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Distributional RL
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Instead of an expected return (s, a), we could estimate the distribution of expected returns

Z(s,a) — the value distribution.

The authors define the distributional Bellman operator 7™ as:
T"Z(s,a) = R(s,a) +~vZ(S',A") for §' ~p(s,a),A ~ n(S").

The authors of the paper prove similar properties of the distributional Bellman operator
compared to the regular Bellman operator, mainly being a contraction under a suitable metric.

® For Wasserstein metric W,,, the authors define
W, (21, Zy) = sup, , Wp(Z1(s,a), Z2(s, a))

and prove that 7" is a y-contraction in V_Vp.
® However, 77 is not a contraction in KL divergence nor in total variation distance.
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For two probability distributions p, v on a metric space with metric d, Wasserstein metric

W, is defined as
1/p
def . b
Wp (:UH V) = inf (E(a:,y)wfyd(mv y) ) )
YEL (1,v)
where I'(u, 1) is a set of all couplings, each being a joint probability distribution whose
marginals are p and v, respectively. A possible intuition is the optimal transport of probability

mass from u to v.

For distributions over reals with CDFs F', GG, the optimal transport has an analytic solution:

1-Wasserstein Distance lllustration

]. ]'/p l'OOA—CDFF
Wy (1, v) = ( / F(q) —G (@)l dq) , | = B
0
where F~1 and G~1 are quantile functions, i.e., inverse CDFs. J

For p = 1, the 1-Wasserstein metric correspond to area “between” F

and G, and in that case we can compute it also as Wy (u, v f |F )’ dx.
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Wasserstein Metric Urzt
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Data", https://arxiv.org/abs/2201.07125
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The distribution of returns is modeled as a discrete distribution parametrized by the number of
atoms IV € N and by Vain, Vmax € R. Support of the distribution are atoms

€ . . . V —V
{z deVM1N+zAz:O§z<N} for Az & MA]?\if_lMIN

The atom probabilities are predicted using a softmax distribution as

Z : efj (s,a;0)

efi(s,a;e)
Zg(s,a) = 1 z; with probability p; = :
J
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Distributional RL: C51 Refresh UL

After the Bellman update, the support of the distribution VPW
R(s,a) +vZ(s',a’) is not the same as the original support. We ;L
therefore project it to the original support by proportionally R+7Pﬂ T Z
mapping each atom of the Bellman update to immediate neighbors
. _ (©)
in the original support. T T
_ 1
N Vmax ..
def |[ +7 ]]VMIN & 1
®(R(s,a) +vZ(s',ad’) :Z 1— pi(s,a).
Az
=1 | 1o

The network is trained to minimize the Kullbeck-Leibler divergence between the current
distribution and the (mapped) distribution of the one-step update

Dxr, (<I> (R+~vZ5(s', arg max EZg(s',a'))) H Z (s, a)) :
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Distributional RL: C51 Refresh Uz

Algorithm 1 Categorical Algorithm Beware that there is
input A transition x¢, as, 7, Ty 1, Y € [0, 1] a small bug in the
Q(41,0) = 3, zipi(Te41,0) original algorithm
a” < argmax, Q(z¢+1,a) (on the left, taken

m; =0, +1€0,...,N—1
forj€0,..., N—1do from thepaper),

# Compute the projection of 7'zj onto the support { z; } improperly handling

Tz < [re + 7 zj]‘v/xfj one special case.

bj — (Tzj — Vi) /ADz #b; € [0,N — 1]
L= b5, u < [b;]
# Distribute probability of 7A'zj
my <= my + pj (41, a")(u — by)
My, < My, +pj (CIZt_H, a*)(bj — l)
end for
output — > . m;logp;(z¢,a:) # Cross-entropy loss

Algorithm 1 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

Note that by minimizing the Dy, instead of the Wasserstein metric W,,, the algorithm has no
guarantee of convergence of any kind. However, the authors did not know how to minimize it.
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Quantile Regression
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Distributional RL with Quantile Regression et

Although the authors of C51 proved that the distributional Bellman operator is a contraction
with respect to Wasserstein metric W,,, they were not able to actually minimize it during

training; instead, they minimize the KL divergence between the current value distribution and
one-step estimate.

