
NPFL139, Lecture 8

Continuous Action Space:
DDPG, TD3, SAC
Milan Straka

April 09, 2025

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Continuous Action Space

2/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Continuous Action Space

Figure from section 13.7 of "Reinforcement Learning: An Introduction,
Second Edition".

Until now, the actions were discrete. However, many environments naturally accept actions from
continuous space. We now consider actions which come from range for , or more

generally from a Cartesian product of several such ranges:

A simple way how to parametrize the action distribution
is to choose them from the normal distribution.
Given mean and variance , probability density

function of is

[a, b] a, b ∈ R

 [a , b].
i

∏ i i

μ σ2

N (μ,σ)2

p(x) =def
 e .
 2πσ2

1 − 2σ2
(x−μ)2

3/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Continuous Action Space in Gradient Methods

Utilizing continuous action spaces in gradient-based methods is straightforward. Instead of the

 distribution, we suitably parametrize the action value, usually using the normal

distribution.

Considering only one real-valued action, we therefore have

where and are function approximation of mean and standard deviation of the

action distribution.

The mean and standard deviation are usually computed from the shared representation, with

the mean being computed as a usual regression (i.e., one output neuron without activation);
the standard deviation (which must be positive) being computed again as a single neuron,

but with either or , where .

softmax

π(a∣s; θ) =def
P(a ∼ N(μ(s; θ),σ(s; θ))),2

μ(s; θ) σ(s; θ)

exp softplus softplus(x) =def log(1 + e)x

4/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Continuous Action Space in Gradient Methods

During training, we compute and and then sample the action value (clipping it

to if required). To compute the loss, we utilize the probability density function of the

normal distribution (and usually also add the entropy penalty).

 mus = torch.nn.Linear(..., actions)(hidden_layer)

 sds = torch.nn.Linear(..., actions)(hidden_layer)

 sds = torch.exp(sds) # or sds = torch.nn.softplus(sds)

 action_dist = torch.distributions.Normal(mus, sds)

 # Loss computed as - log π(a|s) * returns - entropy_regularization
 loss = - action_dist.log_prob(actions) * returns \

 - args.entropy_regularization * action_dist.entropy()

μ(s; θ) σ(s; θ)
[a, b]

5/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Continuous Action Space

When the action consists of several real values, i.e., the action is a suitable subregion of for

, we can:

either use multivariate Gaussian distribution;
or factorize the probability into a product of univariate normal distributions.

This is the most commonly used approach; we then consider the action to be composed
of several independent action components.

If modeling the action distribution using a unimodal normal distribution is insufficient, a mixture
of normal distributions (or mixture of logistic) can be used, capable of representing also
multimodal distributions.

Rn
n > 1

6/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Deterministic Policy Gradient Theorem

7/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Deterministic Policy Gradient Theorem

Combining continuous actions and Deep Q Networks is not straightforward. In order to do so,
we need a different variant of the policy gradient theorem.

Recall that in policy gradient theorem,

Deterministic Policy Gradient Theorem
Assume that the policy is deterministic and computes an action . Further,

assume the reward is actually a deterministic function of the given state-action pair.

Then, under several assumptions about continuousness, the following holds:

The theorem was first proven in the paper Deterministic Policy Gradient Algorithms by David
Silver et al in 2014.

∇ J(θ) ∝θ E [q (s, a)∇ π(a∣s; θ)].s∼μ ∑
a∈A

π θ

π(s; θ) a ∈ R
r(s, a)

∇ J(θ) ∝θ E [∇ π(s; θ)∇ q (s, a)].s∼μ θ a π a=π(s;θ)

8/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Deterministic Policy Gradient Theorem – Proof

The proof is very similar to the original (stochastic) policy gradient theorem.

However, we will be exchanging derivatives and integrals, for which we need several
assumptions:

we assume that are

continuous in all parameters and variables;
we further assume that are bounded.

