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Rainbow

There have been many suggested improvements to the DQN architecture. In the end of 2017,
the Rainbow: Combining Improvements in Deep Reinforcement Learning paper combines 6 of

them into a single architecture they call Rainbow.
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Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Double Deep Q-Network
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UEL

Rainbow DQN Extensions =
Similarly to double Q-learning, instead of
/ /. é . 0
r+ymaxQ(s,a;0)— Q(s,a;0),
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Figure 1 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et Figure 3 of "Deep Reinforcement Learning with Double Q-learning” by Hado van Hasselt e/t
al. al.
NPFL139, Lecture 5 N-step NoisyNets DistributionalRL C51 Rainbow Quantile Regression 5/49



Double Q-learning

Performance on episodes taking at most 5 minutes and no-op starts on 49 games:

DQN  Double DQN
Median 93.5% 114.7%

Mean 241.1% 330.3%

Performance on episodes taking at most 30 minutes and using 100 human starts on each of the
49 games:

DQN  Double DQN  Double DQN (tuned)
Median 47.5% 88.4% 116.7%
Mean 122.0% 273.1% 475.2%

The Double DQN follows the training protocol of DQN; the tuned version increases the target
network update from 10k to 30k steps, decreases exploration during training from € = 0.1 to

e = 0.01, and uses a shared bias for all action values in the output layer of the network.
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Prioritized Replay

NPFL139, Lecture 5 N-step NoisyNets DistributionalRL Ch1 Rainbow Quantile Regression 7/49



Prioritized Replay

Instead of sampling the transitions uniformly from the replay buffer, we instead prefer those
with a large TD error. Therefore, we sample transitions according to their probability

W

Py X T—I—'}/mE/iJXQ(S/,a,;é) _Q(Saa;e) )

where w controls the shape of the distribution (which is uniform for w = 0 and corresponds to
TD error for w = 1).

New transitions are inserted into the replay buffer with maximum probability to support
exploration of all encountered transitions.

When combined with DDQN, the probabilities are naturally computed as

w

pe o |r+yQ(s', argmax Q(s',a';0);0) — Q(s,a;0)|
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Prioritized Replay

Because we now sample transitions according to p; instead of uniformly, on-policy distribution
and sampling distribution differ. To compensate, we utilize importance sampling with ratio

-2y

Because the importance sampling ratios p can be quite large, the authors normalize them, as

they say “for stability reasons”, in every batch:

t max py.
p / t' €batch p

Therefore, the largest normalized importance sampling ratio in every batch is 1. The fact that
normalization should happen in every batch is not explicitly stated in the paper, and
implementations normalizing over the whole replay buffer also exist; but the DeepMind reference
implementation does normalize batch-wise.
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Prioritized Replay

Algorithm 1 Double DQN with proportional prioritization

1: Input: minibatch k, step-size n, replay period K and size /N, exponents « and (3, budget T'.
2: Initialize replay memory H =0, A = 0,p; =1

3: Observe Sy and choose Ay ~ 7y(Sp)

4: fort =1to 7T do

5 Observe S;, R, V¢

6:  Store transition (S;_1, A¢_1, R¢, e, S¢) in H with maximal priority p; = max;<¢ p;

7. if t=0 mod K then

8 for ) =1to kdo

9: Sample transition j ~ P(j) = p$/ >, pf
10: Compute importance-sampling weight w; = (N - P(j )P / max; w;
11: Compute TD-error §; = R + v Qurget (55, argmax, Q(5;,a)) — Q(S;j—-1,4;-1)
12: Update transition priority p; < |d;|
13: Accumulate weight-change A <— A+ w; - §; - VoQ(Sj—1,A4;_1)
14: end for
15: Update weights 6 <— 6 +n - A, reset A =0
16: From time to time copy weights into target network Orger < 0
17:  end if
18:  Choose action A; ~ 7y (.S¢)
19: end for
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Dueling Networks
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Rainbow DQN Extensions Uz

Dueling Networks

Instead of computing directly Q(s, a;8), we compose it from the following quantities:

® average return in a given state s, V(s;0) = I_jl\ >, Q(s,a;0),

® advantage function computing an advantage Q(s,a;0) — V (s;0) of action a in state s.

55

b= I>4

Figure 1 of "Dueling Network Architectures for Deep Reinforcement Learning” by Ziyu Wang et al.

