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Rainbow

There have been many suggested improvements to the DQN architecture. In the end of 2017,
the Rainbow: Combining Improvements in Deep Reinforcement Learning paper combines 6 of
them into a single architecture they call Rainbow.

 

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Double Deep Q-Network
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Rainbow DQN Extensions

Double Deep Q-Network
Similarly to double Q-learning, instead of

we minimize

 

Figure 1 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et
al.

 

Figure 3 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et
al.

r + γ  Q(s , a ; ) −
a′

max ′ ′ θ̄ Q(s, a; θ),

r + γQ(s ,  Q(s , a ; θ); ) −′

a′
arg max ′ ′ θ̄ Q(s, a; θ).
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Rainbow DQN Extensions

Double Q-learning
Performance on episodes taking at most 5 minutes and no-op starts on 49 games:

 

Table 1 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

Performance on episodes taking at most 30 minutes and using 100 human starts on each of the
49 games:

 

Table 2 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

The Double DQN follows the training protocol of DQN; the tuned version increases the target
network update from 10k to 30k steps, decreases exploration during training from  to 

, and uses a shared bias for all action values in the output layer of the network.

ε = 0.1
ε = 0.01
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Prioritized Replay
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Rainbow DQN Extensions

Prioritized Replay
Instead of sampling the transitions uniformly from the replay buffer, we instead prefer those
with a large TD error. Therefore, we sample transitions according to their probability

where  controls the shape of the distribution (which is uniform for  and corresponds to

TD error for ).

New transitions are inserted into the replay buffer with maximum probability to support
exploration of all encountered transitions.

When combined with DDQN, the probabilities are naturally computed as

p  ∝t  r + γ  Q(s , a ; ) −
a′

max ′ ′ θ̄ Q(s, a; θ)  ,
ω

ω ω = 0
ω = 1

p  ∝t  r + γQ(s ,  Q(s , a ; θ); ) −′

a′
arg max ′ ′ θ̄ Q(s, a; θ)  ,

ω
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Rainbow DQN Extensions

Prioritized Replay
Because we now sample transitions according to  instead of uniformly, on-policy distribution

and sampling distribution differ. To compensate, we utilize importance sampling with ratio

Because the importance sampling ratios  can be quite large, the authors normalize them, as

they say “for stability reasons”, in every batch:

Therefore, the largest normalized importance sampling ratio in every batch is 1. The fact that
normalization should happen in every batch is not explicitly stated in the paper, and
implementations normalizing over the whole replay buffer also exist; but the DeepMind reference
implementation does normalize batch-wise.

p  t

ρ  =t  .(
p  t

1/N
)
β

ρ

ρ  /  ρ  .t
t ∈batch′
max t′
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Rainbow DQN Extensions

Prioritized Replay
 

Algorithm 1 of "Prioritized Experience Replay" by Tom Schaul et al.

10/49NPFL139, Lecture 5 -step NoisyNets DistributionalRL C51 Rainbow Quantile RegressionN



Dueling Networks
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Rainbow DQN Extensions

Dueling Networks
Instead of computing directly , we compose it from the following quantities:

average return in a given state , ,

advantage function computing an advantage  of action  in state .

 

Figure 1 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

Q(s, a; θ)

s V (s; θ) =   Q(s, a; θ)∣A∣
1 ∑a

Q(s, a; θ) − V (s; θ) a s

Q(s, a) =def
V (f(s; ζ); η)+ A(f(s; ζ), a;ψ)−  

∣A∣
 A(f(s; ζ), a ;ψ)∑a ∈A′

′
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Rainbow DQN Extensions

Dueling Networks
 

Figure 3 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

Evaluation is performed using -greedy exploration with ; in the experiment, the

horizontal corridor has a length of 50 steps, while the vertical sections have both 10 steps.

