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Instead of predicting expected returns, we could train the method to directly predict the policy
m(als; 0).

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution 7 instead of just e-greedy sampling.

However, to train the network, we maximize the expected return v, () and to that account we
need to compute its gradient Vgu,(s).
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In addition to discarding e-greedy action selection, policy gradient methods allow producing

policies which are by nature stochastic, as in card games with imperfect information, while the
action-value methods have no natural way of finding stochastic policies (distributional RL might

be of some use though).

In the example, the
reward is -1 per step,
and we assume the
three states appear
identical under the
function approximation.
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Let m(a|s; @) be a parametrized policy. We denote the initial state distribution as h(s) and the

def

on-policy distribution under 7 as u(s). Let also J(0) = E; v (s).
Then

Vv (s) ZP(S —...— 8| Zqﬂ(S’,CI,)VgTF(CL’S,; 0)
s'eS acA

and

VoJ(0) x Z,u(s) Zqﬂ(s, a)Vegm(als;0),

s€S acA

where P(s — ... — §'|m) is the probability of getting to state s’ when starting from state s,
after any number of 0, 1, .. steps. The v parameter should be treated as a form of termination,
e, P(s— ... = &|m) oc Y ooy v"P(s — ' in k steps |7).
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Vor(s) = V| Y w(als; 0)a(s, )

= _qw(s, a)V(als;0) + m(a|s; @) Ve, (s, a)}

a L

- :%(S, a)Vr(als; 0) + w(als; 0)V( ZS, rp(s’, r|s,a)(r + 7UW(3,)))]

Y

— —qﬁ(s, a)Vr(als; 0) + vyr(als; 0) ( ZS/ p(s']s, a)VvW(SI))]

a L

)

We now expand v, (s').
=3 [ax(s,0)Vr(als; 8) + y(als; 0) (D p(s']s, ) (
> a0y Vn(al)s0) + (@5 0) (Y p(s"[s', @) Vea(s) | ))]
Continuing to expand all v, (s"), we obtain the following:

V(s ZZ’ykP s — & in k steps |m) qu s',a)Vem(als'; 0).

s'eS k=0 acA
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Proof of Policy Gradient Theorem

To finish the proof of the first part, recall that

Zq/kP(s — s in k steps |7) o< P(s — ... — §'|m).
k=0

For the second part, we know that

VoJ(0) = By Vour(s) x Egon Y P(s— ... = 8'|m) > g:(s',a)Vor(als'; ),
s'eS acA

therefore using the fact that p(s') = E, ., P(s — ... — §'|m) we get

Vo J(0) x Z,u,(s) Zqﬂ(s, a)Vem(als;8).

s€S acA
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The REINFORCE Algorithm
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The REINFORCE algorithm (Williams, 1992) directly uses the policy gradient theorem,

minimizing —J (@) = —E,_,v.(s). The loss gradient is then

Vo — J(0) x — Z,u(s) Zqﬁ(s,a)ng(ab; 0) = —E;., Zqﬂ(s,a)er(a\s; 0).

s€S acA acA

However, the sum over all actions is problematic. Instead, we rewrite it to an expectation which
we can estimate by sampling:

Vo — J(0) x Es ) Eorgr(s,a)Ve — Inm(als; 6),

where we used the fact that

1
m(als; 0)

Volnm(als;0) = Vom(als; 8).
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The REINFORCE Algorithm Uzt

REINFORCE therefore minimizes the loss —J(0) with gradient
EswyEoorgr(s,a)Ve —Inm(als; 0),

where we estimate the ¢, (s, a) by a single sample.

Note that the loss is just a weighted variant of negative log-likelihood (NLL), where the
sampled actions play a role of gold labels and are weighted according to their return.

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for T,

Input: a differentiable policy parameterization m(al|s, 0)
Algorithm parameter: step size a > 0
Initialize policy parameter 8 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1, Ar_1, R, following 7(:|-, )
Loop for each step of the episode t =0,1,...,T — 1:
G Y1 VI Ry (G)
00+ oaGVinrm(AS:,0)

Modified from Algorithm 13.3 of "Reinforcement Learning: An Introduction, Second Edition" by removing y"t from the update of 6.
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The REINFORCE Algorithm Example Performance Ukt
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Figure 13.1 of "Reinforcement Learning: An Introduction, Second Edition".
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In the proof, we assumed y is used as a form of termination in the definition of the on-policy
distribution.

