial to

visit an action multiple times.

Furthermore, choosing actions in the root using a UCB-like rule is not optimal:

UCB minimizes cumulative regret, i.e., maximizes the sum of the obtained returns;
in the root our goal is to obtain the best possible , i.e., maximize just .

The authors evaluated several simple regret minimization algorithms, and chose Sequential
Halving (because it was easier to tune and does not have problem-dependent parameters).

 (a)q̂

A  n+1 E[q(A  )]n+1

41/55NPFL139, Lecture 12 MuZero μ0Model μ0MCTS μ0Training AlphaZero Policy Target Gumbel-Max GumbelZero



GumbelZero, B. Planning on Stochastic Bandit

 

Figure 1 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO
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GumbelZero, B. Planning on Stochastic Bandit

 

Algorithm 2 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO

The authors utilize , and visit each action at least once even when  is small

by visiting each action ; after  simulation, the search is always stopped.

m = min(n, 16) n

max(1, ⌊  ⌋)⌈log  m⌉m2

n n
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GumbelZero, C. Better Improved Policy

Using a one-hot policy based on

results in using a simple policy loss

A  =n+1  (g(a) +
a∈{A  ,…,A  }1 n

arg max logits(a) + σ(q(a)))

L  (π) =simple − log π(A  ).n+1
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GumbelZero, C. Better Improved Policy

However, more information from the search might be extracted by using all action-value
functions  produced by the search.

First, we complete the action values using

Then, we define improved policy as

It can be again proven (appendix C of the paper) that  is an improved policy, so 

.

A natural loss is then

q(a)

completedQ(a) =def
  {

q(a)
v  π

if N(a) > 0,
otherwise.

π =′ softmax (logits(a) + σ(completedQ(a))).

π′

E  [q(a)] ≥a∼π′ E  [q(a)]a∼π

L  (π) =completed D  (π ∥π).KL
′
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GumbelZero, C. Better Improved Policy

The authors propose to use

for , .

Furthermore, the authors propose a consistent approximation to  based on a network-

predicted  and the  of the visited actions:

Overall, the algorithm denoted in the paper as Gumbel MuZero utilizes Sequential Halving with
Gumbel and trains using the improved policy combining logits and action values completed by 

; otherwise it is the same as MuZero.

σ(  (a))q̂ =def
(c  +visit  N(b))c   (a),

b
max scale q̂

c  =visit 50 c  =scale 1.0

v  π

 v̂π q(a)

v  mix =def
 (  +

1 +  N(b)∑b

1
v̂π (  N(b))  ).∑

b
 π(a)∑a,N(a)>0

 π(a)q(a)∑a,N(a)>0

v  mix
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GumbelZero, D. Action Selection in Non-Root Nodes

D. Action Selection in Non-Root Nodes
We might consider utilizing the improved policy  also in the non-root nodes, by for example

sampling actions from it. Additionally, the authors provide a deterministic algorithm of choosing
non-root actions minimizing the difference between  and the current visit counts:

This formula can be simplified to

When this action selection is used, the authors call the algorithm Full Gumbel MuZero.

π′

π′

a =∗
  (π (b) −

a
arg min

b

∑ ′
 ) .

normalized visit counts if taking a

  

1 +  N(c)∑c

N(b) + [a = b]
2

a =∗
 (π (a) −

a
arg max ′

 ).
1 +  N(b)∑b

N(a)
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GumbelZero, D. Action Selection in Non-Root Nodes

=a∗
  (π (b) −

a
arg min

b

∑ ′
 )

1 +  N(c)∑c

N(b) + [a = b]
2

=   ((π (b) −
a

arg min
b

∑ ′
 ) −

1 +  N(c)∑c

N(b)
 )

1 +  N(c)∑c

[a = b]
2

=   −2(π (b) −
a

arg min
b

∑ ′
 )  

1 +  N(c)∑c

N(b)
1 +  N(c)∑c

[a = b]

=  −  (π (b) −
a

arg min
b

∑ ′
 )[a =

1 +  N(c)∑c

N(b)
b]

=  (π (a) −
a

arg max ′
 )

1 +  N(b)∑b

N(a)
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Gumbel AlphaZero and MuZero

 

Figure 2 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO

“Replacement” is a Gumbel MuZero ablation sampling actions with replacement. 
“TRPO MuZero”, “MPO MuZero” use Act+Search+Learn using the previously described
regularized policy with  and  regularizer, respectively.D  (π∥π  )KL new D  (π  ∥π)KL new
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Gumbel AlphaZero and MuZero

 

Figure 3 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO
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Gumbel AlphaZero and MuZero

 

Figure 6 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO
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Gumbel AlphaZero and MuZero

 

Figure 7 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO
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Gumbel AlphaZero and MuZero

 

Figure 8 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO
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Gumbel AlphaZero and MuZero

 

Figure 4 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO
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Gumbel AlphaZero and MuZero

 

Figure 5 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO
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