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Off-policy Correction Using Control Variates
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Off-policy Correction Using Control Variates Vet

Let Gt.41n be the estimated n-step return
t+n—1
Griin = ( Z 7ktRk+1) + [episode still running in t + n |¥"V (S10),
k=t

which can be written recursively as

0 if episode ended before ¢,
Gttn V(St) if n =0,
L Rt+1 + 'YGt—l—l:t—l—n otherwise.

For simplicity, we do not explicitly handle the first case (“the episode has already ended”) in the
following.
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Note that we can write

Gitin — V(St) = Rir1 +YGii1e0n — V(St)
= Ry + ’Y(Gt+1:t+n — V(St+1)) + YV (Si41) — V(St),

which yields
Gttin — V(St) = Rer1 + YV (Ser1) — V(Sy) + ’Y(Gt—kl:t—I—n — V(St+1))-

def

Denoting the TD error as §; = Ry11 + YV (Str1) — V(St), we can therefore write the m-step
estimated return as a sum of TD errors:

n—1
Grin = V(S1) + Z’YiétJri-

1=0

To correctly handle the “the episode has already ended” case, we might define the TD error as
8 = Ry.1 + [~done] - YV (S;.1) — V(S;) if the state S; exists, and to §; = 0 otherwise.
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Return Formulations =

Grirn = Riv1 +YGrititin V(S)+ >, ’Yzét—i—z'

NPFL139, Lecture 9 ControlVariates Eligibility Traces Returns TD(A) Vtrace IMPALA PopArt 5/51



Off-policy Correction Using Control Variates

Now consider applying the IS off-policy correction to Gy.¢4r, using the importance sampling
ratio

def 7T(At|St) def -
pt — b(At‘St) 9 pt:t—l—n — gpt-l—’l,'

First note that

which can be extended to

£y [pt:t—l—n] = 1.
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Off-policy Correction Using Control Variates

Until now, we used
def
Gt tin — Ptit+n— 1Gttin-

However, such correction has unnecessary variance. Notably, when expanding Gt.t1n

Gt t+n — Ptt+n—1 (Rt—l—l - 7Gt—|—1:t+n)7

the R; 1 depends only on p;, not on p;1.t1n_1, and given that the expectation of the
importance sampling ratio is 1, we can simplify to

Gt t+n T pth—i—l + pt:t—l—n—l'YGt—i—lzt—l—n-
Such an estimate can be written recursively as

Gt t4n — Pt (Rt-|—1 —+ 7Gt+1 t—l—n)
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Return Formulations =

Griin = Riv1 +YGrititin V(S:)+ >, 725t—|—z'
Gt dtn = Pt (Rt+1 T 7G£—8|—1:t—|—n)
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We can reduce the variance even further — when p; = 0, we might consider estimating the
return using V' (.S;) instead of 0.

To utilize this idea, we turn to control variates, which is a general method of reducing
variance of Monte Carlo estimators. Let 1 be an unknown expectation, which we estimate using

an unbiased estimator m. Assume we have another correlated statistic k£ with a known
expectation K.

. def . . . .
We can then use an estimate m* = m — ¢(k — k), which is also an unbiased estimator of u,
U
with variance

Var(m*) = Var(m) + ¢ Var(k) — 2¢ Cov(m, k).

To arrive at the optimal value of ¢, we can set the derivative of Var(m*) to 0, obtaining

~ Cov(m, k)
T Var(k)
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In case of the value function estimate
Gt ttn — Pt (Rt+1 =+ ’YGt+1 t+n)

we might consider using p; as the correlated statistic k, with known expectation k = 1,
because if p; > 1, then our return estimate is probably an overestimate, and vice versa.

The optimal value of ¢ should then be

COV(m, k) _ [(Gt :t+n UW(St) (Pt — 1)]
Var(k) Ey |(pr — 1)?]

