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Continuous Action Space Uz

Until now, the actions were discrete. However, many environments naturally accept actions from
continuous space. We now consider actions which come from range |a, b| for a,b € R, or more

generally from a Cartesian product of several such ranges:

H [ai,bz-].
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Figure from section 13.7 of "Reinforcement Learning: An Introduction,
Second Edition".
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Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the
softmax distribution, we suitably parametrize the action value, usually using the normal
distribution.

Considering only one real-valued action, we therefore have
m(als;0) = P(a ~ N (p(s5;0),0(s; 9)2)),

where p1(s; @) and o(s;0) are function approximation of mean and standard deviation of the
action distribution.

The mean and standard deviation are usually computed from the shared representation, with

® the mean being computed as a usual regression (i.e., one output neuron without activation);
® the standard deviation (which must be positive) being computed again as a single neuron,

but with either exp or softplus, where softplus(z) = log(1 + €*).
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Continuous Action Space in Gradient Methods UrzL

During training, we compute u(s; @) and o(s; @) and then sample the action value (clipping it
to |a, b| if required). To compute the loss, we utilize the probability density function of the
normal distribution (and usually also add the entropy penalty).

mus = torch.nn.Linear(..., actions) (hidden_layer)
sds = torch.nn.Linear(..., actions) (hidden_layer)
sds = torch.exp(sds) # or sds = torch.nn.softplus(sds)

action _dist = torch.distributions.Normal (mus, sds)
# Loss computed as - log m(als) * returns - entropy_regularization

loss = - action_dist.log_prob(actions) * returns \
- args.entropy_regularization * action_dist.entropy()
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When the action consists of several real values, i.e., the action is a suitable subregion of R" for
n > 1, we can:

® either use multivariate Gaussian distribution;
® or factorize the probability into a product of univariate normal distributions.

O This is the most commonly used approach; we then consider the action to be composed
of several independent action components.

If modeling the action distribution using a unimodal normal distribution is insufficient, a mixture

of normal distributions (or mixture of logistic) can be used, capable of representing also
multimodal distributions.
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Deterministic Policy Gradient Theorem
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Combining continuous actions and Deep Q Networks is not straightforward. In order to do so,
we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

Deterministic Policy Gradient Theorem

Assume that the policy 7(s; @) is deterministic and computes an action a € R. Further,
assume the reward 7 (s, a) is actually a deterministic function of the given state-action pair.
Then, under several assumptions about continuousness, the following holds:

VeJ(0) x E,, [er(s; 0)V.q:(s,a) ’azw(s;@)}'

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David
Silver et al in 2014.

DPG 8/52



The proof is very similar to the original (stochastic) policy gradient theorem.

However, we will be exchanging derivatives and integrals, for which we need several
assumptions:

® we assume that h(s),p(s'|s,a), V,p(s'|s,a),7(s,a),V,r(s,a),7(s;0),Vgm(s;0) are
continuous in all parameters and variables;
® we further assume that h(s),p(s'|s,a), V,p(s'|s,a),r(s,a), V,7(s,a) are bounded.

Details (which assumptions are required and when) can be found in Appendix B of the paper
Deterministic Policy Gradient Algorithms: Supplementary Material by David Silver et al.
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Vour(s) = Vogr(s,(s;0))
= Vo (r (s,7(s;0)) + /, vp(s'|s,(5;0)) (vx(s")) ds')

= Von(s;0)V,r(s, a’)‘a:w(s;e) + Vo / vp(s'|s, m(s;0))vr(s") ds’

= Vegr(s;0)V, (r(s, a) + / vp(s'|s, a)vx(s") ds')

s a=7(s;0)

-+ / ’yp(s' s, 7(s; 0))V9v7r(s') ds’

= Vo7 (s;0)V,q,(s a)’ r(s0) T / vp(s'|s, 7(s;0)) Vouvr(s') ds’
We finish the proof as in the gradient theorem by continually expanding Vgu,(s'), getting
Voux(s) = [, Y poY*P(s — & ink steps |7) [ Vo (s';0)Vagr (s, a)|a:7r(8,,0)] ds’ and
then VgJ(O) = EsnVour(s) x Esy [er(s, H)Vaqﬂ(s,a)‘azﬁ(s;e)}.
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Deep Deterministic Policy Gradients
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Note that the formulation of deterministic policy gradient theorem allows an off-policy
algorithm, because the loss functions no longer depends on actions sampled from the behaviour
policy (similarly to how expected Sarsa is also an off-policy algorithm).