Details (which assumptions are required and when) can be found in Appendix B of the paper
Deterministic Policy Gradient Algorithms: Supplementary Material by David Silver et al.

h(s), p(s ∣s, a), ∇ p(s ∣s, a), r(s, a), ∇ r(s, a),π(s; θ), ∇ π(s; θ)′
a

′
a θ

h(s), p(s ∣s, a), ∇ p(s ∣s, a), r(s, a), ∇ r(s, a)′
a

′
a

9/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Deterministic Policy Gradient Theorem – Proof

We finish the proof as in the gradient theorem by continually expanding , getting

 and

then .

∇ v (s) =θ π ∇ q (s,π(s; θ))θ π

= ∇ (r(s,π(s; θ))+θ γp(s ∣s,π(s; θ))(v (s))ds)∫
s′

′
π

′ ′

= ∇ π(s; θ)∇ r(s, a) +θ a a=π(s;θ) ∇ γp(s ∣s,π(s; θ))v (s) dsθ ∫
s′

′
π

′ ′

= ∇ π(s; θ)∇ (r(s, a) +θ a γp(s ∣s, a)v (s) ds) ∫
s′

′
π

′ ′

a=π(s;θ)

+ γp(s ∣s,π(s; θ))∇ v (s) ds∫
s′

′
θ π

′ ′

= ∇ π(s; θ)∇ q (s, a) +θ a π a=π(s;θ) γp(s ∣s,π(s; θ))∇ v (s) ds∫
s′

′
θ π

′ ′

∇ v (s)θ π
′

∇ v (s) =θ π γ P (s →∫
s′ ∑k=0

∞ k s in k steps ∣π)[∇ π(s ; θ)∇ q (s , a)] ds′
θ

′
a π

′
a=π(s ;θ)′

′

∇ J(θ) =θ E ∇ v (s) ∝s∼h θ π E [∇ π(s; θ)∇ q (s, a)]s∼μ θ a π a=π(s;θ)

10/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Deep Deterministic Policy Gradients

11/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Deep Deterministic Policy Gradients

Note that the formulation of deterministic policy gradient theorem allows an off-policy
algorithm, because the loss functions no longer depends on actions sampled from the behaviour
policy (similarly to how expected Sarsa is also an off-policy algorithm).

We therefore train function approximation for both and , training

using a deterministic variant of the Bellman equation

and according to the deterministic policy gradient theorem.

The algorithm was first described in the paper Continuous Control with Deep Reinforcement
Learning by Timothy P. Lillicrap et al. (2015).

The authors utilize a replay buffer, a target network (updated by exponential moving average
with), batch normalization for CNNs, and perform exploration by adding a Ornstein-

Uhlenbeck noise to the predicted actions. Training is performed by Adam with learning rates of
1e-4 and 1e-3 for the policy and the critic networks, respectively.

π(s; θ) q(s, a; θ) q(s, a; θ)

q(S ,A ; θ) =t t E [r(S ,A) +S t+1 t t γq(S ,π(S ; θ))]t+1 t+1

π(s; θ)

τ = 0.001

12/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Deep Deterministic Policy Gradients

Algorithm 1 of "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

13/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Deep Deterministic Policy Gradients

Figure 3 of "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

14/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Deep Deterministic Policy Gradients

Table 1 of "Continuous Control with Deep Reinforcement Learning" by Timothy P. Lillicrap et al.

Results using low-dimensional (lowd)
version of the environment, pixel
representation (pix) and DPG reference
(cntrl).

The architecture in the lowd case
consists of two hidden layers with 400
and 300 units and ReLU activation, in
both the actor and the critic. The actor
additionally uses tanh activation to
bound the action in a given range.

In the case of pixel representation, 3
convolution layers with 32 channels and
ReLU activation are used (no pooling),
followed by two fully-connected ReLU-
activated layers with 200 units each.

15/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Ornstein-Uhlenbeck Exploration

While it is natural to use Gaussian noise for the exploration policy, the authors claim that
temporally-correlated noise is more effective for physical control problems with inertia.