Dk (®T™Z||Z)

Nz Nz Az

21 Nz Z9

Figure 1: Projection used by C51 assigns mass inversely
proportional to distance from nearest support. Update mini-

mizes KL between projected target and estimate.
Figure 1 of "Distributional Reinforcement Learning with Quantile Regression”, https://arxiv.org/abs/1710.10044
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The same authors later proposed a different approach, which actually manages to minimize the

1-Wasserstein distance.

In contrast to C51, where Z(s,a) is represented using a discrete distribution on a fixed “comb”

support of uniformly spaces locations, we now represent it as a quantile distribution — as

quantiles 6;(s, a) for a fixed probabilities 71, ..., Ty with 7; =

Formally, we can define the quantile distribution as a
uniform combination of N Diracs:

ZH(S (1, 259 (s,a)

so that the cumulatlve density function is a step function
increasing by on every quantile 6;.

Quantile Regression
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Figure 2: 1-Wasserstein minimizing projection onto N = 4
uniformly weighted Diracs. Shaded regions sum to form the
1-Wasserstein error.
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Distributional RL with Quantile Regression

The quantile distribution offers several advantages:

® 3 fixed support is no longer required;

® the projection step ® is not longer needed;

® this parametrization enables direct minimization of the Wasserstein loss.
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Distributional RL with Quantile Regression

Recall that 1-Wasserstein distance between two distributions p, v can be computed as

l%%ﬂzﬁﬁ?@—ﬂﬂMM,

where F),, F,, are their cumulative density functions.

For arbitrary distribution Z, the we denote the most accurate quantile distribution as

Iy, Z < argmin W1 (Z, Z,).
Zy

In this case, the 1-Wasserstein distance can be written as
N -
Wi(2.2) =Y [ |F;'(@) - 6] da
i=1 Y Ti-1
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It can be proven that for continuous Fz_l, Wi(Z, Zy) is minimized by (for proof, see Lemma 2

of Dabney et al.: Distributional Reinforcement Learning with Quantile Regression, or consider
how the 1-Wasserstein distance changes in the range [7;_1, 7;] when you move 6;):

{973 . ]R|FZ(0Z-) _ 7'7;12—|— T; }

We denote the quantile midpoints as

. aef Ti—1 T T;
T, — 9 .

In the paper, the authors prove that the
composition Iy, 7™ is y-contraction in W, so

repeated application of Iy, 7™ converges to a
unique fixed point.

Quantile Regression
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Our goal is now to show that it is possible to estimate a quantile 7 € [0, 1] by minimizing a
loss suitable for SGD.

Assume we have samples from a distribution P.

® Minimizing the MSE of & and the samples of P,
~ . AN D
Z = argming E, p[(z — £)°|,

yields the mean of the distribution, £ = E,p|z].

To show that this holds, we compute the derivative of the loss with respect to & and set it
to 0, arriving at

0=E;[2(2 — z)] = 2E,[2] — 2E,[z] = 2(& — E,[z]).
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Assume we have samples from a distribution P with cumulative density function Flp.

® Minimizing the mean absolute error (MAE) of Z and the samples of P,

T = argmin; E, p ||z — &,
yields the median of the distribution, & = Fj'(0.5).

We prove this again by computing the derivative with respect to &, assuming the functions
are nice enough that the Leibnitz integral rule can be used:

08@ /OO P(z)|z — & dz — (%Um P(x)(az«—m)dm+/:p(x)(x_@)dw

— 00 — 00

:/_;P(m)dm—/;op(x)dx

:z/x P(z)de — 1= 2Fp(8) — 1= 2(Fp(2) — 1).

— 0

DN

Quantile Regression
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The Leibniz integral rule for differentiation under the integral sign states that for —oco < @

a(z), b(z) < oo,
AL o]

— /j:) (%f(a;,t) dt + (a%b(a:))f(x, b(z)) — ((%a(w))f(w,a(w))-

Sufficient condition for the Leibnitz integral rule to hold is that the f(x,y) and its partial

derivative %f(m, y) are continuous in both x and t, and a(x) and b(x) are continuous and
have continuous derivatives.

If any of the bounds is improper, additional conditions must hold, notably that the integral of
the partial derivatives of f must converge.
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Assume we have samples from a distribution P with cumulative density function Flp.