Q(s,a) = V(£(5:0)5m) + A(F(550), a39) — Laea A({j; ),4'39)

NPFL139, Lecture 5 N-step NoisyNets DistributionalRL Ch1 Rainbow Quantile Regression 12/49




Dueling Networks

CORRIDOR ENVIRONMENT 5 ACTIONS 10 ACTIONS 20 ACTIONS

10°

No. Iterations

10°

No. IteratiorTs
(a) (b) (c) (d)

Figure 3. (a) The corridor environment. The star marks the starting state. The redness of a state signifies the reward the agent receives
upon arrival. The game terminates upon reaching either reward state. The agent’s actions are going up, down, left, right and no action.
Plots (b), (¢) and (d) shows squared error for policy evaluation with 5, 10, and 20 actions on a log-log scale. The dueling network

(Duel) consistently outperforms a conventional single-stream network (Single), with the performance gap increasing with the number of
actions.

No. Iterations

Evaluation is performed using e-greedy exploration with € = 0.001; in the experiment, the
horizontal corridor has a length of 50 steps, while the vertical sections have both 10 steps.
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Rainbow DQN Extensions Uz

Dueling Networks

VALUE ADVANTAGE
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Figure 2 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Dueling Networks

Results on all 57 games (retraining the original DQN on the 8 missing games). Single refers
to DDQN with a direct computation of Q(s,a;0), Single Clip corresponds to additional

gradient clipping to norm at most 10 and larger first hidden layer (so that duelling and single
have roughly the same number of parameters).

30 no-ops Human Starts

Mean Median Mean Median
Prior. Duel Clip | 591.9% 172.1% | 567.0%  115.3%
Prior. Single 434.6%  123.7% | 386.7% 112.9%
Duel Clip 373.1% 151.5% | 343.8% 117.1%
Single Clip 341.2%  132.6% | 302.8% 114.1%
Single 307.3% 117.8% | 332.9% 110.9%
Nature DQN 227.9% 79.1% | 219.6% 68.5%
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Multi-step DQN
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Multi-step DQN

Instead of Q-learning, we use n-step variant of Q-learning, which estimates return as

> YR, + " max Q(s',d';0).
1=1

This changes the off-policy algorithm to on-policy (because the “inner” actions are sampled
from the behaviour distribution, but should follow the target distribution); however, it is not

discussed in any way by the authors.
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Noisy Nets
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Noisy Nets

Noisy Nets are neural networks whose weights and biases are perturbed by a parametric
function of a noise.

The parameters @ of a regular neural network are in Noisy nets represented as
O~ u+o@e,

where € is zero-mean noise with fixed statistics. We therefore learn the parameters (u, o).
A fully connected layer y = wa + b with parameters (w, b) is represented in the following
way in Noisy nets:

Y = (”w—l_o-w@sw)w"'([ib‘l'o'b@&'b).

Each o; ; is initialized to 2L where 1 is the number of input neurons of the layer in question,

\/ﬁ '

and o is a hyperparameter; commonly 0.5.

NoisyNets
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Noisy Nets

The noise € can be for example independent Gaussian noise. However, for performance reasons,
factorized Gaussian noise is used to generate a matrix of noise. If &; ; is noise corresponding to
a layer with n inputs and ™ outputs, we generate independent noise €; for input neurons,
independent noise €; for output neurons, and set

eij = f(ei)f(g;) for f(x)=sign(z)v/|z|.

The authors generate noise samples for every batch, sharing the noise for all batch instances
(consequently, during loss computation, online and target network use independent noise).

Deep Q Networks
When training a DQN, e-greedy is no longer used (all policies are greedy), and all fully

connected layers are parametrized as noisy nets in both the current and target network (i.e.,
networks produce samples from the distribution of returns, and greedy actions still explore).

NoisyNets 20/49



Rainbow DQN Extensions Uz

Noisy Nets

Baseline NoisyNet Improvement
Mean Median Mean Median (On median)

DQN 319 83 379 123 48%
Dueling 524 132 633 172 30%
A3C 293 80 347 94 18%
Table 1 of "Noisy Networks for Exploration" by Meire Fortunato et al.
Median score over games 160 Median score over games
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Figure 2 of "Noisy Networks for Exploration" by Meire Fortunato et al.
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Rainbow DQN Extensions Uz

Noisy Nets
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Figure 3: Comparison of the learning curves of the average noise parameter > across five Atari games
in NoisyNet-DQN. The results are averaged across 3 seeds and error bars (+/- standard deviation) are
plotted.

Figure 3 of "Noisy Networks for Exploration" by Meire Fortunato et al.

1

The X is the mean-absolute of the noise weights 07y, i.e., ¥ = ——||oy]|1.
ayer size
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Distributional RL
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Distributional RL

Instead of an expected return (s, a), we could estimate the distribution of expected returns

Z(s,a) — the value distribution.