We therefore train function approximation for both 7 (s; @) and q(s, a; 8), training q(s, a; 0)
using a deterministic variant of the Bellman equation

Q(Sta Ay, 9) = Eg, [T(Szb At) + 79(5t+17 7T(StH; 9))}

and 7(s; @) according to the deterministic policy gradient theorem.
The algorithm was first described in the paper Continuous Control with Deep Reinforcement
Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average
with 7 = 0.001), batch normalization for CNNs, and perform exploration by adding a Ornstein-

Uhlenbeck noise to the predicted actions. Training is performed by Adam with learning rates of
le-4 and 1le-3 for the policy and the critic networks, respectively.
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Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|0?) and actor y(s|6*) with weights % and 0+
Initialize target network @’ and 1/ with weights 09" < 09, g+ < g~
Initialize replay buffer R
for episode = 1, M do
Initialize a random process A for action exploration
Receive initial observation state s;
fort=1,Tdo
Select action a; = ju(s¢|0") + N; according to the current policy and exploration noise
Execute action a; and observe reward r, and observe new state s; 1
Store transition (s¢, at, 74, S¢+1) in R
Sample a random minibatch of N transitions (s;, a;, r;, $;11) from R
Sety; = r; + Q' (Si41, M’(5i+1‘9“/)‘9q)
Update critic by minimizing the loss: L = % > i(yi — Q(si, a;|09))?
Update the actor policy using the sampled policy gradient:

Si

1
VG“J ~ N Z an(sa a‘eQ)|s=si,a=,u(si)v9“:u(s‘eu)

Update the target networks:
09 «— 709 + (1 —7)0°
0" 70" + (1 —7)6"

end for
end for

Algorithm 1 of "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.
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Deep Deterministic Policy Gradients
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Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG
algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark
grey), with target networks and batch normalization (green), with target networks from pixel-only
inputs (blue). Target networks are crucial.

Figure 3 of "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.
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Results using low-dimensional (/owd)
version of the environment, pixel
representation (pix) and DPG reference
(cntrl).

The architecture in the lowd case
consists of two hidden layers with 400
and 300 units and RelLU activation, in
both the actor and the critic. The actor
additionally uses tanh activation to
bound the action in a given range.

In the case of pixel representation, 3
convolution layers with 32 channels and
ReLU activation are used (no pooling),
followed by two fully-connected Rel U-
activated layers with 200 units each.

environment Rav,lowd Rbest,lowd Rav,piz Rbest,piw Ra'u,cntrl Rbest,cntrl
blockworld1 1.156 1.511 0.466 1.299 -0.080 1.260
blockworld3da 0.340 0.705 0.889 2.225 -0.139 0.658
canada 0.303 1.735 0.176 0.688 0.125 1.157
canada2d 0.400 0.978 -0.285 0.119 -0.045 0.701
cart 0.938 1.336 1.096 1.258 0.343 1.216
cartpole 0.844 1.115 0.482 1.138 0.244 0.755
cartpoleBalance 0.951 1.000 0.335 0.996 -0.468 0.528
cartpoleParalle]Double 0.549 0.900 0.188 0.323 0.197 0.572
cartpoleSerialDouble 0.272 0.719 0.195 0.642 0.143 0.701
cartpoleSerial Triple 0.736 0.946 0.412 0.427 0.583 0.942
cheetah 0.903 1.206 0.457 0.792 -0.008 0.425
fixedReacher 0.849 1.021 0.693 0.981 0.259 0.927
fixedReacherDouble 0.924 0.996 0.872 0.943 0.290 0.995
fixedReacherSingle 0.954 1.000 0.827 0.995 0.620 0.999
gripper 0.655 0.972 0.406 0.790 0.461 0.816
gripperRandom 0.618 0.937 0.082 0.791 0.557 0.808
hardCheetah 1.311 1.990 1.204 1.431 -0.031 1.411
hopper 0.676 0.936 0.112 0.924 0.078 0.917
hyq 0.416 0.722 0.234 0.672 0.198 0.618
movingGripper 0.474 0.936 0.480 0.644 0.416 0.805
pendulum 0.946 1.021 0.663 1.055 0.099 0.951
reacher 0.720 0.987 0.194 0.878 0.231 0.953
reacher3daFixedTarget 0.585 0.943 0.453 0.922 0.204 0.631
reacher3daRandomTarget 0.467 0.739 0.374 0.735 -0.046 0.158
reacherSingle 0.981 1.102 1.000 1.083 1.010 1.083
walker2d 0.705 1.573 0.944 1.476 0.393 1.397