However, even when discounting is used during training (to guarantee convergence even for very
long episodes), evaluation is often performed without discounting.
Consequently, the distribution p used in the REINFORCE algorithm is almost always the

unterminated (undiscounted) on-policy distribution (I am not aware of any implementation or
paper that would use the discounted one), so that we learn even in states that are far from the
beginning of an episode.

Note that this is actually true even for DQN and its variants. Therefore, the discounting
parameter 7y is used mostly as a variance-reduction technique.
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REINFORCE with Baseline
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The returns can be arbitrary: better-than-average and worse-than-average returns cannot be
recognized from the absolute value of the return.

Hopefully, we can generalize the policy gradient theorem using a baseline b(s) to

VeJ(0) x Z,u Z (g-(s,a) — b(s))Vem(als; 6).

s€S acA

The baseline b(s) can be a function or even a random variable, as long as it does not depend
on a, because

Zb (s)Ver(a|s; 8) = b(s va (als;0) = b(s)Ve Y m(als;0) = b(s)Vel = 0.

Baseline
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A good choice for b(s) is v (s), which can be shown to minimize the variance of the gradient
estimate (in the limit v — 1; see L. Weaver and N. Tao, The Optimal Reward Baseline for

Gradient-Based Reinforcement Learning,_https://arxiv.org/abs/1301.2315, for the proof). Such
baseline reminds centering of returns, given that

Vr(8) = Egorgr (s, a).

Then, better-than-average returns are positive and worse-than-average returns are negative.

The resulting ¢, (s, a) — v;(s) function is also called the advantage function

CI,W(S, CL) = QW(Sa CL) — UW(S)'

Of course, the v, (s) baseline can be only approximated. If neural networks are used to estimate
m(als; @), then some part of the network is usually shared between the policy and value
function estimation, which is trained using mean square error of the predicted and observed
return.
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https://arxiv.org/abs/1301.2315

REINFORCE with Baseline Uz

In REINFORCE with baseline, we train:

1. the policy network using the REINFORCE algorithm, and
2. the value network by minimizing the mean squared value error V .

REINFORCE with Baseline (episodic), for estimating mg ~ T,

Input: a differentiable policy parameterization 7w(als, )
Input: a differentiable state-value function parameterization 0(s,w)
Algorithm parameters: step sizes a® > 0, a™ > 0

Initialize policy parameter 0 € R4 and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1, Ar_1, R, following 7(-|-, 0)
Loop for each step of the episode t =0,1,...,T — 1:
G Zfzt—i—l IRy, (G?)
d + G — 0(S¢,w)
W W+ aV OV (S,w)
9<—0—|— 0405V1H7T(At‘st,0)

Modified from Algorithm 13.4 of "Reinforcement Learning: An Introduction, Second Edition" by removing y”t from the update of .
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REINFORCE with Baseline Example Performance UL

16

20l optimal
stochastic

policy

-40
£-greedy right
J(0) = vry (S)

.60 -

=3 G
801 { e-greedy left

-100 [y | | | | |

0 0.1 0.2 0:3 of4 Oj5 0:6 0?7 08 0.9 1
probability of right action

Example 13.1 of "Reinforcement Learning: An Introduction, Second Edition".

10~ ’U*(So) 10 REINFORCE with baseline of=27"° % =27 ( )
******************************** AN Y TR b AN - g g M v il kil < V. (So
R e iy -
200 a=21 “‘mwm X 20}
a=2"1
REINFORCE
1 _ o—13
GO 40+ a=2"1" GO 40l a=2
Total reward , Total reward
on episode A on episode
averaged over 100 runs 60 averaged over 100 runs 60 |
60 |l .60 -
il
Il
-80 - ‘ -80
-90 L 1 L 1 1 1 | -90 L 1 1 1 1 1 ]
1 200 400 600 800 1000 1 200 400 600 800 1000
Episode Episode
Figure 13.1 of "Reinforcement Learning: An Introduction, Second Edition". Figure 13.2 of "Reinforcement Learning: An Introduction, Second Edition".
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Operator View of REINFORCE
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In the middle of 2020, Dibya Ghosh et al. introduced the operator view of policy gradient

methods in their paper An operator view of policy gradient methods,
https://arxiv.org/abs/2006.11266.