C — 3

which is however difficult to compute. Instead, considering the estimate when p; = 0, we get

¢=0
Pt (Rt+1 + ’YGt+1 t+n) +c(l-p)E=c

Because a reasonable estimate in case of p, = 0 is V(S;), we use ¢ = V(S;).
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Off-policy Correction Using Control Variates

The estimate with the control variate term is therefore

Giton = pr(Res1 +7G i) + (L= p)V(Sy),

which adds no bias, since the expected value of 1 — p; is zero and p; and S; are independent.

Similarly as before, rewriting to

Gt t+n V(St) — Pt (Rt-l—l + ’yGt—i—l t—l—n) T V(St)
— Pt (Rt+1 =+ ’)’V(St+1) - V(St) T ’Y(Gt+1 ttn V(St+1)))

results in

n—1 .
ngi—n =V(S) + Zizo V' Prt+iOti-
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Return Formulations UF\RL

Grirn = Riv1 +YGrititin VI(S)+ > 725t+i
Ghin = = pt (Rt+1 +vGR1. t—l—n)
Gt t+n = Pt (Rt—l—l -+ 7Gt+1 t—l—n) + (1 - pt)V(St) (St) + Zz 0 fypt t+25t—|—z'
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Eligibility Traces
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Eligibility Traces Fx

Eligibility traces are a mechanism of combining multiple n-step return estimates for various
values of n.

First note that instead of an m-step return, we can use any average of mn-step returns for

different values of n, for example %Gt:t+2 + %Gt:t+4.
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A-return

For a given A € |0, 1], we define A-return as

Alternatively, the -

return can be written
recursively as

Gi\ _ (1 B )\)Gt:t+1 Weighting 1-2 %

_'_ A(RIH—]_ —"_ 7G?_+_1).

NPFL139, Lecture 9 ControlVariates

F\KL
00
Gi = (1-A) E AT G
1=1
weight given to
T the 3-step return total area = 1
\ is (1 —A)A?
% decay by A
\ weight given to
actual, final return
P is \I—t-1
So- 7077

Time —

Figure 12.2: Weighting given in the A-return to each of the n-step returns.

Figure 12.2 of "Reinforcement Learning: An Introduction, Second Edition".
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A-return

In an episodic task with time of termination 1", we can rewrite the A-return to

NPFL139, Lecture 9

T—t—1
Gy =1-2) > NGy + NGy

1

n-step TD methods

Off-line A-return algorithm (from Chapter 7)

RMS error
at the end
of the episode
over the first
10 episodes

Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the off-line A-return
algorithm alongside that of the n-step TD methods. In both case, intermediate values of the
bootstrapping parameter (A or n) performed best. The results with the off-line A-return algorithm

are slightly better at the best values of @ and A, and at high a.
Figure 12.3 of "Reinforcement Learning: An Introduction, Second Edition".
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We might also set a limit on the largest value of n, obtaining truncated A-return

n—1

Grrin = (L= X)) N "'Grapi + X 'Grpin.
1=1

The truncated A return can be again written recursively as

Similarly to before, we can express the truncated A return as a sum of TD errors

Griin — V(5) = (1 = A)(Res1 + YWV (St41)) + A(Res1 + 7Gpi1i04m) — V(S)
=Ry 1 + 9V (Se1) — V(S:) + Ay (Gt+1 tin V(St+1))’

obtaining an analogous estimate G\ v = V(St) + Zz 0 ’y’/\i(StJri.
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The (truncated) A-return can be generalized to utilize different A; at each step 7. Notably, we
can generalize the recursive definition

Gt t+n ( )‘)Gt 41 T )‘(Rt+1 -+ ’YGH—l t+n)
to

Gt t+n (1 T AZH-].)Gt t+1 —"_ AIf—l-].(-RlH-l —|_ /YGIH—]. t—|—n)

and express this quantity again by a sum of TD errors:

n—1 1
Gt ten = V(St) + ZW’i (H )\t—l—j> O 44
i=0 j=1

Eligibility Traces
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Recursive definition Formulation with TD errors

Grirn = Riv1 +YGrititin V(S) + Y0y 7 0t
Giiin = pt (Rer1 + G 1:04n)

