
NPFL139, Lecture 6

Distributional RL II

Milan Straka

March 26, 2025

Charles University in Prague 
Faculty of Mathematics and Physics 
Institute of Formal and Applied Linguistics

unless otherwise stated



Distributional RL

2/34NPFL139, Lecture 6 Distributional RL Quantile Regression QR-DQN Implicit Quantile Networks Policy Gradient Methods



Distributional RL

Instead of an expected return , we could estimate the distribution of expected returns 

 – the value distribution.

The authors define the distributional Bellman operator  as:

The authors of the paper prove similar properties of the distributional Bellman operator
compared to the regular Bellman operator, mainly being a contraction under a suitable metric.

For Wasserstein metric , the authors define

and prove that  is a γ-contraction in .

However,  is not a contraction in KL divergence nor in total variation distance.
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T π
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Wasserstein Metric

For two probability distributions  on a metric space with metric , Wasserstein metric

 is defined as

where  is a set of all couplings, each being a joint probability distribution whose

marginals are  and , respectively. A possible intuition is the optimal transport of probability

mass from  to .

For distributions over reals with CDFs , the optimal transport has an analytic solution:

where  and  are quantile functions, i.e., inverse CDFs.

For , the 1-Wasserstein metric correspond to area “between” F

and G, and in that case we can compute it also as 

μ, ν d

W  p

W  (μ, ν)p =def
 (E  d(x, y) ) ,

γ∈Γ(μ,ν)
inf (x,y)∼γ

p 1/p
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μ ν

μ ν
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W  (μ, ν) =p (  ∣F (q) −∫
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Wasserstein Metric

 

Figure 1 of "WATCH: Wasserstein Change Point Detection for High-Dimensional Time Series
Data", https://arxiv.org/abs/2201.07125

 

https://alexhwilliams.info/itsneuronalblog/code/ot/symmetry_1d.png

 

 

https://alexhwilliams.info/itsneuronalblog/code/ot/schematic_1d_revisited.png
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Distributional RL: C51 Refresh

The distribution of returns is modeled as a discrete distribution parametrized by the number of
atoms  and by . Support of the distribution are atoms

The atom probabilities are predicted using a  distribution as

N ∈ N V  ,V  ∈MIN MAX R

{z  i =def
V  +MIN iΔz : 0 ≤ i < N}   for Δz =def

 .
N − 1

V  − V  MAX MIN

softmax

Z  (s, a) =θ z   with probability p  =  .{ i i
 e∑j
f  (s,a;θ)j

ef  (s,a;θ)i

}

6/34NPFL139, Lecture 6 Distributional RL Quantile Regression QR-DQN Implicit Quantile Networks Policy Gradient Methods



Distributional RL: C51 Refresh

 

Figure 1 of "A Distributional Perspective on
Reinforcement Learning" by Marc G. Bellemare et al.

After the Bellman update, the support of the distribution 

 is not the same as the original support. We

therefore project it to the original support by proportionally
mapping each atom of the Bellman update to immediate neighbors
in the original support.

The network is trained to minimize the Kullbeck-Leibler divergence between the current
distribution and the (mapped) distribution of the one-step update

R(s, a) + γZ(s , a )′ ′

Φ(R(s, a) + γZ(s , a ))  

′ ′
i

=def
  1 −    p  (s , a ).

j=1

∑
N
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 [r + γz  ]  − z   j V  MIN

V  MAX
i

0

1

j
′ ′

D  (Φ(R+KL γZ  (s ,  EZ  (s , a )))  Z  (s, a)).θ̄
′
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Distributional RL: C51 Refresh

 

Algorithm 1 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

Beware that there is
a small bug in the
original algorithm
(on the left, taken
from the paper),
improperly handling
one special case. 

Note that by minimizing the  instead of the Wasserstein metric , the algorithm has no

guarantee of convergence of any kind. However, the authors did not know how to minimize it.

D  KL W  p
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Quantile Regression
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Distributional RL with Quantile Regression

Although the authors of C51 proved that the distributional Bellman operator is a contraction
with respect to Wasserstein metric , they were not able to actually minimize it during

training; instead, they minimize the KL divergence between the current value distribution and
one-step estimate.