Trajectory Formulation
Let 7 = (Sp, Ao, S1, A1, . . .) be a specific trajectory with return G(7) = > 2 ¥* Ry 1(7).
The probability of 7 under a policy m is w(7) = h(Sy) [ I, 7(A;|S:)p(Si+1|5:, Ai).

Our goal is then to find

0" = argmaxE. ., |G(1)] = arg max/w(T)G(T) dr,
(7] 0 -

and the REINFORCE algorithm at each step sets the weights @;,1 to

]
0 + allrr, [G(T) 9log o(7) ‘0:0 ] = 0; + « / 7o, (T)G(T) Olog mo(7) dr.

00 00 0—0,

OP-REINFORCE 19/46

T


https://arxiv.org/abs/2006.11266

In the operator view, policy improvement is achieved by a successive application of a policy
improvement operator Z and a projection operator P. For tabular methods, the projection

operator is identity, but it is needed for functional approximation methods.
The operator version of REINFORCE is then the iterative application of P o Z with

def

(Zm)(7) oc G(7)m(7),

Pv = arg min D, (I/Hﬂ'g).
0

As formulated, the operator version of REINFORCE computes the projection perfectly in each
step, while the REINFORCE performs just one step of gradient descent in the direction of P.

However, it is easy to show that the fixed points of both algorithms are the same.
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The proposition is actually not difficult to prove, we just need to expand the definitions.

Denoting v the distribution over trajectories such that v(7) o< G(7)7(7), we get

Dxr, (v||mg) = /1/(7') log 7:9((:_)) dr.

Therefore, the gradient is

aDKL@(gHW) _ _/I/(T)VB log g (7) AT o —/W@(T)G(T)Ve log () dr.

T T

: : 0D x
For optimal policy g+, we therefore get K%(gj‘ﬁe ) o — | me- (T)G(7) Vg log me- (1) dr,
but the latter is zero because of the optimality of g+ according to the policy gradient theorem;
therefore, g+ is also the fixed point of P o L.
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on-policy distribution L,; however, the policy improvement operator needs to return not

We can formulate the operator view also employing the action-value function g and the @
just a policy, but a joint distribution over the states and actions.

The REINFORCE algorithm can be seen as performing one gradient step to minimize the
composition P o Z, where

def

(Zm)(s,a) X pr(8)qx(s,a)m(als),

Py = argemin Esmu(s) [DKL (1/(|8)H7T9(|8))}

OP-REINFORCE 22/46



State-Action Formulation of OP-REINFORCE et

For completeness, we can explicitly express the joint distribution (Z7)(s, a) as a product
of (Zm)(s) - (Zm)(als), where

® the distribution over the states is

w  pr(S)vr(s)  _ pa(s)vr(s)
L) = S ()0n(5) ~ By [vn(5)]

® the conditional distribution over the actions is

Nl (s a)als) _ g(s,a)m(als) _ gx(s,a)m(als)
(Frtals D w W(s,a)w(a[s)  Egn(s)lar(s,a’)] on(s)
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Higher Powers of the Returns

Instead of v(7) o< G(7)m(7), we now for k > 1 consider

However, it is not obvious if g+

Projection with KL

T T
0 20 40

Iteration

def

(Ikﬂ') (1) G(T)kﬂ'(’r).

is still a fixed point of P o Z¥. In fact, it is not:

Projection with D, Projection with KL (Annealing)

0.3 0.3 4
- ] = Q
L] = 2
0.2 0.2 =0
- ] = Q3
-— ] = Q4
0.1 0.1 . _
e 7 =QY% (annealing)
1 1 1 1 1 1
0 20 40 0 20 40
Iteration Iteration

Figure 1: Evaluation of polynomial reward improvement operators I‘l/ “ paired with different

projection steps in the four-room domain. The operator I‘l/ “ generally speeds up learning, but if
paired with the KL projection (left), it can converge to a sub-optimal policy. If the improvement
operator is paired with an a-divergence (middle) or the value of « is annealed to 1 (right), learning is
fast and converges to the optimal policy. Figure best seen in color.