G&in = pt (Rt+1 +vGEY. t+n) + (1 — p)V(St) V(St) + > 'Y.Pt t+i0¢+i
Gliten = (1= N)Gers1 + MRes1 + G 1410) V(S + >, W’ZXLC;tﬂ'

Gézﬂn = (1 o )‘t+1)Gt 441 T )\t+1 (Rt+1 + 'YGt+1 t+n) V(St) + Zz 0 ’Y. ( J 1 >‘t+j) 5t+z'
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Finally, we can combine the eligibility traces with off-policy estimation using control variates:

n—1

A,CV de 1— n—
Gtt+ndf(1_)‘)z)‘ 1Gtt+z A 1Gtt+n

i=1
Recalling that

Gt ttn (Rt+1 - VGt+1 t+n) T (1 - pt)V(St)a

we can rewrite Gi‘:ﬁ\é recursively as
A,CV A,CV
Ghtn = (1= NG+ A(pe (B +9GRS) + (1= p)V(S)),
which we can simplify by expanding G, 1 = pt(Rer1 + YV (Se1)) + (1 — p)V(St) to

Gritin = V(81) = pr(Rerr + 7V (Si1) = VI(S1)) + 720t (G in — V(Sti1))-
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Off-policy Traces with Control Variates

Consequently, analogously as before, we can write the off-policy traces estimate with control
variates as

n—1 . .
Grivin = V(S) + Zi:O VA pit+iOtri,

and by repeating the above derivation we can extend the result also for time-variable \;, we
obtain

1

A, CV n-1l
Giiin = V(St) + Zizo Y H)\t—l—j Prit+iOt+i-

j=1
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Recursive definition Formulation with TD errors

Gtin = Rev1 + 7YGititin V(S + >, R
GEin = Pt (Rer1 + G 1:04n)

Gon = P (Riv1 +YGEiin) + (1 — p)V(Sh) V(S) + >, Y Pt iOrri
Gét% = (1 =A)Grir1 + ARy + 7G5\+1-t+n) V(S + >, ’YZ>\Z5t+z'

Gé%n = (1 o )‘t+1)Gt 441 T )\t+1 (Rt+1 + 'YGt+1 t+n) V(St) + Zz 0 ’Y' ( ] 1 )‘Hj) 5t+z‘
A,C e
Gt:t—l—\vfz = (1- NG 41
+ Aot (Re +9G3T10) + (1= p)V(SY))
Grol = (1= A1) Gy V(St)
+ i1 (e (Resr + 'YG?jerrn) + (1 - p)V(S)) |+ S (ITiss Aers) PrtriOeri

V(S:)+ > YN prp i O
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The TD(A) Algorithm
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TD()\) UL

We have defined the A-return in the so-called forward view.

Figure 12.4: The forward view. We decide how to update each state by looking forward to
future rewards and states.

Figure 12.4 of "Reinforcement Learning: An Introduction, Second Edition".
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TD(\)

However, to allow on-line updates, we might consider also the backward view

Figure 12.5: The backward or mechanistic view of TD(A). Each update depends on the current
TD error combined with the current eligibility traces of past events.

Figure 12.5 of "Reinforcement Learning: An Introduction, Second Edition".
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TD(\)

TD(A) is an algorithm implementing on-line policy evaluation utilizing the backward view.

Semi-gradient TD()\) for estimating 0 ~ v,

Input: the policy 7 to be evaluated

Loop for each episode:
Initialize S
z<+ 0
Loop for each step of episode:
| Choose A ~ m(-|S)
| Take action A, observe R, S’
| 2z <+ yAz+ Vo(S,w)
| 6 R+~0(S"\w)—0(S,w)
| W+ w+adz
| S+ 95
until S’ is terminal

Input: a differentiable function 9 : 8% x R? — R such that ©(terminal,-) = 0
Algorithm parameters: step size a > 0, trace decay rate A € [0, 1]
Initialize value-function weights w arbitrarily (e.g., w = 0)

(a d-dimensional vector)

v
Algorithm 12.2 of "Reinforcement Learning: An Introduction, Second Edition".