® By generalizing the previous result, we can show that for a quantile 7 € [0, 1], if

Z = argmin; E, p|(z — 2)(7 — [z < &])],
then & = F5l(1). Let pr(z — 2) = (2 — 2)(7 — [z < &]) = |z — &| - |7 — [z < 3]|.
This loss penalizes overestimation errors with weight 1 — 7, underestimation errors with 7.

889?; /°° P(z)(z —2)(t — [z < 2])dz =

; 3833 [(7—1) /1P(x)(w—£)dw+7Lm P(a;)(w—i;)da;]
:(1—T)/1P(w)dw—7LmP(w)dw:/ZP(w)dx—T:Fp(i)—T.

Quantile Regression
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Using the quantile regression, when we have a value distribution Z, we can find the most

accurate quantile distribution by minimizing
N
ZEsz [pf'i (z - 0’0)} y
i=1

However, the quantile loss is not smooth around zero, which could limit performance when
training a model. The authors therefore propose the quantile Huber loss, which acts as an
asymmetric squared loss in interval [—k, k] and fall backs to the standard quantile loss outside

this range.

Specifically, let

(2—0)2 if |z — 0| <k,

pi(z—0) = °
2 (]z— 0] — k)  otherwise.

19/34
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Distributional RL with Quantile Regression UrzL

To conclude, in DR-DQN-k, the network for a given state predicts RMI*N  so N quantiles for
every action.

The following loss is used:

Algorithm 1 Quantile Regression Q-Learning

Require: N,k
input x,a,r,z’,v €1[0,1)
# Compute distributional Bellman target
Qa',a’) := )", q;0;(a", a’)
a* < argmax,_ Q(z’, a")
TO; <—r+~0(z',a"), Vj
# Compute quantile regression loss (Equation 10)
output S | E; [p2 (T0; — 0;(x,a))]

Modification of Algorithm 1 of "Distributional Reinforcement Learning with Quantile Regression”, https://arxiv.org/abs/1710.10044

The g; is just %
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Distributional RL with Quantile Regression
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Figure 3: (a) Two-room windy gridworld, with wind magnitude shown along bottom row. Policy trajectory shown by blue path,
with additional cycles caused by randomness shown by dashed line. (b, ¢) (Cumulative) Value distribution at start state xg,
estimated by MC, Z7, ., and by QRTD, Zy. (d, e) Value function (distribution) approximation errors for TD(0) and QRTD.

Each state transition has probability of 0.1 of moving in a random direction.
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=4- TD(0)
== QRTD
20‘00 40‘00 60‘00 8000 10000
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Episodes
Figure 3 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044
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Distributional RL with Quantile Regression

160%

140%

120%

Human Normalized Score

20% |

0%

Figure 4: Online evaluation results, in human-normalized scores, over 57 Atari 2600 games for 200 million training samples.
(Left) Testing performance for one seed, showing median over games. (Right) Training performance, averaged over three seeds,
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showing percentiles (10, 20, 30, 40, and 50) over games.

Figure 4 of "Distributional Reinforcement Learning with Quantile Regression”, https://arxiv.org/abs/1710.10044

Mean | Median | >human | >DQN
DQN 228% 79% 24 0
DDQN 307% 118% 33 43
DUEL. 373% 151% 37 50
PRIOR. 434% 124% 39 48
PR. DUEL. | 592% 172% 39 44
c51 701% 178% 40 50
QR-DQN-0 | 881% 199% 38 52
QR-DOQN-1 | 915% 211% 41 54
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100%

80%

60%

40%

20%

0%

-20%

DQN

Prioritized DQN
C51

50%

TIEE

QR-DQN-0

R-DQN-1

30%)

[20%)

10

50

100
Million of Samples

200

Hyperparameter Value
learning rate 0.00005
quantiles N 200

N chosen from (10, 50,100, 200)

on b training games.

Table 1 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044
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Implicit Quantile Regression
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Implicit Quantile Networks for Distributional RL Vet

In IQN (implicit quantile regression), the authors (again the same team as in C51 and DR-
DQN) generalize the value distribution representation to predict any given quantile T.