torcs -393.385 | 1840.036 | -401.911 | 1876.284 | -911.034 | 1961.600

DDPG
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Ornstein-Uhlenbeck Exploration UL

While it is natural to use Gaussian noise for the exploration policy, the authors claim that
temporally-correlated noise is more effective for physical control problems with inertia.

They therefore generate noise using Ornstein-Uhlenbeck process, by computing
ng < M1+ 0 (p—mns_1) +e~N(0,0°),

utilizing hyperparameter values 8 = 0.15 and o = 0.2.
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Ornstein-Uhlenbeck Exploration Visualization et
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® On the left, there is a continuous Wiener process (a “brownian path”), corresponding to
@ =0and oc=1.
® On the right, there is Ornstein-Uhlenbeck process example with 8 = ¢ =1 and u = 0.

The gray are corresponds to the standard deviation of  (n in our notation).
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(a) (b) (c) (d)

Figure 4. Example MuJoCo environments (a) HalfCheetah-v1, (b)
Hopper-vl, (¢) Walker2d-vl, (d) Ant-v1.

See the Gymnasium documentation of the HalfCheetah, Hopper, Walker2D, Ant, Humanoid
environments for a detailed description of observation spaces and action spaces.
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https://gymnasium.farama.org/environments/mujoco/half_cheetah/
https://gymnasium.farama.org/environments/mujoco/hopper/
https://gymnasium.farama.org/environments/mujoco/walker2d/
https://gymnasium.farama.org/environments/mujoco/ant/
https://gymnasium.farama.org/environments/mujoco/humanoid/

Twin Delayed Deep Deterministic Policy Gradient

(TD3)
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The paper Addressing Function Approximation Error in Actor-Critic Methods by Scott Fujimoto
et al. from February 2018 proposes improvements to DDPG which

® decrease maximization bias by training two critics and choosing the minimum of their
predictions;

® introduce several variance-lowering optimizations:
O delayed policy updates;
O target policy smoothing.

In 2022, together with the SAC algorithm, the TD3 algorithm has been one of the best
algorithms for off-policy continuous-actions RL training.
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Similarly to Q-learning, the DDPG algorithm suffers from maximization bias. In Q-learning, the
maximization bias was caused by the explicit max operator. For DDPG methods, it can be

caused by the gradient descent itself. Let @ 4ppr0r be the parameters maximizing the gg and let

0. be the hypothetical parameters which maximise true g, and let Tapproz aNd Ty denote
the corresponding policies.

Because the gradient direction is a local maximizer, for sufficiently small ¢ < €1 we have

E [C.Ie (37 7Tonpprom)} > E [%(87 the)] .

However, for real g, and for sufficiently small a < €39, it holds that
E |:Q7T(87 the)} Z E [QW('S) 7"-approac)] .
Therefore, if E[qg(s, wtme)} > E[qﬂ(s, the)], for a < min(eq, €2)

E [Q@ (37 7"'a,pp'roaz)] > K [Qﬁ (37 7"'ozpprox)} .

TD3
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TD3 — Maximization Bi Upt
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Figure 1 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Figure 2 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott
Fujimoto et al. Fujimoto et al.

Analogously to Double DQN we could compute the learning targets using the current policy and
the target critic, i.e., 7 + gy (8, Ty(s)) (instead of using the target policy and the target

critic as in DDPG), obtaining DDQN-AC algorithm. However, the authors found out that the
policy changes too slowly and the target and current networks are too similar.