TD(A

s

I Q—e—0

(1

d =1

O——0O———0

O—e——C0O—0—-"0O——"0

(1 - M)A2

T
!
? Seit Russ
i

St+2 Rito

At+2

Ar_y
ST RT

)\T—t—l

Figure 12.1: The backup digram for TD(A). If A = 0, then the overall update reduces to its
first component, the one-step TD update, whereas if A = 1, then the overall update reduces to
its last component, the Monte Carlo update.

Figure 12.1 of "Reinforcement Learning: An Introduction, Second Edition".

Note that TD(0) is just the usual 1-step TD policy evaluation, while TD(1) is a fully-online

algorithm that is reminiscent to a Monte Carlo algorithm, because the estimated returns are just
discounted sums of all rewards.
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TD()\) UL

n-step TD methods

(from Chapter 7) TD(\) Off-line A-return algorithm
(from the previous section)

Off-line A-return algorithm

128 f_
=64 =30

RMS error
at the end
of the episode 4
over the first
10 episodes 035

RMS error 45
at the end
of the episode o4
over the first
10 episodes 03

n=1

03
03

0.25

1 025

Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the off-line A-return Figure 12.6: 19-state Random walk results (Example 7.1): Performance of TD()) alongside
algorithm alongside that of the n-step TD methods. In both case, intermediate values of the that of the off-line A-return algorithm. The two algorithms performed virtually identically at
bootstrapping parameter (A or n) performed best. The results with the off-line A-return algorithm low (less than optimal) « values, but TD(\) was worse at high « values.

are slightly better at the best values of v and A, and at high a. _ o Figure 12.6 of "Reinforcement Learning: An Introduction, Second Edition".
Figure 12.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Sarsa(\)

Sarsa(A) is an extension of TD(\) to action-value methods, notably Sarsa.

Sarsa(\) with binary features and linear function approximation

T

for estimating w'x ~ ¢, or g,

Input: a function F(s, a) returning the set of (indices of) active features for s, a
Input: a policy 7 (if estimating ¢, )

Algorithm parameters: step size a > 0, trace decay rate A € [0, 1]

Initialize: w = (wy,...,wq)' € R? (e.g., w=0),z = (21,...,24)" €R?

Loop for each episode:
Initialize S
Choose A ~ m(:|S) or e-greedy according to G(.S, -, w)
z<+ 0
Loop for each step of episode:
Take action A, observe R, S’

0+ R

Loop for ¢ in F(S, A):
0+ 06— Wy
zi— 2z +1 (accumulating traces)
or z; + 1 (replacing traces)

If S’ is terminal then:
W W+ adz
Go to next episode
Choose A" ~ m(-|S’) or near greedily ~ G(5’, -, w)
Loop for 7 in F(S", A"): 6 + § + yw;
W< W+ adz
Z < YAz
S+ S A A

NPFL139, Lecture 9 ControlVariates

Algorithm 12.7 of "Reinforcement Learning: An Introduction, Second Edition".

Eligibility Traces Returns

TD(A)

Example 12.1: Traces in Gridworld The use of eligibility traces can substantially
increase the efficiency of control algorithms over one-step methods and even over n-step
methods. The reason for this is illustrated by the gridworld example below.

Action values increased Action values increased Action values increased

Path taken by one-step Sarsa by 10-step Sarsa by Sarsa() with 2=0.9
[ ] >y !
i : gmar
m N >y - bl
-+ 6l ] G Gl [y Gl [+
= 7 yPupe =

Example 12.1 of "Reinforcement Learning: An Introduction, Second Edition".