NPFL139, Lecture 7 Policy Gradient Methods

Figure 1 of "An operator view of policy gradient methods", https://arxiv.org/abs/2006.11266

OP-REINFORCE Actor-Critic Methods A3C
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Let reformulate the ZF to Za for < 1:

(Z=m)(7)

def

x G(1)=m (7).

Q

We then define a projection operator P¢ using a-divergence (also known as Rényi divergence
proj P g g y g

of order «) instead of the KL divergence:

P v

D*(p||q)

def

def

arg min D*(v||mg),

0
1

1l -«

log E,p | (p(2)/q(2))* ]

For a = 1, D is not defined, but its limit in o — 1 is Dkr,.

Proposition 8 of the OP-REINFORCE paper proves that for a € (0, 1), g+ is the fixed point

of P¢ oTs.

OP-REINFORCE
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Higher Powers of the Returns

Projection with KL Projection with Dy Projection with KL (Annealing)
0.3 0.3 4 0.3
L] = 2
£ 02- 0.2+ 0.2+ r=0
3 o ] = 03
&
amme = 4
0.1 0.1 0.1 Q _
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Figure 1: Evaluation of polynomial reward improvement operators le/ “ paired with different

projection steps in the four-room domain. The operator Z‘l/ “ generally speeds up learning, but if
paired with the KL projection (left), it can converge to a sub-optimal policy. If the improvement
operator is paired with an a-divergence (middle) or the value of «v is annealed to 1 (right), learning is

fast and converges to the optimal policy. Figure best seen in color.
Figure 1 of "An operator view of policy gradient methods", https://arxiv.org/abs/2006.11266

Note that Z® in the limit o« — 0 assigns probability of 1 to the greedy action, so it becomes

the greedy policy improvement operator.
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Actor-Critic Methods
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It is possible to combine the policy gradient methods and temporal difference methods, creating
a family of algorithms usually called the actor-critic methods.

The idea is straightforward — similarly to the REINFORCE with baseline, we train the policy
network together with the value network. However, instead of estimating the episode return
using the whole episode rewards, we use n-step return TD estimate in both the policy gradient

and the mean squared value error V E.
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Actor-Critic Methods Uz

One-step Actor—Critic (episodic), for estimating g ~ .,

Input: a differentiable policy parameterization 7(al|s, @)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a? > 0, a% > 0
Initialize policy parameter 8 € RY and state-value weights w € RY (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

Loop while S is not terminal (for each time step):

A ~m(:|5,0)
Take action A, observe S/, R
d « R+ ~v0(S",w) — 0(S,w) (if S is terminal, then 0(S’,w) = 0)

W w4+ aVoVo(S,w)
0+ 60+ a5Vinn(4]S,0)
S5

Modified from Algorithm 13.5 of "Reinforcement Learning: An Introduction, Second Edition" by removing I.
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Asynchronous Advantage Actor-Critic (A3C)
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The A3C was introduced in a 2016 paper from Volodymyr Mnih et al. (the same group as
DQN) Asynchronous Methods for Deep Reinforcement Learning,
https://arxiv.org/abs/1602.01783.

The authors propose an asynchronous framework, where multiple workers share one neural
network, each training using either an off-line or on-line RL algorithm.

They compare 1-step Q-learning, 1-step Sarsa, n-step Q-learning and A3C (an asynchronous
advantage actor-critic method). For A3C, they compare a version with and without LSTM.
The authors also introduce entropy regularization term —BH (7 (s; @)) to the loss to support
exploration and discourage premature convergence (they use 8 = 0.01).

® The entropy regularization has since become the standard way of encouraging exploration
with a policy network.

The entropy regularization keeps a controllable level of surprise (i.e., exploration) in the
distribution. Compared to e-greedy approach, the exploration actions are sampled

proportionally to their expected utility, not randomly.
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Asynchronous Methods for Deep RL

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.

// Assume global shared 0, 0, and counter T' = 0.