They therefore generate noise using Ornstein-Uhlenbeck process, by computing

utilizing hyperparameter values and .

n ←t n +t−1 θ ⋅ (μ − n) +t−1 ε ∼ N (0,σ),2

θ = 0.15 σ = 0.2

16/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Ornstein-Uhlenbeck Exploration Visualization

https://upload.wikimedia.org/wikipedia/commons/7/79/Wiener-process-5traces.svg

https://upload.wikimedia.org/wikipedia/commons/6/60/Ornstein-Uhlenbeck-5traces.svg

On the left, there is a continuous Wiener process (a “brownian path”), corresponding to

 and .

On the right, there is Ornstein-Uhlenbeck process example with and .

The gray are corresponds to the standard deviation of (in our notation).

θ = 0 σ = 1
θ = σ = 1 μ = 0

x n
17/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

MuJoCo

18/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

MuJoCo

Figure 4 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

See the Gymnasium documentation of the HalfCheetah, Hopper, Walker2D, Ant, Humanoid
environments for a detailed description of observation spaces and action spaces.

19/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

https://gymnasium.farama.org/environments/mujoco/half_cheetah/
https://gymnasium.farama.org/environments/mujoco/hopper/
https://gymnasium.farama.org/environments/mujoco/walker2d/
https://gymnasium.farama.org/environments/mujoco/ant/
https://gymnasium.farama.org/environments/mujoco/humanoid/

Twin Delayed Deep Deterministic Policy Gradient
(TD3)

20/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Twin Delayed Deep Deterministic Policy Gradient

The paper Addressing Function Approximation Error in Actor-Critic Methods by Scott Fujimoto
et al. from February 2018 proposes improvements to DDPG which

decrease maximization bias by training two critics and choosing the minimum of their
predictions;

introduce several variance-lowering optimizations:
delayed policy updates;
target policy smoothing.

In 2022, together with the SAC algorithm, the TD3 algorithm has been one of the best
algorithms for off-policy continuous-actions RL training.

21/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

TD3 – Maximization Bias

Similarly to Q-learning, the DDPG algorithm suffers from maximization bias. In Q-learning, the
maximization bias was caused by the explicit operator. For DDPG methods, it can be

caused by the gradient descent itself. Let be the parameters maximizing the and let

 be the hypothetical parameters which maximise true , and let and denote

the corresponding policies.

Because the gradient direction is a local maximizer, for sufficiently small we have

However, for real and for sufficiently small , it holds that

Therefore, if , for

max
θ approx q θ

θ true q π π approx π true

α < ε 1

E[q (s,π)] ≥θ approx E[q (s,π)].θ true

q π α < ε 2

E[q (s,π)] ≥π true E[q (s,π)].π approx

E[q (s,π)] ≥θ true E[q (s,π)]π true α < min(ε , ε)1 2

E[q (s,π)] ≥θ approx E[q (s,π)].π approx

22/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

TD3 – Maximization Bias

Figure 1 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott
Fujimoto et al.

Figure 2 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott
Fujimoto et al.

Analogously to Double DQN we could compute the learning targets using the current policy and
the target critic, i.e., (instead of using the target policy and the target

critic as in DDPG), obtaining DDQN-AC algorithm. However, the authors found out that the
policy changes too slowly and the target and current networks are too similar.

Using the original Double Q-learning, two pairs of actors and critics could be used, with the
learning targets computed by the opposite critic, i.e., for updating .

The resulting DQ-AC algorithm is slightly better, but still suffering from overestimation.

r + γq (s ,π)θ′ ′
φ(s)′

r + γq (s ,π (s))θ 2
′

φ 1
′ q θ 1

23/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

TD3 – Algorithm

The authors instead suggest to employ two critics and one actor. The actor is trained using one
of the critics, and both critics are trained using the same target computed using the minimum
value of both critics as

The resulting algorithm is called CDQ – Clipped Double Q-learning.