Sarsa(A) with replacing traces

n-step Sarsa

300 [

Mountain Car

Steps per episode 2401
averaged over
first 50 episodes 220
and 100 runs

0 05 1 5 0 0’5 1 15
« x number of tilings (8) « x number of tilings (8)

Figure 12.10: Early performance on the Mountain Car task of Sarsa(\) with replacing traces
and n-step Sarsa (copied from Figure 10.4) as a function of the step size, a.
Figure 12.10 of "Reinforcement Learning: An Introduction, Second Edition".
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V-trace is a modified version of n-step return with off-policy correction, defined in the Feb
2018 IMPALA paper as (using the notation from the paper):

1—1
Guiin® = V(Sh) + Z’Y (H Ct+]) Pt+i0t1is

where p; and ¢; are the truncated importance sampling ratios for p > ¢:

p; = min ( p m(4:|51) ¢ = min | ¢, (A 5)
t ’ b(At‘St) 9 t — .

Note that if b = 7 and assuming ¢ > 1, v reduces to n-step Bellman target.
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Note that the truncated IS weights p; and ¢; play different roles:

® The p; defines the fixed point of the update rule. For p = 00, the target is the value
function v, if p < 00, the fixed point is somewhere between v, and vy. Notice that we do
not compute a product of these p; coefficients.

Concretely, the fixed point of an operator defined by G};'"2° corresponds to a value
function of the policy

m5(als) o< min (pb(als), w(als)).

® The ¢; impacts the speed of convergence (the contraction rate of the Bellman operator),

not the sought policy. Because a product of the ¢; ratios is computed, it plays an important
role in variance reduction.

However, the paper utilizes ¢ = 1 and out of p € {1,10,100}, p = 1 works empirically the
best, so the distinction between ¢; and p; is not useful in practice.
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Let us define the (untruncated for simplicity; similar results can be proven for a truncated
one) V-trace operator R as:

de U o C 0
RV(S,) det V(S:) + Es [Zi>07 (szo Ct—l—j) Pt+z‘5t+z'] )

where the expectation [Ep is with respect to trajectories generated by behaviour policy b.

Assuming there exists 8 € (0, 1] such that [E;pg > S, it can be proven (see Theorem 1 in

Appendix A.1 in the Impala paper if interested) that such an operator is a contraction with a
contraction constant

. i1
- =) i>0 v Ey KHJ'O Ej) ﬁi] st-=mp<t

7

>14+vEp po

therefore, R has a unique fixed point.
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We now prove that the fixed point of R is V™. Considering d; corresponding to V™, we get:

Ey (6] = By |pi (Bess + 7V (Si1) = V7 (5) |81

3 _ T\a S T5 / 5
=) b(alS;) min (p, b((a|| S:)) ) [Rm +YEy p(s,a) V7 (8) =V ”(St)]

= Za m5(a|St) [Rt—H +YEy op(s,a) V(') = V™ (St)] Zmin (Pb(a'|Sy), w(a'(Sy))

7

-0
— (),
where the tagged part is zero, since it is the Bellman equation for V™. This shows that

RV™(s) = V™ (s) + Ey {Zizo o0& (Hi_%) 5t+j) ﬁt+i5t+i] = V7™, and therefore V7 is the

j:
unique fixed point of R.
C ly, in GV = V(S "L (1 5 ly the | f
onsequently, in Gz, = V(S:) + >4 7 ( - Atﬂ-) Pi:t+i0¢1i, only the last p; from
every Pr¢+i is actually needed for off-policy correction; pr¢+;—1 can be considered as traces.
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IMPALA

Impala (Importance Weighted Actor-Learner Architecture) was suggested in Feb 2018 paper
and allows massively distributed implementation of an actor-critic-like learning algorithm.

Compared to A3C-based agents, which communicate gradients with respect to the parameters
of the policy, IMPALA actors communicate trajectories to the centralized learner.

Observations
Parameters

O
@

Observations

Parameters

Observations

Worker
Learner

Master
Learner

Figure 1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Figure 2 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner

Architectures"” by Lasse Espeholt et al.

If many actors are used, the policy used to generate a trajectory can lag behind the latest
policy. Therefore, the V-trace off-policy actor-critic algorithm is employed.