 

Figure 1 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044

W  p

10/34NPFL139, Lecture 6 Distributional RL Quantile Regression QR-DQN Implicit Quantile Networks Policy Gradient Methods



Distributional RL with Quantile Regression

 

Modified Figure 2 of "Distributional Reinforcement Learning with
Quantile Regression", https://arxiv.org/abs/1710.10044

The same authors later proposed a different approach, which actually manages to minimize the
1-Wasserstein distance.

In contrast to C51, where  is represented using a discrete distribution on a fixed “comb”

support of uniformly spaces locations, we now represent it as a quantile distribution – as
quantiles  for a fixed probabilities  with .

Formally, we can define the quantile distribution as a
uniform combination of  Diracs:

so that the cumulative density function is a step function
increasing by  on every quantile .

Z(s, a)

θ  (s, a)i τ  , … , τ  1 N τ  =i  

N
i

N

Z  (s, a)θ =
def

  δ  ,
N

1

i=1

∑
N

θ  (s,a)i

 N
1 θ  i

11/34NPFL139, Lecture 6 Distributional RL Quantile Regression QR-DQN Implicit Quantile Networks Policy Gradient Methods



Distributional RL with Quantile Regression

The quantile distribution offers several advantages:

a fixed support is no longer required;

the projection step  is not longer needed;

this parametrization enables direct minimization of the Wasserstein loss.

Φ
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Distributional RL with Quantile Regression

Recall that 1-Wasserstein distance between two distributions  can be computed as

where ,  are their cumulative density functions.

For arbitrary distribution , the we denote the most accurate quantile distribution as

In this case, the 1-Wasserstein distance can be written as

μ, ν

W  (μ, ν) =1   F  (q) −∫
0

1

μ
−1 F  (q)  dq,ν

−1

F  μ F  ν

Z

Π  ZW  1 =def
 W  (Z,Z  ).

Z  θ

arg min 1 θ

W  (Z,Z  ) =1 θ    F  (q) −
i=1

∑
N

∫
τ  i−1

τ  i

Z
−1 θ   dq.i
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Distributional RL with Quantile Regression

 

Modified Figure 2 of "Distributional Reinforcement Learning with Quantile Regression",
https://arxiv.org/abs/1710.10044

It can be proven that for continuous ,  is minimized by (for proof, see Lemma 2

of Dabney et al.: Distributional Reinforcement Learning with Quantile Regression, or consider
how the 1-Wasserstein distance changes in the range  when you move ):

We denote the quantile midpoints as

In the paper, the authors prove that the
composition  is γ-contraction in , so

repeated application of  converges to a

unique fixed point.

F  Z
−1 W  (Z,Z )1 θ

[τ  , τ  ]i−1 i θ  i

{θ  ∈i R  F  (θ  ) =Z i  }.
2

τ  + τ  i−1 i

 τ̂i =def
 .

2
τ  + τ  i−1 i

Π  TW  1
π

 W̄∞

Π  TW  1
π
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Quantile Regression

Our goal is now to show that it is possible to estimate a quantile  by minimizing a

loss suitable for SGD.

Assume we have samples from a distribution .

Minimizing the MSE of  and the samples of ,

yields the mean of the distribution, .

To show that this holds, we compute the derivative of the loss with respect to  and set it

to 0, arriving at

τ ∈ [0, 1]

P

x̂ P

=x~ arg min  E  [(x−x̂ x∼P ) ],x̂ 2

=x~ E  [x]x∼P

x̂

0 = E  [2( −x x̂ x)] = 2E  [ ] −x x̂ 2E  [x] =x 2( −x̂ E  [x]).x
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Quantile Regression

Assume we have samples from a distribution  with cumulative density function .

Minimizing the mean absolute error (MAE) of  and the samples of ,

yields the median of the distribution, .