Furthermore, the authors suggest two additional improvements for variance reduction.

For obtaining higher quality target values, the authors propose to train the critics more
often. Therefore, critics are updated each step, but the actor and the target networks are
updated only every -th step (is used in the paper).

To explicitly model that similar actions should lead to similar results, a small random noise
is added to the performed actions when computing the target value:

r + γ q (s ,π (s)).
i=1,2
min θ i

′
′

φ′
′

d d = 2

r + γ q (s ,π (s) +
i=1,2
min θ i

′
′

φ′
′ ε) for ε ∼ clip(N (0,σ), −c, c), with σ = 0.2, c = 0.5.

24/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

TD3 – Algorithm

Algorithm 1 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

25/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

TD3 – Hyperparameters

Table 3 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

In TD3, the actor and the critic also use two fully-connected ReLU-activated layers with 400
and 300 units, respectively. The actor actions are bounded in a given range using a suitably
scaled tanh activation.

In TD3, the authors state that they also tried the Ornstein-Uhlenbeck noise, but it provided no
benefit compared to .N (0, 0.1)

26/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

TD3 – Results

Figure 5 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

Table 1 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

27/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

TD3 – Ablations

Figure 7 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

Figure 8 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

The AHE is the authors' reimplementation of DDPG using updated architecture,
hyperparameters, and exploration. TPS is Target Policy Smoothing, DP is Delayed Policy
update, and CDQ is Clipped Double Q-learning.

28/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

TD3 – Ablations

Table 2 of "Addressing Function Approximation Error in Actor-Critic Methods" by Scott Fujimoto et al.

29/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic

30/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic

The paper Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor by Tuomas Haarnoja et al. from Jan 2018 introduces a different off-policy
algorithm for continuous action space.

It was followed by a continuation paper Soft Actor-Critic Algorithms and Applications in Dec
2018.

The general idea is to introduce entropy directly in the value function we want to maximize,
instead of just ad-hoc adding the entropy penalty. Such an approach is an instance of
regularized policy optimization.

31/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic Objective

Until now, our goal was to optimize

Assume the rewards are deterministic and that is on-policy distribution of a policy .

In the soft actor-critic, the authors consider infinite-horizon MDPs and propose to optimize the
maximum entropy objective

Note that the value of is dependent on the magnitude of returns and that for a fixed policy,

the entropy penalty can be “hidden” in the reward.

E [G].π 0

μ π π

π ∗ = E [E [r(s, a)]+ αH(π(⋅∣s))]
π

arg max s∼μ π a∼π(s)

= E [r(s, a) − α log π(a∣s)].
π

arg max s∼μ ,a∼π(s)π

α

32/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic Objective

To maximize the regularized objective, we define the following augmented reward:

From now on, we consider soft action-value function corresponding to this augmented reward.

r (s, a)π =def
r(s, a) + E [αH(π(⋅∣s))].s ∼p(s,a)′

′

33/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Policy Evaluation

34/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Policy Evaluation

Our goal is now to derive soft policy iteration, an analogue of policy iteration algorithm.

We start by considering soft policy evaluation. Let a modified Bellman backup operator be

defined as

where the soft (state-)value function is defined as

This modified Bellman backup operator corresponds to the usual one for the augmented
rewards , and therefore the repeated application converges to according to the

original proof.

T π

T q(s, a)π =def
r(s, a) + γE [v(s)],s ∼p(s,a)′

′

v(s)

v(s) = E [q(s, a)]+a∼π αH(π(⋅∣s)) = E [q(s, a) −a∼π α log π(a∣s)].

r (s, a)π T qπ
k q π

35/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Policy Improvement

36/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Policy Improvement

While the soft policy evaluation was a straightforward modification of the original policy
evaluation, the soft policy improvement is quite different.