NPFL139, Lecture 9 ControlVariates

Eligibility Traces

Returns

A
Environment steps . Forward pass . Backward pass
. Actor 0 "l W M M .. next unroll
4 time steps Actor 1 M EEN
Actor 0 T Actor 2 "l W | |
Actor 3 "l H B =
Actor 1 Actor 4 "ECEE N
Actor 2 Actor 5 "' EENE
Actor 3 Actor 6 "E-ECECH
. Actor 7 "l "l B H
Gradients (a) Batched A2C (sync step.) s
4 time steps - -
Actor 0 "l 'l B H HEEN
Actor 1 "M HEBNE I | EENR I
Actor 2 'l W | HE |
Actor 3 FESESESE EEER (c) IMPALA
(b) Batched A2C (sync traj.)
Architectures" by Lasse Espeholt et al.
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Consider a parametrized functions computing v(s; @) and 7(a|s; w), we update the critic in
the direction of

(Glitraee — v(51;0)) Vou(Si; )

and the actor in the direction of the policy gradient
,Eti 10g 7T(At|5t; QJ) (Rt_|_1 -+ ’}/Gzﬂr?ien — ’U(St; 0)) .

Finally, we again add the entropy regularization term ,BH(W(-\St; w)) to the loss function.
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Architecture CPUs GPUs' FPS?
Single-Machine Task 1 Task 2
A3C 32 workers 64 0 6.5K 9K
Batched A2C (sync step) 48 0 9K 5K
Batched A2C (sync step) 48 1 13K 5.5K
Batched A2C (sync traj.) 48 0 16K 17.5K
Batched A2C (dyn. batch) 48 1 16K 13K
IMPALA 48 actors 48 0 17K 20.5K
IMPALA (dyn. batch) 48 actors’ 48 1 21K 24K
Distributed

A3C 200 0 46K 50K
IMPALA 150 1 80K
IMPALA (optimised) 375 1 200K
IMPALA (optimised) batch 128 500 1 250K

1 Nvidia P100 2 In frames/sec (4 times the agent steps due to action repeat). 3 Limited by

amount of rendering possible on a single machine.

IMPALA
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For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp € and the global gradient norm clipping

threshold.

(a) Sequential Optimisation

Performance
— — —
O Hyperparameters O—>O

e e S 1]
Training

Weights

........................

(b) Parallel Random/Grid Search

(c) Population Based Training

Performance
—

Hyperparameters O .

Weights D ..... RN .

[9)

IMPALA
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For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp € and the global gradient norm clipping

threshold.

In population based training, several agents are trained in parallel. When an agent is ready
(after 5000 episodes), then:

® it may be overwritten by parameters and hyperparameters of another randomly chosen
agent, if it is sufficiently better (5000 episode mean capped human normalized score returns

are 5% better);
® and independently, the hyperparameters may undergo a change (multiplied by either 1.2 or

1/1.2 with 33% chance).
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IMPALA - Architecture U

| Embedding 20 |

: t
| blue ladder
| Residual Block |

| f
i Residual Block | ™.
Rotv | 32 | Embedding 20 | § | f Lo !
| Conv. 4 x 4, stride 2 | ¥ 16 3;22 b | Max 3 x 3, stride 2 | | Conv. 3 x 3,stride 1 |—>6
16 blue ladder  [10:32,32]ch |
HelU . | Conv. 3 x 3,stride 1 |
| Conv. 8 x 8, stride 4 | | T !

- : | | Conv. 3 x 3,stride 1 |

96 x 72
Figure 3 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures” by Lasse Espeholt et al.
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—— IMPALA - 1 GPU - 200 actors Batched A2C - Single Machine - 32 workers —— A3C - Single Machine - 32 workers —— A3C - Distributed - 200 workers
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Figure 4 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA — Learning Curves
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Figures 5, 6 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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Human Normalised Return Median

Mean

A3C, shallow, experts 54.9% 285.9%
A3C, deep, experts 117.9% 503.6%
Reactor, experts 187% N/A
IMPALA, shallow, experts 93.2% 466.4%
IMPALA, deep, experts 191.8% 957.6%
IMPALA, deep, multi-task 59.7% 176.9%

IMPALA



IMPALA — Atari Hyperparameters UL

Parameter Value
Image Width 84
Image Height 84
Grayscaling Yes
Action Repetitions 4
Max-pool over last N action repeat frames 2
Frame Stacking 4