® The 9(s) is a o
convolutional stack from ’o»o &;
DQN, composed of AN
© CNN 8 x 8, stride 4,

32 filters, RelLU:
© CNN 4 x 4, stride 2,

64 filters, ReLU:
© CNN 3 x 3, stride 1,

64 filters, RelLU.

® The f is an MLP:
O fully connected layer
with 512 units, Rel U; Figure 1. Network architectures for DQN and recent distributional
© output layer, 1 unit. pL algorithms.

Figure 1 of "Implicit Quantile Networks for Distributional Reinforcement Learning”, https://arxiv.org/abs,/1806.06923

NPFL139, Lecture 6 Distributional RL Quantile Regression QR-DQN Implicit Quantile Networks Policy Gradient Methods 24/34

Actions Actions

p Actions
-~
p m
0/&»

AN Y. §:§>

DQN




The quantile 7 of the value distribution, Z. (s, a), is modeled as

Z-(s,a) ~ f(¥(s) @ (1)),

® QOther ways than multiplicative combinations were tried (concatenation, or residual
computation 1¥(s) ® (1 + ¢(7))), but the multiplicative form delivered the best results.

® The quantile 7 is represented using trainable cosine embeddings with dimension n = 64:

n—1

0;(T) = ReLU (ZZ_:O cos(miT)w; ; + bj).

® The target policy is greedy with respect to action-value approximation computed using K
samples 7, ~ U0, 1]:

m(z) = arg max 7- ZZTk z,a)

O As in DQN, the exploration is still performed by using the e-greedy policy.
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Implicit Quantile Networks for Distributional RL Vet

The overall loss is:

Algorithm 1 Implicit Quantile Network Loss

Require: N, N’, K, k and functions 5, Z
input z,a,7,2',v €1[0,1)
# Compute greedy next action
a” < arg max. % Z? Z?'k (xla CL/), Tk ~ 5()
# Sample quantile thresholds
Tz',T]/-Nqu,l]), 1<i<N,1<j<N’
# Compute distributional temporal differences
Oij = 1T+ V47 (' a*) — Z;. (x,a), Vi,j
# Compute Huber quantile loss
output 3, Erv [pf (6;)]

Algorithm 1 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

Note the different roles of N and N,
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Implicit Quantile Networks for Distributional RL Vet

The authors speculate that: < 10 39 100 < | 1010 P
. 80 1350
® large N may increase N 11 40 o | 1067 1200
. = 60
sample complexity (faster o 1w - 1050
. 40
learning because we have 900
— 10 29 20 — 757
more loss terms),
1 8 32 64 1
® larger N’ could reduce N

variance (like a minibatch

size). Figure 2. Effect of varying N and N’, the number of samples used

in the loss function in Equation 3. Figures show human-normalized
agent performance, averaged over six Atari games, averaged over
first 10M frames of training (left) and last 10M frames of training
(right). Corresponding values for baselines: DQN (32, 253) and
QR-DON (144, 1243).

Figure 2 of "Implicit Quantile Networks for Distributional Reinforcement Learning”, https://arxiv.org/abs/1806.06923
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Implicit Quantile Networks for Distributional RL

Mean Median

o 200% |

© 800% |
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ﬁ 600% 1N
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< DQN

g 200% 50% |

2

T

0% 2 ' s ; 0% 4 ' s s
10 50 100 200 10 50 100 200

Training Frames (Million) Training Frames (Million)

Figure 4. Human-normalized mean (left) and median (right) scores on Atari-57 for IQN and various other algorithms. Random seeds

shown as traces, with IQN averaged over 5, QR-DQN over 3, and Rainbow over 2 random seeds.

Figure 4 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

Mean | Median | Human Gap | Seeds
DQN 228% 79% 0.334 1
PRIOR. 434% 124% 0.178 1
C51 701% 178% 0.152 1 Human-starts (median)
RAINBOW | 1189% | 230% 0.144 | 2 DQN PrIOR. A3C C51 RAINBOW  IQN
QR-DQN 864% 193% 0.165 3 68% 128% 116% 125% 153% 162 %
IQN 1019% 218% 0.141 5
Table 2. Median human-normalized scores for human-starts.
Table 1. Mean and median of scores across 57 Atari 2600 games, Table 2 of "Implicit Quantile Networks for Distributional
Reinforcement Learning”, https: //arxiv.org/abs/1806.06923

measured as percentages of human baseline (Nair et al., 2015).