Assume we have a policy , its action-value function from the soft policy evaluation, and we

want to improve the policy. Furthermore, we should select the improved policy from a family of
parametrized distributions .

We define the improved policy as

where is the partition function (i.e., normalization factor such that the right-hand side is

a distribution), which does not depend on the new policy and thus can be ignored.

π q π

Π

π′

π (⋅∣s)′ =
def

 J ()
∈Ππ̄

arg min π π̄ =
def

 D ((⋅∣s)),
∈Ππ̄

arg min KL π̄
z (s)π

exp (q (s, ⋅))α
1

π

z (s)π

37/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Policy Improvement

We now prove that for any state and action .

We start by noting that , because we can always choose as the improved

policy. Therefore,

which results in

We now finish the proof analogously to the original one:

q (s, a) ≥π′ q (s, a)π s a

J (π) ≤π
′ J (π)π π

E [α log π (a∣s) −a∼π′
′ q (s, a) +π α log z (s)] ≤π E [α log π(a∣s) −a∼π q (s, a) +π α log z (s)],π

E [q (s, a) −a∼π′ π α log π (a∣s)] ≥′ v (s).π

q (s, a)π = r(s, a) + γE [v (s)]s′ π
′

≤ r(s, a) + γE [E [q (s , a) − α log π (a ∣s)]s′ a ∼π′ ′ π
′ ′ ′ ′ ′

…

≤ q (s, a).π′

38/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Policy Iteration

The soft policy iteration algorithm alternates between the soft policy evaluation and soft policy
improvement steps.

The repeated application of these two steps produce better and better policies. In other words,
we get a monotonically increasing sequence of soft action-value functions.

If the soft action-value function is bounded (the paper assumes a bounded reward and a finite
number of actions to bound the entropy), the repeated application converges to some , from

which we get a using the soft policy improvement step.

It remains to show that the is indeed the optimal policy fulfilling .

However, this follows from the fact that at convergence, , and following the

same reasoning as in the proof of the soft policy improvement, we obtain the required

.

q ∗

π ∗

π ∗ q (s, a) ≥π ∗ q (s, a)π

J (π) ≤π ∗ ∗ J (π)π ∗

q (s, a) ≥π ∗ q (s, a)π

39/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Policy Improvement Derivation

The following derivation is not in the original paper, but it is my understanding of how the
softmax of the action-value function arises. For simplicity, we assume finite number of actions,
but the same approach can be generalized to continuous actions.

Assuming we have a policy and its action-value function , we usually improve the policy

using

which results in a greedy improvement with the form of

π q π

ν(⋅∣s) = E [q (s, a)]
ν

arg max a∼ν(⋅∣s) π

= q (s, a)ν(a∣s)
ν

arg max∑
a

π

= q (s, ⋅) ν(⋅∣s),
ν

arg max π
T

ν(s) = arg max q (s, a).a π

40/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Policy Improvement Derivation

Now consider instead the regularized objective

To maximize it for a given , we form a Lagrangian

The derivative with respect to is

Setting it to zero, we get , resulting in .

ν(⋅∣s) = (E [q (s, a)]+ αH(ν(⋅∣s)))
ν

arg max a∼ν(⋅∣s) π

= (E [q (s, a) − α log ν(a∣s)])
ν

arg max a∼ν π

s

L = (ν(a∣s)(q (s, a) −∑
a

π α log ν(a∣s))) − λ(1 − ν(a∣s)).∑
a

ν(a∣s)

 =
∂ν(a∣s)

∂L
q (s, a) −π α log ν(a∣s) − α + λ.

α log ν(a∣s) = q (s, a) +π λ− α ν(a∣s) ∝ e q (s,a)
α
1

π

41/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic Algorithm

42/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic Algorithm

Our soft actor critic will be an off-policy algorithm with continuous action space. The model
consist of two critics and , two target critics and , and a single actor .