We prove this again by computing the derivative with respect to , assuming the functions

are nice enough that the Leibnitz integral rule can be used:

P F  P

x̂ P

=x~ arg min  E  [∣x−x̂ x∼P ∣],x̂

=x~ F  (0.5)P
−1

x̂

  P (x)∣x−
∂x̂
∂

∫
−∞

∞

∣ dx =x̂  [  P (x)( −
∂x̂
∂

∫
−∞

x̂

x̂ x) dx+  P (x)(x−∫
x̂

∞

) dx]x̂

=  P (x) dx−∫
−∞

x̂

 P (x) dx∫
x̂

∞

= 2  P (x) dx−∫
−∞

x̂

1 = 2F  ( ) −P x̂ 1 = 2(F  ( ) −P x̂  ).2
1
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Leibniz integral rule

The Leibniz integral rule for differentiation under the integral sign states that for 

,

Sufficient condition for the Leibnitz integral rule to hold is that the  and its partial

derivative  are continuous in both  and , and  and  are continuous and

have continuous derivatives.

If any of the bounds is improper, additional conditions must hold, notably that the integral of
the partial derivatives of  must converge.

−∞ <
a(x), b(x) < ∞

 [  f(x, t) dt] =
∂x
∂

∫
a(x)

b(x)

=   f(x, t) dt+∫
a(x)

b(x)

∂x
∂

(  b(x))f(x, b(x))−
∂x
∂

(  a(x))f(x, a(x)).
∂x
∂

f(x, y)
 f(x, y)∂x

∂ x t a(x) b(x)

f
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Quantile Regression

Assume we have samples from a distribution  with cumulative density function .

By generalizing the previous result, we can show that for a quantile , if

then . Let .

This loss penalizes overestimation errors with weight , underestimation errors with .

P F  P

τ ∈ [0, 1]

=x~ arg min  E  [(x−x̂ x∼P )(τ −x̂ [x ≤ ])],x̂

=x~ F  (τ)P
−1 ρ  (x−τ )x̂ =def (x− )(τ −x̂ [x ≤ ]) =x̂ ∣x− ∣ ⋅x̂ ∣τ − [x ≤ ]∣x̂

1 − τ τ

  P (x)(x−
∂x̂
∂

∫
−∞

∞

)(τ −x̂ [x ≤ ]) dx =x̂

=  [(τ −
∂x̂
∂

1)  P (x)(x−∫
−∞

x̂

) dx+x̂ τ  P (x)(x−∫
x̂

∞

) dx]x̂

= (1 − τ)  P (x) dx−∫
−∞

x̂

τ  P (x) dx =∫
x̂

∞

 P (x) dx−∫
−∞

x̂

τ = F  ( ) −P x̂ τ .
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Quantile Regression

Using the quantile regression, when we have a value distribution , we can find the most

accurate quantile distribution by minimizing

However, the quantile loss is not smooth around zero, which could limit performance when
training a model. The authors therefore propose the quantile Huber loss, which acts as an
asymmetric squared loss in interval  and fall backs to the standard quantile loss outside

this range.

Specifically, let

Z

 E  [ρ  (z −
i=1

∑
N

z∼Z  τ̂i θ  )].i

[−κ,κ]

ρ  (z −τ
κ θ) =def

  {
 τ − [z ≤ θ]  ⋅  (z − θ)2

1 2

 τ − [z ≤ θ]  ⋅ κ(∣z − θ∣ −  κ)2
1

  if  ∣z − θ∣ ≤ κ,
  otherwise.
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Distributional RL with Quantile Regression

To conclude, in DR-DQN- , the network for a given state predicts , so  quantiles for

every action.

The following loss is used:

 

Modification of Algorithm 1 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044

The  is just .

κ R∣A∣×N N

q  j  

N
1
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Distributional RL with Quantile Regression

 

Figure 3 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044

Each state transition has probability of 0.1 of moving in a random direction.
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Distributional RL with Quantile Regression

 

Table 1 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044

 

Figure 4 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044

 

Hyperparameter Value

learning rate 0.00005

quantiles N 200
 chosen from 

on 5 training games.

N (10, 50, 100, 200)
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Implicit Quantile Regression
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Implicit Quantile Networks for Distributional RL

 

Figure 1 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

In IQN (implicit quantile regression), the authors (again the same team as in C51 and DR-
DQN) generalize the value distribution representation to predict any given quantile .