ε ε = 0.001

13/49NPFL139, Lecture 5 -step NoisyNets DistributionalRL C51 Rainbow Quantile RegressionN



Rainbow DQN Extensions

Dueling Networks
 

Figure 2 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Rainbow DQN Extensions

Dueling Networks
Results on all 57 games (retraining the original DQN on the 8 missing games). Single refers
to DDQN with a direct computation of , Single Clip corresponds to additional

gradient clipping to norm at most 10 and larger first hidden layer (so that duelling and single
have roughly the same number of parameters).

 

Table 1 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

Q(s, a; θ)
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Multi-step DQN
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Rainbow DQN Extensions

Multi-step DQN
Instead of Q-learning, we use -step variant of Q-learning, which estimates return as

This changes the off-policy algorithm to on-policy (because the “inner” actions are sampled
from the behaviour distribution, but should follow the target distribution); however, it is not
discussed in any way by the authors.

n

 γ R  +
i=1

∑
n

i−1
i γ  Q(s , a ; ).n

a′
max ′ ′ θ̄
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Noisy Nets
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Rainbow DQN Extensions

Noisy Nets
Noisy Nets are neural networks whose weights and biases are perturbed by a parametric
function of a noise.

The parameters  of a regular neural network are in Noisy nets represented as

where  is zero-mean noise with fixed statistics. We therefore learn the parameters .

A fully connected layer  with parameters  is represented in the following

way in Noisy nets:

Each  is initialized to , where  is the number of input neurons of the layer in question,

and  is a hyperparameter; commonly 0.5.

θ

θ ≈ μ+ σ ⊙ ε,

ε (μ,σ)

y = wx+ b (w, b)

y = (μ  +w σ  ⊙w ε  )x+w (μ  +b σ  ⊙b ε  ).b

σ  i,j  

 n
σ  0 n

σ  0
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Rainbow DQN Extensions

Noisy Nets
The noise  can be for example independent Gaussian noise. However, for performance reasons,

factorized Gaussian noise is used to generate a matrix of noise. If  is noise corresponding to

a layer with  inputs and  outputs, we generate independent noise  for input neurons,

independent noise  for output neurons, and set

The authors generate noise samples for every batch, sharing the noise for all batch instances
(consequently, during loss computation, online and target network use independent noise).

Deep Q Networks

When training a DQN, -greedy is no longer used (all policies are greedy), and all fully

connected layers are parametrized as noisy nets in both the current and target network (i.e.,
networks produce samples from the distribution of returns, and greedy actions still explore).

ε

ε  i,j

n m ε  i

ε  j

ε  =i,j f(ε  )f(ε  )   for   f(x) =i j sign(x)  .∣x∣

ε

20/49NPFL139, Lecture 5 -step NoisyNets DistributionalRL C51 Rainbow Quantile RegressionN



Rainbow DQN Extensions

Noisy Nets
 

Table 1 of "Noisy Networks for Exploration" by Meire Fortunato et al.

 

Figure 2 of "Noisy Networks for Exploration" by Meire Fortunato et al.
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Rainbow DQN Extensions

Noisy Nets
 

Figure 3 of "Noisy Networks for Exploration" by Meire Fortunato et al.

The  is the mean-absolute of the noise weights , i.e., .Σ̄ σ  w =Σ̄  ∥σ  ∥  

layer size
1

w 1
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Distributional RL
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Rainbow DQN Extensions

Distributional RL
Instead of an expected return , we could estimate the distribution of expected returns 

 – the value distribution.

The authors define the distributional Bellman operator  as:

The authors of the paper prove similar properties of the distributional Bellman operator
compared to the regular Bellman operator, mainly being a contraction under a suitable metric.

For Wasserstein metric , the authors define

and prove that  is a γ-contraction in .

However,  is not a contraction in KL divergence nor in total variation distance.