Initialize thread step counter ¢ <— 0

Initialize target network weights 6~ <+ 6

Initialize network gradients df < 0

Get initial state s

repeat
Take action a with e-greedy policy based on Q(s, a; 0)
Receive new state s’ and reward r

[ for terminal s’
Y71 r+ymax, Q(s',a’;07) for non-terminal s’
. 2
Accumulate gradients wrt 0: df < db + 8(?’_@52’“’9))
/
s=s

T+ T+ 1landt <+ t+1

if ' mod Itarget == (0 then
Update the target network 6~ < 6

end if

ift mod Iasyncupdate == 0 or s is terminal then
Perform asynchronous update of 6 using d#.
Clear gradients df < O.

end if

until 7" > Th oz

Algorithm 1 of "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL

Algorithm S2 Asynchronous n-step Q-learning - pseudocode for each actor-learner thread.

// Assume global shared parameter vector 6.

// Assume global shared target parameter vector 0.
// Assume global shared counter T' = (.

Initialize thread step counter ¢ < 1

Initialize target network parameters 6~ <— 6
Initialize thread-specific parameters 6’ = 6
Initialize network gradients df <— 0

repeat

Clear gradients df < 0
Synchronize thread-specific parameters 8’ = 6

tstart =1
Get state s
repeat

Take action a; according to the e-greedy policy based on Q(s¢, a;0")
Receive reward r; and new state sy 1

t+—t+1
T+T+1
until terminal s; or t — tstart == tmax
R 0 for terminal s,
| max, Q(st,a;07) for non-terminal s

fori e {t—1,... ,tstart} do

R+ ri+vR

Accumulate gradients wrt 6’: df < df +

end for

3(R—Q(Siyai;9/))2
06’

Perform asynchronous update of 6 using df.
if ' mod Itarget == 0 then

0~ + 0
end if
until 7" > Th 00

NPFL139, Lecture 7 Policy Gradient Methods

Algorithm S2 of "Asynchronous Methods for Deep Reinforcement Learning" by Volodymyr Mnih et al.
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Asynchronous Methods for Deep RL Uz

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 0 and 0., and global shared counter T' = 0
// Assume thread-specific parameter vectors 0" and 0,
Initialize thread step counter ¢ <— 1
repeat
Reset gradients: df < 0 and df, < 0.
Synchronize thread-specific parameters 8’ = 6 and 0, = 0,

tstart =1
Get state s
repeat

Perform a: according to policy 7(a¢|s:; 6")
Receive reward r; and new state s¢41

t+—t+1
T+T+1
until terminal s; or t — tstart == tmax
n— { 0 for terminal s;
1 V(st,0,) for non-terminal s.// Bootstrap from last state
for i € {t — 1, . ,tstart} do
R+ r;+vR

Accumulate gradients wrt 0": df < df + Vg logm(a;|si;0") (R — V(s4;0,))
Accumulate gradients wrt 0;,: df,, < df, + 0 (R — V (si; 9;))2 /00,
end for

Perform asynchronous update of 6 using d6 and of 6, using d@,.
until 7" > T’ 00

Algorithm S3 of "Asynchronous Methods for Deep Reinforcement Learning", https://arxiv.org/abs/1602.01783
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All methods performed updates every 5 actions (fmax = IAsyncUpdate = D), updating the target
network each 40 000 frames.
The Atari inputs were processed as in DQN, using also action repeat 4.

The network architecture is: 16 filters 8 X 8 stride 4, 32 filters 4 X 4 stride 2, followed by a

fully connected layer with 256 units. All hidden layers apply a ReLU nonlinearity. Values and/or
action values were then generated from the (same) last hidden layer.

The LSTM methods utilized a 256-unit LSTM cell after the dense hidden layer.

All experiments used a discount factor of v = 0.99 and used RMSProp with momentum decay
factor of 0.99.
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Asynchronous Methods for Deep RL
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Figure 1. Learning speed comparison for DQN and the new asynchronous algorithms on five Atari 2600 games. DQN was trained on
a single Nvidia K40 GPU while the asynchronous methods were trained using 16 CPU cores. The plots are averaged over 5 runs. In
the case of DQN the runs were for different seeds with fixed hyperparameters. For asynchronous methods we average over the best 5

models from 50 experiments with learning rates sampled from LogUni form(10~*,10™2) and all other hyperparameters fixed.
Figure 1 of "Asynchronous Methods for Deep Reinforcement Learning”, https: //arxiv.org/abs/1602.01783

| Method | Training Time | Mean | Median |
DQN 8 days on GPU 121.9% | 47.5%
Gorila 4 days, 100 machines | 215.2% | 71.3%
D-DQN 8 days on GPU 332.9% | 110.9%
Dueling D-DQN 8 days on GPU 343.8% | 117.1%
Prioritized DQN 8 days on GPU 463.6% | 127.6%
A3C, FF 1 day on CPU 344.1% | 68.2%
A3C, FF 4 days on CPU 496.8% | 116.6%
A3C,LSTM 4 days on CPU 623.0% | 112.6%