Using the original Double Q-learning, two pairs of actors and critics could be used, with the
learning targets computed by the opposite critic, i.e., 7 + Ygg, (s', 7y, (8')) for updating gg, .
The resulting DQ-AC algorithm is slightly better, but still suffering from overestimation.
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The authors instead suggest to employ two critics and one actor. The actor is trained using one
of the critics, and both critics are trained using the same target computed using the minimum
value of both critics as

T+ mig g (8", mp (8)).
=1,
The resulting algorithm is called CDQ — Clipped Double Q-learning.

Furthermore, the authors suggest two additional improvements for variance reduction.

® For obtaining higher quality target values, the authors propose to train the critics more
often. Therefore, critics are updated each step, but the actor and the target networks are
updated only every d-th step (d = 2 is used in the paper).

® To explicitly model that similar actions should lead to similar results, a small random noise
is added to the performed actions when computing the target value:

T+ I{li% g0 (8", (s') +€) for €~ clip(N(0,0),—c¢,c), witho = 0.2,c = 0.5.
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TD3 - Algorithm et

Algorithm 1 TD3

Initialize critic networks Qg, , Qs,, and actor network
with random parameters 61, 65, ¢
Initialize target networks 6] <— 61, 05 < 0, ¢' < ¢
Initialize replay buffer B
fort =1to T do
Select action with exploration noise a ~ 74 (s) + €,
e ~ N (0, 0) and observe reward r and new state s’
Store transition tuple (s, a,r,s’) in B

Sample mini-batch of IV transitions (s, a,r, s') from B
a< my(s')+e€ €~ clipN(0,6),—c,c)
Y < 1+ ymin=1 2 Qo (s, @)
Update critics 0; < argming. N ' >~ (y—Q, (s, a))?
if £ mod d then
Update ¢ by the deterministic policy gradient:
V¢J<¢) =N-! Z anel (87 a)‘azﬂ¢(s)V¢7T¢(S)
Update target networks:
0 < 76; + (1 —7)0;
¢ 1o+ (1—-7)¢
end if

end for
Algorithm 1 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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Hyper-parameter Ours DDPG

Critic Learning Rate 1072 1073
Critic Regularization None 1072 - |62
Actor Learning Rate 107° 10~
Actor Regularization None None
Optimizer Adam Adam
Target Update Rate (7) 5.1073 1073
Batch Size 100 64
Iterations per time step 1 1
Discount Factor 0.99 0.99
Reward Scaling 1.0 1.0
Normalized Observations False True
Gradient Clipping False False
Exploration Policy N(0,0.1) OU,0 =0.15,u=0,0 =0.2

In TD3, the actor and the critic also use two fully-connected RelLU-activated layers with 400
and 300 units, respectively. The actor actions are bounded in a given range using a suitably
scaled tanh activation.

In TD3, the authors state that they also tried the Ornstein-Uhlenbeck noise, but it provided no
benefit compared to N (0, 0.1).
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TD3 — Results
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Figure 5 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
Environment TD3 DDPG Our DDPG PPO TRPO ACKTR SAC
HalfCheetah 9636.95 + 859.065 3305.60 8577.29 1795.43 -15.57 1450.46  2347.19
Hopper 3564.07 = 114.74  2020.46 1860.02 2164.70 247130 2428.39  2996.66
Walker2d 4682.82 + 539.64 1843.85 3098.11 3317.69 232147 1216.70  1283.67
Ant 4372.44 + 1000.33 1005.30 888.77 1083.20 -75.85 1821.94 655.35
Reacher -3.60 £ 0.56 -6.51 -4.01 -6.18 -111.43 -4.26 -4.44
InvPendulum 1000.00 + 0.00 1000.00 1000.00 1000.00 985.40 1000.00 1000.00
InvDoublePendulum 9337.47 + 14.96 9355.52 8369.95 8977.94  205.85 9081.92  8487.15
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Table 1 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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TD3 — Ablations
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Figure 7 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.
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Figure 8 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