The authors define the distributional Bellman operator 7™ as:
T"Z(s,a) = R(s,a) +~vZ(S',A") for §' ~p(s,a),A ~ n(S).

The authors of the paper prove similar properties of the distributional Bellman operator
compared to the regular Bellman operator, mainly being a contraction under a suitable metric.

® For Wasserstein metric Wp, the authors define
W, (21, Z2) = sup, , Wp(Z1(s,a), Z2(s, a))

and prove that 7™ is a y-contraction in Wp.
® However, 77 is not a contraction in KL divergence nor in total variation distance.
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For two probability distributions p, v on a metric space with metric d, Wasserstein metric

W, is defined as
1/p
def . b
Wp (:UH V) = inf (E(a:,y)wfyd(mv y) ) )
YEL (1,v)
where I'(u, 1) is a set of all couplings, each being a joint probability distribution whose
marginals are p and v, respectively. A possible intuition is the optimal transport of probability

mass from u to v.

For distributions over reals with CDFs F', GG, the optimal transport has an analytic solution:

1-Wasserstein Distance lllustration

]. ]'/p l'OOA—CDFF
Wy (1, v) = ( / F(q) —G (@)l dq) , | = B
0
where F~1 and G~1 are quantile functions, i.e., inverse CDFs. J

For p = 1, the 1-Wasserstein metric correspond to area “between” F

and G, and in that case we can compute it also as Wy (u, v f |F )’ dx.

DistributionalRL 25/49



Wasserstein Metric Urzt
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Fig. 1: Difference between Wasserstein distance and Kullbach-
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o ’ ' L Figure 1 of "WATCH: Wasserstein Change Point Detection for High-Dimensional Time Series
Data", https://arxiv.org/abs/2201.07125
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Distributional RL: C51

The distribution of returns is modeled as a discrete distribution parametrized by the number of
atoms IV € N and by Vain, Vmax € R. Support of the distribution are atoms

€ . . . V —V
{z deVM1N+zAz:O§z<N} for Az & MA]?\if_lMIN

The atom probabilities are predicted using a softmax distribution as

. . efi(saa;e)
Zg(s,a) = 1 z; with probability p; = Zj T oad) (-

Ch1
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Distributional RL: C51

After the Bellman update, the support of the distribution PWZ
R(s,a) +vZ(s',a’) is not the same as the original support. We (a)
therefore project it to the original support by proportionally R+~yP"Z @T”Z
mapping each atom of the Bellman update to immediate neighbors
in the original support. -
sl -]
N | T4 Y2t — 2
def J VAN v
®(R(s,a) +vZ(s',d")), = Z 1-— A p;i(s',a).
7=1
L 40

The network is trained to minimize the Kullbeck-Leibler divergence between the current
distribution and the (mapped) distribution of the one-step update

Dxr, (<I> (R+~vZ5(s', arg max EZg(s',a'))) H Z (s, a)) :

N-step NoisyNets DistributionalRL Ch1 Rainbow Quantile Regression 28/49



Rainbow DQN Extensions Uz

Distributional RL: C51

Algorithm 1 Categorical Algorithm

input A transition x, as, 74, 411, ¢ € [0, 1]
Q(zi41,0) =, 2ipi(Ti41, @)
a* < argmax, Q(x¢y1,a)
m; =0, 2€0,...,N—1
forj€0,...., N—1do
# Compute the projection of 7-zj onto the support { z; }
TZj — [Tt + ’Yth]“;x?Nx
b; — (T2 — Va)/Az #0b; € [0, N —1]
L= [bj], u < [bj]
# Distribute probability of 7'zj
my < my + pi(xi41,a")(u — by)
Mgy < My, -I—pj (ZCt_H, a*)(bj — l)
end for
output — Zz m;logp; (¢, ar) # Cross-entropy loss

Algorithm 1 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

Note that by minimizing the Dkr, instead of the Wasserstein metric W, the algorithm has no
guarantee of convergence of any kind. However, the authors did not know how to minimize it.
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Distributional RL: C51

Mean | Median | >H.B. | >DQN
DQN 228% 79% 24 0
DDQN 307 % 118% 33 43
DUEL. 373% 151% 37 50
PRIOR. 434% 124% 39 48
PR. DUEL. | 592% 172% 39 44
C51 701 % 178 % 40 50
u Laser
Left+Laser
z Right+Laser
2 b right
& Left mm

Figure 4. Learned value distribution during an episode of SPACE
INVADERS. Different actions are shaded different colours. Re-
turns below O (which do not occur in SPACE INVADERS) are not
shown here as the agent assigns virtually no probability to them.
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Distributional RL: C51