End of episode when life lost Yes
Reward Clipping [-1, 1]
Unroll Length (n) 20
Batch size 32
Discount () 0.99
Baseline loss scaling 0.5
Entropy Regularizer 0.01
RMSProp momentum 0.0
RMSProp e 0.01
Learning rate 0.0006
Clip global gradient norm 40.0
Learning rate schedule Anneal linearly to 0

From beginning to end of training.
Population based training (only multi-task agent)

- Population size 24

- Start parameters Same as DMLab-30 sweep

- Fitness Mean capped human normalised scores
(X min [1, (s — o)/ (ke — 7)) /N

- Adapted parameters Gradient clipping threshold

Entropy regularisation
Learning rate
RMSProp ¢

Table G1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures” by Lasse Espeholt et al.
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No-correction: no off-policy
correction;
e-correction: add a small value

e = 1079 during gradient
calculation to prevent m to be
very small and lead to unstabilities
during log ™ computation;

1-step: no off-policy correction in
the update of the value function,
TD errors in the policy gradient

are multiplied by the
corresponding p but no c¢s; it can

be considered V-trace “without
traces’.

Task 1 Task2 Task3 Task4 Task5

Without Replay

V-trace 46.8 329 31.3 229.2 43.8
1-Step 51.8 359 254 215.8 43.7
g-correction 442 273 43 107.7 41.5
No-correction 40.3 29.1 50 949 16.1
With Replay

V-trace 47.1 35.8 34.5 250.8 46.9
1-Step 547 344 264 204.8 41.6
g-correction 304 30.2 3.9 101.5 37.6
No-correction 350 21.1 28 850 11.2

Tasks: rooms_watermaze, rooms_keys_doors_puzzle,
lasertag_-three_opponents._small,
explore_goal_-locations_small, seekavoid_arena-01

IMPALA
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IMPALA - Ablations Ut
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Figure E.1 of "IMPALA: Scalable Distribetsjted Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

ControlVariates Eligibility Traces Returns TD(A) Vtrace IMPALA PopArt 46/51




PopArt Normalization
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An improvement of IMPALA from Sep 2018, which performs normalization of task rewards

instead of just reward clipping. PopArt stands for Preserving Outputs Precisely, while Adaptively
Rescaling Targets.

Assume the value estimate v(s; 80,0, i) is computed using a normalized value predictor n(s; 6)
def
v(s;0,0,u) = on(s;0) + u,
and further assume that n(s; @) is an output of a linear function
def T
n(s;0) = w" f(s;0 — {w,b}) +b.

We can update the o and u using exponentially moving average with decay rate 3 (in the
paper, first moment p and second moment v is tracked, and the standard deviation is

computed as 0 = /v — pu?; decay rate 8 = 3 -107% is employed).
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Utilizing the parameters 1 and o, we can normalize the observed (unnormalized) returns as
(G — ) /o, and use an actor-critic algorithm with advantage (G — ) /o — n(S;0).

However, in order to make sure the value function estimate does not change when the
normalization parameters change, the parameters w, b used to compute the value estimate

v(s;0,0,1) £ o (W f(50 — {w,b}) +b) + p

are updated under any change u — ' and 0 — ¢’ as

/ o
W — —w,

0-/
ob+p—

!

b <

o

In multi-task settings, we train a task-agnostic policy and task-specific value functions
(therefore, p, o, and n(s; @) are vectors).
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PopArt Results ezt

Atari-57 Atari-57 (unclipped) DmlLab-30
Agent Random  Human Random Human Train Test
IMPALA 59.7% 28.5% 0.3% 1.0% 60.6%  58.4%
PopArt-IMPALA  110.7% 101.5% 107.0% 93.7% 73.5% 72.8%
Table 1 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
120 Atari-57 (clipped) 120 Atari-57 (unclipped)
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Figures 1, 2 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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PopArt Results
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Figure 3 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

Normalization statistics on chosen environments.
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