The AHE is the authors' reimplementation of DDPG using updated architecture,
hyperparameters, and exploration. TPS is Target Policy Smoothing, DP is Delayed Policy
update, and CDQ is Clipped Double Q-learning.
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Method HCheetah Hopper Walker2d Ant
TD3 0532.99 3304.75  4565.24  4185.06
DDPG 3162.50 1731.94 1520.90 816.35
AHE 8401.02 1061.77 2362.13 564.07
AHE + DP 7588.64 1465.11 2459.53 896.13
AHE + TPS 9023.40 907.56 2961.36 872.17
AHE + CDQ 6470.20 1134.14 3979.21 3818.71
TD3 - DP 9590.65 2407.42  4695.50  3754.26
TD3 - TPS 8987.69 2392.59 4033.67  4155.24
TD3 - CDQ 9792.80 1837.32 2579.39 849.75
DQ-AC 9433.87 1773.71 3100.45 2445.97
DDQN-AC 1030690  2155.75 3116.81 1092.18

TD3
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Soft Actor Critic
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The paper Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor by Tuomas Haarnoja et al. from Jan 2018 introduces a different off-policy
algorithm for continuous action space.

It was followed by a continuation paper Soft Actor-Critic Algorithms and Applications in Dec
2018.

The general idea is to introduce entropy directly in the value function we want to maximize,
instead of just ad-hoc adding the entropy penalty. Such an approach is an instance of
regularized policy optimization.
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Until now, our goal was to optimize
E.[Gol.

Assume the rewards are deterministic and that u, is on-policy distribution of a policy 7.

In the soft actor-critic, the authors consider infinite-horizon MDPs and propose to optimize the
maximum entropy objective

Tk

argmax E,. []anﬁ(s) [7“(8, a)] T CYH(WHS))]

s

= argmax [y, ,n(s) ['r(s, a) — alog W(a\s)} :

Note that the value of « is dependent on the magnitude of returns and that for a fixed policy,
the entropy penalty can be “hidden” in the reward.

SAC
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Soft Actor Critic Objective UL

To maximize the regularized objective, we define the following augmented reward:
re(s,a) = r(s,a) + Egp(s,a) [0H(m(:]5"))].

From now on, we consider soft action-value function corresponding to this augmented reward.
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Soft Policy Evaluation
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Our goal is now to derive soft policy iteration, an analogue of policy iteration algorithm.

We start by considering soft policy evaluation. Let a modified Bellman backup operator 7. be
defined as

7;7(1(37 a’) = ’I°(8, a’) + ’Y]Es’fvp(s,a) [U(SI)] 9
where the soft (state-)value function v(s) is defined as
U(S) = Eqr [Q('S) a)} + aH(ﬂ-(|S)) = Eqr [Q(Sv CL) — alogw(a!s)] y

This modified Bellman backup operator corresponds to the usual one for the augmented
rewards 7 (8, @), and therefore the repeated application 7;kq converges to g, according to the

original proof.
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Soft Policy Improvement
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While the soft policy evaluation was a straightforward modification of the original policy
evaluation, the soft policy improvement is quite different.

Assume we have a policy m, its action-value function g, from the soft policy evaluation, and we
want to improve the policy. Furthermore, we should select the improved policy from a family of
parametrized distributions II.

We define the improved policy 7’ as
def exp (é%r(sa ))

7' (-|s) = argmin J,(7) = arg min Dgg, [ 7(:|s)
mell well zr(8)

where z.($) is the partition function (i.e., normalization factor such that the right-hand side is
a distribution), which does not depend on the new policy and thus can be ignored.
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We now prove that ¢ (s, a) > ¢ (s, a) for any state s and action a.

We start by noting that J(7') < J,(7), because we can always choose 7 as the improved
policy. Therefore,

E, [oz log 7' (als) — q.(s,a) + alog zﬂ(s)] <E, . [a log (als) — q.(s,a) + alog zﬂ(s)},
which results in

Eqr |gr(8,a) — alog ' (als)| > vx(s).
We now finish the proof analogously to the original one:

%r(sa CL) — ’I“(S, CL) + 7E8’ [UW(SI)]
S T(S, a) + ’YES’ [Ea’wﬂ" [Q?T(8,7 CLI) — log ﬂ-l(a’llsl)]

< qr(s,a).
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The soft policy iteration algorithm alternates between the soft policy evaluation and soft policy
improvement steps.