0.5---gg
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Probability

0.0 —gJ:D:F:':Eﬂ:Eq‘:l—tmﬁer

Return
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0 2 4 ] I U
Return

0.5

Probability

Return

Figure 18. SPACE INVADERS: Top-Left: Multi-modal distribution with high uncertainty. Top-Right: Subsequent frame, a more certain
demise. Bottom-Left: Clear difference between actions. Bottom-Middle: Uncertain survival. Bottom-Right: Certain success.
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Rainbow DQN Extensions

Distributional
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Figure 3 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

Figure 3. Categorical DQN: Varying number of atoms in the discrete distribution. Scores are moving averages over 5 million frames.
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Rainbow
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Rainbow combines all described DQN extensions. Instead of 1-step updates, n-step updates are
utilized, and KL divergence of the current and target return distribution is minimized:

D1, (‘I) (ZZ 0 ’YZRH—erl + 7y Zg (StJrn: arg max EZB(St+n7 ) HZ(S757 At)) .

The prioritized replay chooses transitions according to the probability

pr o< Dk, (‘I)(Zz 0 Y Ryyi1 4+ " Zg(Stin; arg max EZg(Stin,a )HZ(St7 At)) :

Network utilizes dueling architecture feeding the shared representation f(s; () into value
computation V' (f(s;();n) and advantage computation A;(f(s; (), a; ) for atom z;, and the
final probability of atom z; in state s and action a is computed as

i TSI A (5:0),09) - e Al (500 9) 1A
pils,a) = Z Vi DA (F(5:0),0590) S e A (F (550, 59) /AT

Rainbow 34/49




Finally, we replace all linear layers by their noisy equivalents.

Parameter Value
Min history to start learning 80K frames
Adam learning rate 0.0000625
Exploration € 0.0
Noisy Nets og 0.5
Target Network Period 32K frames
Adam € 1.5 x 10~*
Prioritization type proportional
Prioritization exponent w 0.5
Prioritization importance sampling 3 0.4 —1.0
Multi-step returns n 3
Distributional atoms 51
Distributional min/max values [—10, 10]

Rainbow
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Rainbow Results

DQN
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Prioritized DDQN
Dueling DDQN

A3C

Distributional DQN
Noisy DQN
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Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
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Agent no-ops human starts
DOQN 79% 68%
DDQN (*) 117% 110%
Prioritized DDQN (*) | 140% 128%
Dueling DDQN (%) 151% 117%
A3C (%) - 116%
Noisy DQN 118% 102%
Distributional DQN 164% 125%
Rainbow 223% 153%

Table 2 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.

Rainbow Quantile Regression
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Rainbow Results

Median human-normalized score
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Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Figure 3 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.
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Rainbow Ablations
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Figure 2: Each plot shows, for several agents, the number of games where they have achieved at least a given fraction of human
performance, as a function of time. From left to right we consider the 20%, 50%, 100%, 200% and 500% thresholds. On the

first row we compare Rainbow to the baselines. On the second row we compare Rainbow to its ablations.
Figure 2 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Rainbow Ablations
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Figure 4 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Distributional RL with Quantile Regression et

Although the authors of C51 proved that the distributional Bellman operator is a contraction
with respect to Wasserstein metric W,,, they were not able to actually minimize it during

training; instead, they minimize the KL divergence between the current value distribution and
one-step estimate.

Dk (®T™Z||Z)

Nz Nz Az

21 Nz Z9

Figure 1: Projection used by C51 assigns mass inversely
proportional to distance from nearest support. Update mini-

mizes KL between projected target and estimate.
Figure 1 of "Distributional Reinforcement Learning with Quantile Regression”, https://arxiv.org/abs/1710.10044

NPFL139, Lecture 5 N-step NoisyNets DistributionalRL C51 Rainbow Quantile Regression 41/49



The same authors later proposed a different approach, which actually manages to minimize the
1-Wasserstein distance.

In contrast to C51, where Z(s,a) is represented using a discrete distribution on a fixed “comb”

support of uniformly spaces locations, we now represent it as a quantile distribution — as
quantiles 6;(s, a) for a fixed probabilities 71, ..., 7n with 7; = 2

N.
Formally, we can define the quantile distribution as a "X — an
- N — sh——2Zecz __________ ¢
uniform combination of N Diracs: 0 Mzczy = |®
g I
| S / q3
2 // |
‘2 ~
g Tof--—-—------—_= a2
ZH(S (1, E 59 (s,a) S - /K L
o.
7A'1 ------ a q1
70=0 21=F; " (f1) 22 23 24 )

so that the cumulatlve density function is a step function
increasing by on every quantile 6;.