Table 1 of "Asynchronous Methods for Deep Reinforcement Learning”,
https: //arxiv.org/abs/1602.01783
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REINFORCE

Baseline

Number of threads

Method 1 2 4 8 16

I-step Q 1.0 | 3.0 | 6.3 | 13.3 | 24.1
I-step SARSA | 1.0 | 2.8 | 59 | 13.1 | 22.1
n-step Q 1.0 | 27 | 59 | 10.7 | 17.2
A3C 1.0 | 2.1 | 3.7 | 69 | 125

Table 2 of "Asynchronous Methods for Deep Reinforcement Learning”,
https://arxiv.org/abs/1602.01783
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An alternative to independent workers is to train in a synchronous and centralized way by

having the workers to only generate episodes. Such approach was described in 2017 as parallel

advantage actor-critic (PAAC) by Clemente et al.,_https://arxiv.org/abs/1705.04862.
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https://arxiv.org/abs/1705.04862

Parallel Advantage Actor Critic %z

Algorithm 1 Parallel advantage actor-critic

1: Initialize timestep counter N = 0 and network weights 6, 6,
2: Instantiate set e of n. environments
3: repeat

4: for t = 1to t,nae do

5: Sample a; from 7 (a|s; 0)

6: Calculate v, from V' (s¢; 6,)

7 parallel for : = 1 to n. do

8: Perform action a; ; in environment e;

9: Observe new state s¢1,; and reward 741 ;
10: end parallel for
11: end for
12- R _ 0 for terminal s;

. tmax+1 V (Styax+1;0)  for non-terminal s¢

13: for t = tmax down to 1 do
14: Rt =7r: + ")/Rt_|_1
15: end for
16: do = — tmm Sore Stimar(Ry; — v,i) Ve —log m(as,i|st,i;0) — BV H (7 (8,3 0))

17: df, = +— tmw z ztmw 0, (Ri.i — V(s1.4:60,))°
18: Update 6 using df and 0, using d9v.

19: N < N 4+ ne - tmax

20: until N > Npaq

Modification of Algorithm 1 of "Efficient Parallel Methods for Deep Reinforcement Learning" by Alfredo V. Clemente et al.
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Game Gorila A3C FF GA3C PAAC archy;ps PAAC archpauyre

Amidar 1189.70 263.9 218 701.8 1348.3
Centipede 8432.30 3755.8 7386 5747.32 7368.1
Beam Rider 3302.9 22707.9 N/A 4062.0 6844.0
Boxing 94.9 59.8 92 99.6 99.8
Breakout 402.2 681.9 N/A 470.1 565.3
Ms. Pacman 3233.50 653.7 1978 2194.7 1976.0
Name This Game 6182.16 10476.1 5643 9743.7 14068.0
Pong 18.3 5.6 18 20.6 20.9
Qbert 10815.6 15148.8  14966.0 16561.7 17249.2
Seaquest 13169.06 2355.4 1706 1754.0 1755.3
Space Invaders 1883.4 15730.5 N/A 1077.3 1427.8
Up n Down 12561.58 74705.7 8623 88105.3 100523.3
Training 4d CPU cluster  4d CPU 1d GPU 12h GPU 15h GPU

The authors use 8 workers, ne = 32 parallel environments, 5-step returns, v = 0.99, € = 0.1,
B = 0.01, and a learning rate of & = 0.0007 - n, = 0.0224.

The archy;,s is from A3C: 16 filters 8 X 8 stride 4, 32 filters 4 X 4 stride 2, a dense layer with
256 units. The archpaiure is from DQN: 32 filters 8 X 8 stride 4, 64 filters 4 X 4 stride 2, 64
filters 3 X 3 stride 1 and 512-unit fully connected layer. All nonlinearities are RelU.
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Parallel Advantage Actor Critic
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