The authors state that

with a single critic, all the described experiments still converge;

they adopted the two critics from the TD3 paper;

using two critics “significantly speed up training”.

q θ 1 q θ 2 q

 θ̄1
q

 θ̄2
π φ

43/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic – Critic Training

To train the critic, we use the modified Bellman backup operator, resulting in the loss

where

The target critics are updated using exponential moving averages with momentum .

J (θ) =q i E [(q (s, a) −s∼μ ,a∼π (s)π φ θ i
(r(s, a) + γE [v (s)]))],s ∼p(s,a)′ min

′ 2

v (s) =min E [(q (s, a))−a∼π (s)φ
i

min
 θ̄i

α log π (a∣s)].φ

τ

44/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic – Actor Training

The actor is updated by directly minimizing the KL divergence, resulting in the loss

Given that our critics are differentiable, in order to be able to compute the gradient

, we only need to reprametrize the policy as

Specifically, we sample and let produce an unbounded Gaussian distribution

, or a diagonal one if the actions are vectors, with the sampled action

.

Together, we obtain

J (φ) =π E [α log (π (a, s))−s∼μ ,a∼π (s)π φ φ (q (s, a))].
i

min θ i

∇ q (s, a)φ θ i

a = f (s, ε).φ

ε ∼ N (0, 1) f φ

N(μ(s;φ),σ(s;φ))2

a = μ(s;φ) + εσ(s;φ)

J (φ) =π E [α log (π (f (s, ε), s))−s∼μ ,ε∼N (0,1)π φ φ (q (s, f (s, ε)))].
i

min θ i φ

45/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic – Bounding Actions

In practice, the actions need to be bounded.

The authors propose to apply an invertible squashing function on the unbounded

Gaussian distribution.

Consider that our policy produces an unbounded action . To define a distribution

with , we need to employ the change of variables, resulting in

Therefore, the log-likelihood has quite a simple form

tanh

π(u∣s) (a∣s)π̄

a = tanh(u)

(a∣s) =π̄ π(u∣s)() =
∂u
∂a −1

π(u∣s)() .
∂u

∂ tanh(u) −1

log (a∣s) =π̄ log π(u∣s) − log (1 − tanh (u)).2

46/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic – Automatic Entropy Adjustment

One of the most important hyperparameters is the entropy penalty .

In the second paper, the authors presented an algorithm for automatic adjustment of its value.

Instead of setting the entropy penalty , they propose to specify target entropy value and

then solve a constrained optimization problem

We can then form a Lagrangian with a multiplier

which should be maximized with respect to and minimized with respect to .

α

α H

π =∗ E [r(s, a)] such that E [−
π

arg max s∼μ ,a∼π(s)π s∼μ ,a∼π(s)π
log π(a∣s)] ≥ H.

α

E [r(s, a) +s∼μ ,a∼π(s)π
α(− log π(a∣s) − H)],

π α ≥ 0

47/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic – Automatic Entropy Adjustment

To optimize the Lagrangian, we perform dual gradient descent, where we alternate between
maximization with respect to and minimization with respect to .

While such a procedure is guaranteed to converge only under the convexity assumptions, the
authors report that the dual gradient descent works in practice also with nonlinear function
approximation.

To conclude, the automatic entropy adjustment is performed by introducing a final loss

π α

J(α) = E [−s∼μ ,a∼π(s)π
α log π(a∣s) − αH].

48/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic

Algorithm 1 of "Soft Actor-Critic Algorithms and Applications" by Tuomas Haarnoja et al.

49/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic

Table 1 of "Soft Actor-Critic Algorithms and Applications" by Tuomas Haarnoja et al.

50/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic

Figure 1 of "Soft Actor-Critic Algorithms and Applications" by Tuomas Haarnoja et al.

51/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

Soft Actor Critic

Figure 3 of "Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor" by Tuomas Haarnoja et al.

52/52NPFL139, Lecture 8 ContinuousActionSpace DPG DDPG MuJoCo TD3 SAC SPE SPI SAC Algorithm