The repeated application of these two steps produce better and better policies. In other words,
we get a monotonically increasing sequence of soft action-value functions.

If the soft action-value function is bounded (the paper assumes a bounded reward and a finite
number of actions to bound the entropy), the repeated application converges to some g, from

which we get a 7, using the soft policy improvement step.
It remains to show that the 7, is indeed the optimal policy fulfilling gy, (s,a) > g:(s,a).

However, this follows from the fact that at convergence, J,, (m,) < J, (7), and following the
same reasoning as in the proof of the soft policy improvement, we obtain the required

QTF* (87 a’) Z q7T(87 a’)
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The following derivation is not in the original paper, but it is my understanding of how the
softmax of the action-value function arises. For simplicity, we assume finite number of actions,
but the same approach can be generalized to continuous actions.

Assuming we have a policy 7t and its action-value function g,, we usually improve the policy
using

v(:|s)

argmax [, ,(.|s) [qﬂ (s, a)]

v

= arg max Za qr(s,a)v(als)

— arg max q7T(S7 ')TV('|S)7

which results in a greedy improvement with the form of

v(s) = argmax, q, (s, a).
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Now consider instead the regularized objective

v(-|s) = argmax (Equ(|s) [gr (s, @)] + aH(v(]s)))

v

= arg max (any [%(37 a) — alog V(a|3)])

v

To maximize it for a given s, we form a Lagrangian

L= (Za v(als)(g.(s,a) — alog I/(a\s))) - )\(1 - Za I/(a\s)).
The derivative with respect to v(als) is

oL

v (als) = ¢-(s,a) — alogv(als) — a+ A

Setting it to zero, we get alog v(als) = ¢, (s,a) + A — a, resulting in v(a|s) o eat(5:9),
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Soft Actor Critic Algorithm
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Our soft actor critic will be an off-policy algorithm with continuous action space. The model
consist of two critics gg, and gg,, two target critics g, and gg,, and a single actor 7.

The authors state that
® with a single critic, all the described experiments still converge;
® they adopted the two critics from the TD3 paper;

® using two critics “significantly speed up training”.

SAC Algorithm 43/52



Soft Actor Critic — Critic Training

To train the critic, we use the modified Bellman backup operator, resulting in the loss
, 2
Jq(0i) = Espiyamm(s) [(q@ (s,a) — (r(*g? a) + VEs p(s,0) [Vmin (s )])) }’

where
Umin(8) = B, | min (g5, (5, 0)) — alogmy (als) .

The target critics are updated using exponential moving averages with momentum 7.
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The actor is updated by directly minimizing the KL divergence, resulting in the loss
Jr(0) = By ammo(s) [a log (mp (a, s)) — miin (qgi (s, a))].

Given that our critics are differentiable, in order to be able to compute the gradient
Vs, (s,a), we only need to reprametrize the policy as

a= fo(s,¢€).

Specifically, we sample € ~ N(O, 1) and let f, produce an unbounded Gaussian distribution
N (p(s;¢),0(s;4)?), or a diagonal one if the actions are vectors, with the sampled action

a = p(s; @) +eo(s;p).

Together, we obtain

JW(‘P) — IE‘j’(Srv,uw,5~/\/’(0,1) [a log (7T50(f50(37 5)7 8)) o Inz.in (qei (87 fcp(sa 5)))} :
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In practice, the actions need to be bounded.

The authors propose to apply an invertible squashing function tanh on the unbounded
Gaussian distribution.

Consider that our policy produces an unbounded action 7(u|s). To define a distribution 7(a|s)
with a = tanh(u), we need to employ the change of variables, resulting in

#(als) = m(uls) (%) L r(uls) (ma;j(“) ) N

Therefore, the log-likelihood has quite a simple form

log 7 (als) = logm(uls) — log (1 — tanh” (w)).
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One of the most important hyperparameters is the entropy penalty c.

In the second paper, the authors presented an algorithm for automatic adjustment of its value.