Q(s, a)
Z(s, a)

T π

T Z(s, a)π =def
R(s, a) + γZ(S ,A )   for   S ∼′ ′ ′ p(s, a),A ∼′ π(S ).′

W  p

(Z  ,Z  )W̄p 1 2 =def sup  W  (Z  (s, a),Z  (s, a))s,a p 1 2

T π
 W̄p

T π
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Wasserstein Metric

For two probability distributions  on a metric space with metric , Wasserstein metric

 is defined as

where  is a set of all couplings, each being a joint probability distribution whose

marginals are  and , respectively. A possible intuition is the optimal transport of probability

mass from  to .

For distributions over reals with CDFs , the optimal transport has an analytic solution:

where  and  are quantile functions, i.e., inverse CDFs.

For , the 1-Wasserstein metric correspond to area “between” F

and G, and in that case we can compute it also as 

μ, ν d

W  p

W  (μ, ν)p =def
 (E  d(x, y) ) ,

γ∈Γ(μ,ν)
inf (x,y)∼γ

p 1/p

Γ(μ, ν)
μ ν

μ ν

F ,G

W  (μ, ν) =p (  ∣F (q) −∫
0

1
−1 G (q)∣ dq) ,−1 p

1/p

F−1 G−1

p = 1
W  (μ, ν) =1   F (x) −∫

x
G(x)  dx.
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Wasserstein Metric

 

Figure 1 of "WATCH: Wasserstein Change Point Detection for High-Dimensional Time Series
Data", https://arxiv.org/abs/2201.07125

 

https://alexhwilliams.info/itsneuronalblog/code/ot/symmetry_1d.png

 

 

https://alexhwilliams.info/itsneuronalblog/code/ot/schematic_1d_revisited.png
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Rainbow DQN Extensions

Distributional RL: C51
The distribution of returns is modeled as a discrete distribution parametrized by the number of
atoms  and by . Support of the distribution are atoms

The atom probabilities are predicted using a  distribution as

N ∈ N V  ,V  ∈MIN MAX R

{z  i =def
V  +MIN iΔz : 0 ≤ i < N}   for Δz =def

 .
N − 1

V  − V  MAX MIN

softmax

Z  (s, a) =θ z   with probability p  =  .{ i i
 e∑j
f  (s,a;θ)j

ef  (s,a;θ)i

}
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Rainbow DQN Extensions

 

Figure 1 of "A Distributional Perspective on
Reinforcement Learning" by Marc G. Bellemare et al.

Distributional RL: C51
After the Bellman update, the support of the distribution 

 is not the same as the original support. We

therefore project it to the original support by proportionally
mapping each atom of the Bellman update to immediate neighbors
in the original support.

The network is trained to minimize the Kullbeck-Leibler divergence between the current
distribution and the (mapped) distribution of the one-step update

R(s, a) + γZ(s , a )′ ′

Φ(R(s, a) + γZ(s , a ))  

′ ′
i

=def
  1 −    p  (s , a ).

j=1

∑
N

Δz

 [r + γz  ]  − z   j V  MIN

V  MAX
i

0

1

j
′ ′

D  (Φ(R+KL γZ  (s ,  EZ  (s , a )))  Z  (s, a)).θ̄
′

a′
arg max θ̄

′ ′
θ
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Rainbow DQN Extensions

Distributional RL: C51
 

Algorithm 1 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

Note that by minimizing the  instead of the Wasserstein metric , the algorithm has no

guarantee of convergence of any kind. However, the authors did not know how to minimize it.

D  KL W  p
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Rainbow DQN Extensions

Distributional RL: C51
 

Figure 6 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

 

Figure 4 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

30/49NPFL139, Lecture 5 -step NoisyNets DistributionalRL C51 Rainbow Quantile RegressionN



Rainbow DQN Extensions

Distributional RL: C51
 

Figure 18 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow DQN Extensions

Distributional RL: C51
 

Figure 3 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow
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Rainbow Architecture

Rainbow combines all described DQN extensions. Instead of -step updates, -step updates are

utilized, and KL divergence of the current and target return distribution is minimized:

The prioritized replay chooses transitions according to the probability

Network utilizes dueling architecture feeding the shared representation  into value

computation  and advantage computation  for atom , and the

final probability of atom  in state  and action  is computed as

1 n

D  (Φ(  γ R  +KL ∑i=0
n−1 i

t+i+1 γ Z  (S  ,  EZ  (S  , a )))  Z(S  ,A  )).n
θ̄ t+n

a′
arg max θ t+n

′
t t

p  ∝t D  (Φ(  γ R  +KL ∑i=0
n−1 i

t+i+1 γ Z  (S  ,  EZ  (S  , a )))  Z(S  ,A  )) .n
θ̄ t+n

a′
arg max θ t+n

′
t t

w

f(s; ζ)
V (f(s; ζ); η) A  (f(s; ζ), a;ψ)i z  i

z  i s a

p  (s, a)i =def .
 e∑j
V  (f (s;ζ);η)+A  (f (s;ζ),a;ψ)−  A  (f (s;ζ),a ;ψ)/∣A∣j j ∑

a ∈A′ j
′

eV  (f (s;ζ);η)+A  (f (s;ζ),a;ψ)−  A  (f (s;ζ),a ;ψ)/∣A∣i i ∑a ∈A′ i
′
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Rainbow Hyperparameters

Finally, we replace all linear layers by their noisy equivalents.

 

Table 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Rainbow Results

 

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.

 

Table 2 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.
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Rainbow Results

 

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.

 

Figure 3 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.
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Rainbow Ablations

 

Figure 2 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Rainbow Ablations

 

Figure 4 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Quantile Regression
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Distributional RL with Quantile Regression

Although the authors of C51 proved that the distributional Bellman operator is a contraction
with respect to Wasserstein metric , they were not able to actually minimize it during

training; instead, they minimize the KL divergence between the current value distribution and
one-step estimate.

 

Figure 1 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044

W  p
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Distributional RL with Quantile Regression

 

Modified Figure 2 of "Distributional Reinforcement Learning with
Quantile Regression", https://arxiv.org/abs/1710.10044

The same authors later proposed a different approach, which actually manages to minimize the
1-Wasserstein distance.

In contrast to C51, where  is represented using a discrete distribution on a fixed “comb”

support of uniformly spaces locations, we now represent it as a quantile distribution – as
quantiles  for a fixed probabilities  with .

Formally, we can define the quantile distribution as a
uniform combination of  Diracs:

so that the cumulative density function is a step function
increasing by  on every quantile .

Z(s, a)

θ  (s, a)i τ  , … , τ  1 N τ  =i  

N
i

N

Z  (s, a)θ =
def

  δ  ,
N

1

i=1

∑
N

θ  (s,a)i

 N
1 θ  i
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Distributional RL with Quantile Regression

The quantile distribution offers several advantages:

a fixed support is no longer required;

the projection step  is not longer needed;

this parametrization enables direct minimization of the Wasserstein loss.

Φ
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Distributional RL with Quantile Regression

Recall that 1-Wasserstein distance between two distributions  can be computed as

where ,  are their cumulative density functions.

For arbitrary distribution , the we denote the most accurate quantile distribution as

In this case, the 1-Wasserstein distance can be written as

μ, ν

W  (μ, ν) =1   F  (q) −∫
0

1

μ
−1 F  (q)  dq,ν

−1

F  μ F  ν

Z

Π  ZW  1 =def
 W  (Z,Z  ).

Z  θ

arg min 1 θ

W  (Z,Z  ) =1 θ    F  (q) −
i=1

∑
N

∫
τ  i−1

τ  i

Z
−1 θ   dq.i
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Distributional RL with Quantile Regression

 

Modified Figure 2 of "Distributional Reinforcement Learning with Quantile Regression",
https://arxiv.org/abs/1710.10044

It can be proven that for continuous ,  is minimized by (for proof, see Lemma 2

of Dabney et al.: Distributional Reinforcement Learning with Quantile Regression, or consider
how the 1-Wasserstein distance changes in the range  when you move ):

We denote the quantile midpoints as

In the paper, the authors prove that the
composition  is γ-contraction in , so

repeated application of  converges to a

unique fixed point.