Scores are averages over number of seeds.
Table 1 of "Implicit Quantile Networks for Distributional Reinforcement Learning”, https://arxiv.org/abs/1806.06923
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Implicit Quantile Networks for Distributional RL

The ablation experiments of the quantile representation. A full grid search with two seeds for

every configuration was performed, with the black dots corresponding to the hyperparameters of

IQN; six Atari games took part in the evaluation.

10804000

018
S 17

Human Normalized S
PRRPRRFPRPPE
OCORNWMULIO

Figure 5. Comparison of architectural variants.
Figure 5 of "Implicit Quantile Networks for Distributional Reinforcement Learning”, https://arxiv.org/abs,/1806.06923

Cos

learnt

32

64

relu sigmoid

® the gray horizontal line is the QR-DQN baseline;
® “learn” is a learnt MLP embedding with a single hidden layer of size n;

concat

mult

® “concat” combines the state and quantile representations by concatenation, not ©.
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TrackMania using Implicit Quantile Networks

EO3-Endurance Linesight:

Implicit Quantile Networks for Distributional Reinforcement Learning

Will Dabney "' Georg Ostrovski "' David Silver ' Rémi Munos'

Abstract this, it assumes rewrns are bounded in a known rang;

i i R e b e e T trades off mean-preservation al the cost of overestimating

tributional reinforcement learning to give

ally applicable, flexible, and state-of-th i C51 outperformed all previous improvements to DQN on
. We achieve this by L

variance

e et al., 2013), which we refer to as
rk. Subsequently, several papers
built upon this successful combination to achieve sig
the sample space, this yiclds an implicitly defined cant improvements to the state-of -the-art in Atari-57 (Hessel
return distribution and gives rise (o a large class of etal., 2018; Gruslys et 018). and challenging continu-
risk-sensitive polic ous control tasks (Barth-Maron et al., 2018).
criormance on the 57 Atari 2600 2 ] 2 R
P 5 ko These algorithms are restricted to assigning probabilities to
,and use our algorithm’s implicitly defined ;
4 an a priori fixed, discrete st of possible returns. Dabney
distributions to study the effects ol risk-sensitive =
et al. (2018) propose an altermate pair of choices, parameter-
policics in Atari games.
= izing the distribution uniform mixture of Diracs whose

Algorithm
- IQN

https: //www.youtube.com/watch ?v=cUojVsCJ511&t=1342s

NPFL139, Lecture 6 Distributional RL Quantile Regression QR-DQN Implicit Quantile Networks Policy Gradient Methods 30/34




Policy Gradient Methods
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Instead of predicting expected returns, we could train the method to directly predict the policy
m(als; 9).

Obtaining the full distribution over all actions would also allow us to sample the actions
according to the distribution 7 instead of just e-greedy sampling.

However, to train the network, we maximize the expected return v, () and to that account we
need to compute its gradient Vgu,(s).
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In addition to discarding e-greedy action selection, policy gradient methods allow producing

policies which are by nature stochastic, as in card games with imperfect information, while the
action-value methods have no natural way of finding stochastic policies (distributional RL might

be of some use though).

In the example, the
reward is -1 per step,
and we assume the
three states appear
identical under the
function approximation.

-11.6
-20

7(8) = v,y (S)

-80

-100

optir-nal
stochastic
policy

£-greedy right

S =] G

e-greedy left

0.1 0.2 (£3 (£4 (£5 (£6 (i? 0.8 0.9 1
probability of right action
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Let m(a|s; @) be a parametrized policy. We denote the initial state distribution as h(s) and the

def

on-policy distribution under 7 as u(s). Let also J(0) = E; v (s).
Then

Vovr(s) ZP(S —...— 8| Zqﬂ(S,,CI,)VgTF(CL’S,; 0)
s'eS acA

and

VoJ(0) x Z,u(s) Zqﬂ(s, a)Vem(als;0),

s€S acA

where P(s — ... — §'|m) is the probability of getting to state s’ when starting from state s,
after any number of 0, 1, .. steps. The v parameter should be treated as a form of termination,
e, P(s— ... = §|m) oc Y 0oy v"P(s — s in k steps |7).
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