Instead of setting the entropy penalty «, they propose to specify target entropy value H and
then solve a constrained optimization problem

T, = argmaxE, ;. or(s) [r(s, a)] such that E;_,_sr(s) [ — log w(ais)] > H.

s

We can then form a Lagrangian with a multiplier o
Esm iy amr(s) [r(s, a) + oz( — logw(als) — ’H)},

which should be maximized with respect to 7 and minimized with respect to @ > 0.
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To optimize the Lagrangian, we perform dual gradient descent, where we alternate between
maximization with respect to m and minimization with respect to a.

While such a procedure is guaranteed to converge only under the convexity assumptions, the
authors report that the dual gradient descent works in practice also with nonlinear function
approximation.

To conclude, the automatic entropy adjustment is performed by introducing a final loss

J(a) = Esep, amn(s) [ — alogw(als) — a’H}.
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Algorithm 1 Soft Actor-Ceritic

Input: 0, 05, ¢
(91 < (91, 92 < 92
D <+ (
for each iteration do
for each environment step do
ay ~ g (ast)
St+1 ~ P(Se+1[St, ar)
D+ DU {(St7 A, T(St7 at)a St+1)}
end for
for each gradient step do

0, < 0; — )\QV@JQ(Q@) for: € {1, 2}

§Z5 — ¢ - AWAV¢JW(¢)
a+—a—AVJ(a)
0, (—T@z—l—(l —7')91' for: € {1,2}
end for
end for
Output: 64, 05, ¢

> Initial parameters
> Initialize target network weights
> Initialize an empty replay pool

> Sample action from the policy
> Sample transition from the environment
> Store the transition in the replay pool

> Update the Q-function parameters
> Update policy weights

> Adjust temperature

> Update target network weights

> Optimized parameters
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Table 1: SAC Hyperparameters

Parameter Value

optimizer Adam (Kingma & Ba, 2015)
learning rate 3-1074

discount () 0.99

replay buffer size 109

number of hidden layers (all networks) | 2

number of hidden units per layer 256

number of samples per minibatch 256

entropy target

nonlinearity

target smoothing coefficient (7)
target update interval

gradient steps

—dim (A) (e.g. , -6 for HalfCheetah-v1)
RelLU

0.005

1

1
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Soft Actor Critic

Hopper-v2

4000

3000

2000

average return

iy
o
o
o

0.0 0.2 0.4

0.6 0.8 1.0

million steps

Ant-v2

0.0 0.5 1.0
million steps

1.5 2.0 2.5 3.0

7000

6000

N w Iy Ul
o o o o
o o o o
o o o o

average return

1000

8000

o))
o
o
o

average return
S
o
o
o

2000

Walker2d-v2

1.0 15

2.0 2.5

million steps

Humanoid-v2

4
million steps

6 8

HalfCheetah-v2

15000

12500

average return
Ul ~ o
o ul o
o o o
o o o

0.0 0.5 1.0 1.5 2.0 2.5 3.0
million steps

Humanoid (rllab)

7000
—— SAC (learned temperature)
6000 — SAC (fixed temperature)
—— DDPG
g 5000 D3
© 4000 PFO
>
© 3000
g
= 2000
1000
0
0 2 4 6 8 10

million steps

Figure 1: Training curves on continuous control benchmarks. Soft actor-critic (blue and yellow) performs
consistently across all tasks and outperforming both on-policy and off-policy methods in the most challenging

tasks.
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Soft Actor Ciritic U
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Figure 3. Sensitivity of soft actor-critic to selected hyperparameters on Ant-v1 task. (a) Evaluating the policy using the mean action
generally results in a higher return. Note that the policy is trained to maximize also the entropy, and the mean action does not, in general,
correspond the optimal action for the maximum return objective. (b) Soft actor-critic is sensitive to reward scaling since it is related to the
temperature of the optimal policy. The optimal reward scale varies between environments, and should be tuned for each task separately.
(c) Target value smoothing coefficient 7 is used to stabilize training. Fast moving target (large 7) can result in instabilities (red), whereas

slow moving target (small 7) makes training slower (blue).
Figure 3 of "Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor" by Tuomas Haarnoja et al.
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