F  Z
−1 W  (Z,Z )1 θ

[τ  , τ  ]i−1 i θ  i

{θ  ∈i R  F  (θ  ) =Z i  }.
2

τ  + τ  i−1 i

 τ̂i =def
 .

2
τ  + τ  i−1 i

Π  TW  1
π

 W̄∞

Π  TW  1
π
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Quantile Regression

Our goal is now to show that it is possible to estimate a quantile  by minimizing a

loss suitable for SGD.

Assume we have samples from a distribution .

Minimizing the MSE of  and the samples of ,

yields the mean of the distribution, .

To show that this holds, we compute the derivative of the loss with respect to  and set it

to 0, arriving at

τ ∈ [0, 1]

P

x̂ P

=x~ arg min  E  [(x−x̂ x∼P ) ],x̂ 2

=x~ E  [x]x∼P

x̂

0 = E  [2( −x x̂ x)] = 2E  [ ] −x x̂ 2E  [x] =x 2( −x̂ E  [x]).x
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Quantile Regression

Assume we have samples from a distribution  with cumulative density function .

Minimizing the mean absolute error (MAE) of  and the samples of ,

yields the median of the distribution, .

We prove this again by computing the derivative with respect to , assuming the functions

are nice enough that the Leibnitz integral rule can be used:

P F  P

x̂ P

=x~ arg min  E  [∣x−x̂ x∼P ∣],x̂

=x~ F  (0.5)P
−1

x̂

  P (x)∣x−
∂x̂
∂

∫
−∞

∞

∣ dx =x̂  [  P (x)( −
∂x̂
∂

∫
−∞

x̂

x̂ x) dx+  P (x)(x−∫
x̂

∞

) dx]x̂

=  P (x) dx−∫
−∞

x̂

 P (x) dx∫
x̂

∞

= 2  P (x) dx−∫
−∞

x̂

1 = 2F  ( ) −P x̂ 1 = 2(F  ( ) −P x̂  ).2
1
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Leibniz integral rule

The Leibniz integral rule for differentiation under the integral sign states that for 

,

Sufficient condition for the Leibnitz integral rule to hold is that the  and its partial

derivative  are continuous in both  and , and  and  are continuous and

have continuous derivatives.

If any of the bounds is improper, additional conditions must hold, notably that the integral of
the partial derivatives of  must converge.

−∞ <
a(x), b(x) < ∞

 [  f(x, t) dt] =
∂x
∂

∫
a(x)

b(x)

=   f(x, t) dt+∫
a(x)

b(x)

∂x
∂

(  b(x))f(x, b(x))−
∂x
∂

(  a(x))f(x, a(x)).
∂x
∂

f(x, y)
 f(x, y)∂x

∂ x t a(x) b(x)

f
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Quantile Regression

Assume we have samples from a distribution  with cumulative density function .

By generalizing the previous result, we can show that for a quantile , if

then . Let .

This loss penalizes overestimation errors with weight , underestimation errors with .

P F  P

τ ∈ [0, 1]

=x~ arg min  E  [(x−x̂ x∼P )(τ −x̂ [x ≤ ])],x̂

=x~ F  (τ)P
−1 ρ  (x−τ )x̂ =def (x− )(τ −x̂ [x ≤ ]) =x̂ ∣x− ∣ ⋅x̂ ∣τ − [x ≤ ]∣x̂

1 − τ τ

  P (x)(x−
∂x̂
∂

∫
−∞

∞

)(τ −x̂ [x ≤ ]) dx =x̂

=  [(τ −
∂x̂
∂

1)  P (x)(x−∫
−∞

x̂

) dx+x̂ τ  P (x)(x−∫
x̂

∞

) dx]x̂

= (1 − τ)  P (x) dx−∫
−∞

x̂

τ  P (x) dx =∫
x̂

∞

 P (x) dx−∫
−∞

x̂

τ = F  ( ) −P x̂ τ .
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