Space of Returns

Figure 2: 1-Wasserstein minimizing projection onto N = 4
uniformly weighted Diracs. Shaded regions sum to form the
1-Wasserstein error.
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Distributional RL with Quantile Regression

The quantile distribution offers several advantages:

® 3 fixed support is no longer required;

® the projection step ® is not longer needed;

® this parametrization enables direct minimization of the Wasserstein loss.
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Recall that 1-Wasserstein distance between two distributions p, v can be computed as

1%WWZAUT@—EWM®,

where F),, F,, are their cumulative density functions.

For arbitrary distribution Z, the we denote the most accurate quantile distribution as

Iy, Z < argmin W1 (Z, Z,).
Zy

In this case, the 1-Wasserstein distance can be written as
N -
Wi(2.2) =Y [ |F;'(@) - 6] da
i=1 Y Ti-1
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It can be proven that for continuous Fz_l, Wi(Z, Zy) is minimized by (for proof, see Lemma 2

of Dabney et al.: Distributional Reinforcement Learning with Quantile Regression, or consider
how the 1-Wasserstein distance changes in the range [7;_1, 7;] when you move 6;):

{973 . ]R|FZ(0Z-) _ 7'7;12—|— T; }

We denote the quantile midpoints as

. aef Ti—1 T T;
T, — 9 .

In the paper, the authors prove that the
composition Iy, 7™ is y-contraction in W, so

repeated application of Iy, 7™ converges to a
unique fixed point.

T4 = 1

Ne—zcz . an
§ 7-37_4 HWlZ < ZQ /J o v
& Tap---mmmm e I / a3
:_._? Ty / ‘ T
I S (JQ
g — 1

721 ______ / q1

—‘ ‘ -

—1/~
=0 z1=F, (T1) 2 23 24
Space of Returns

Figure 2: 1-Wasserstein minimizing projection onto N = 4
uniformly weighted Diracs. Shaded regions sum to form the
1-Wasserstein error.
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Our goal is now to show that it is possible to estimate a quantile 7 € [0, 1] by minimizing a
loss suitable for SGD.

Assume we have samples from a distribution P.

® Minimizing the MSE of & and the samples of P,
~ . AN D
T = argming E, p|(z — £)°|,

yields the mean of the distribution, £ = E,p|z].

To show that this holds, we compute the derivative of the loss with respect to & and set it
to 0, arriving at

0=E;[2(2 — z)] = 2E,[2] — 2E,[z] = 2(& — E,[z]).
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Assume we have samples from a distribution P with cumulative density function Flp.

® Minimizing the mean absolute error (MAE) of Z and the samples of P,

T = argmin; E, p ||z — &,
yields the median of the distribution, & = Fj'(0.5).

We prove this again by computing the derivative with respect to &, assuming the functions
are nice enough that the Leibnitz integral rule can be used:

08@ /OO P@)|z — & dz = 2 U P(:c)(:i:—x)dm+LwP(m)(x_@)dx

— 00 8$ — 00

:/_;P(m)dm—/;op(x)dx

:z/x P(z)de — 1= 2Fp(8) — 1= 2(Fp(2) — 1).

— o0

DN
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The Leibniz integral rule for differentiation under the integral sign states that for —oco < @

a(z), b(z) < oo,
AL o]

— /j:) (%f(a;,t) dt + ((%b(a:))f(m, b(z)) — (%a(w))f(%a(w))-

Sufficient condition for the Leibnitz integral rule to hold is that the f(x,y) and its partial

derivative %f(m, y) are continuous in both x and t, and a(x) and b(x) are continuous and
have continuous derivatives.

If any of the bounds is improper, additional conditions must hold, notably that the integral of
the partial derivatives of f must converge.
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Assume we have samples from a distribution P with cumulative density function Flp.

® By generalizing the previous result, we can show that for a quantile 7 € [0, 1], if

Z = argmin; E, p|(z — 2)(7 — [z < &])],
then & = F5l(1). Let pr(z — 2) = (2 — 2)(7 — [z < &]) = |z — &| - |7 — [z < 3]|.
This loss penalizes overestimation errors with weight 1 — 7, underestimation errors with 7.

889?; /°° P(z)(z —2)(t — [z < 2])dz =

; 3833 [(7—1) /1P(x)(w—£)dw+7Lm P(a;)(w—i;)da;]
:(1—T)/1P(w)dw—7LmP(w)dw:/ZP(w)dx—T:Fp(i)—T.
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