The  is a

convolutional stack from
DQN, composed of

CNN , stride 4,

32 filters, ReLU;
CNN , stride 2,

64 filters, ReLU;
CNN , stride 1,

64 filters, ReLU.

The  is an MLP:

fully connected layer
with 512 units, ReLU;
output layer, 1 unit.

τ

ψ(s)

8 × 8

4 × 4

3 × 3

f
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Implicit Quantile Networks for Distributional RL

The quantile  of the value distribution, , is modeled as

Other ways than multiplicative combinations were tried (concatenation, or residual
computation ), but the multiplicative form delivered the best results.

The quantile  is represented using trainable cosine embeddings with dimension :

The target policy is greedy with respect to action-value approximation computed using 

samples :

As in DQN, the exploration is still performed by using the -greedy policy.

τ Z  (s, a)τ

Z  (s, a) ≈τ f(ψ(s) ⊙ φ(τ))  .
a

ψ(s) ⊙ (1 + φ(τ))

τ n = 64

φ  (τ)j =def ReLU(  cos(πiτ)w  +∑
i=0

n−1
i,j b  ).j

K

 ∼τ~k U [0, 1]

π(x) =
def

   Z  (x, a).
a

arg max
K

1

k=1

∑
K

 τ~k

ε
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Implicit Quantile Networks for Distributional RL

The overall loss is:

 

Algorithm 1 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

Note the different roles of  and .N N ′
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Implicit Quantile Networks for Distributional RL

 

Figure 2 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

The authors speculate that:

large  may increase

sample complexity (faster
learning because we have
more loss terms),
larger  could reduce

variance (like a minibatch
size).

N

N ′
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Implicit Quantile Networks for Distributional RL

 

Figure 4 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

 

Table 1 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

 

Table 2 of "Implicit Quantile Networks for Distributional
Reinforcement Learning", https://arxiv.org/abs/1806.06923
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Implicit Quantile Networks for Distributional RL

The ablation experiments of the quantile representation. A full grid search with two seeds for
every configuration was performed, with the black dots corresponding to the hyperparameters of
IQN; six Atari games took part in the evaluation.

 

Figure 5 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

the gray horizontal line is the QR-DQN baseline;
“learn” is a learnt MLP embedding with a single hidden layer of size ;

“concat” combines the state and quantile representations by concatenation, not .

n

⊙
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TrackMania using Implicit Quantile Networks

 

https://www.youtube.com/watch?v=cUojVsCJ51I&t=1342s
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Policy Gradient Methods
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Policy Gradient Methods

Instead of predicting expected returns, we could train the method to directly predict the policy

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution  instead of just -greedy sampling.

However, to train the network, we maximize the expected return  and to that account we

need to compute its gradient .

π(a∣s; θ).

π ε

v  (s)π

∇  v  (s)θ π
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Policy Gradient Methods

 

Example 13.1 of "Reinforcement Learning: An Introduction, Second Edition".

In addition to discarding -greedy action selection, policy gradient methods allow producing

policies which are by nature stochastic, as in card games with imperfect information, while the
action-value methods have no natural way of finding stochastic policies (distributional RL might
be of some use though).

In the example, the
reward is -1 per step,
and we assume the
three states appear
identical under the
function approximation.

ε
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Policy Gradient Theorem

Let  be a parametrized policy. We denote the initial state distribution as  and the

on-policy distribution under  as . Let also .

Then

and

where  is the probability of getting to state  when starting from state ,

after any number of 0, 1, … steps. The  parameter should be treated as a form of termination,

i.e., .

π(a∣s; θ) h(s)
π μ(s) J(θ) =def E  v  (s)s∼h π

∇  v  (s) ∝θ π  P (s →
s ∈S′

∑ … → s ∣π)  q  (s , a)∇  π(a∣s ; θ)′

a∈A

∑ π
′

θ
′

∇  J(θ) ∝θ  μ(s)  q  (s, a)∇  π(a∣s; θ),
s∈S

∑
a∈A

∑ π θ

P (s → … → s ∣π)′ s′ s

γ

P (s → … → s ∣π) ∝′
 γ P (s →∑k=0

∞ k s  in k steps ∣π)′
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