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We approximate value function v and/or action-value function q, selecting it from a family of
functions parametrized by a weight vector w € R?.

We denote the approximations as

v (s; w),

q(s, a; w).
We utilize the Mean Squared Value Error objective, denoted V E:

VE(w) £ Y u(s) [vx(s) — o(s,w)]’,

seS

where the state distribution pu(s) is usually the on-policy distribution.
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The on-policy distribution is defined as:

® For episodic tasks, let h(s) be the probability that an episodes starts in state s, and let
77(8) denote the number of time steps spent, on average, in state s in a single episode:

n(s) = h(s) + > ()Y w(als)p(s|s',a)

. . . . . . . . def
The on-policy distribution is then obtained by normalizing: u(s) = 27(228,).
If there is discounting (v < 1), it should be treated as a form of , Imaginary
: Sl '
termination, by including a factor 7y to the second term of the :\_\_t\e\_fgl\:.al state
n(s) equation. I/_/;””

® For continuing tasks, we require v < 1, and employ the same
definition as in the episodic case.
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The functional approximation (i.e., the weight vector w) is usually optimized using gradient
methods, for example as

Wil < Wy — %ath ('UW(St) - @(St;’wt))2
— wy + Oé(’UW(St) — ?/}(St; wt))thf&(St; wt).

As usual, the v, (St) is estimated by a suitable sample of a return:

® in Monte Carlo methods, we use episodic return Gy,
® in temporal difference methods, we employ bootstrapping and use one-step return

Ri1 + [~done| - y0(S¢115 w)

or an Mn-step return.
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Monte Carlo Gradient Policy Evaluation ezt

Gradient Monte Carlo Algorithm for Estimating v =~ v,

Input: the policy 7™ to be evaluated

Input: a differentiable function o : § x R — R

Algorithm parameter: step size o > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,51,41,..., Ry, St using 7
Loop for each step of episode, t =0,1,...,T — 1:
W < W+ « [Gt — ’lA)(St,W)] V@(St,W)

Algorithm 9.3 of "Reinforcement Learning: An Introduction, Second Edition".

If the return estimate G is unbiased (which it is in a Monte Carlo method), the policy

evaluation algorithm is guaranteed to converge to a local optimum of the mean squared value
error under the usual SGD conditions.
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Gradient and Semi-Gradient Methods
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Temporal Difference Semi-Gradient Policy Evaluation ezt

In TD methods, we again bootstrap the estimate v;(S;) as Ri1 + |[~done| - y9(Se1; w).

Semi-gradient TD(0) for estimating v ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function ¢ : 87 x R% — R such that 9 (terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ 7(-|S)
Take action A, observe R, S’
W W+ a|R+ (S, w) — 9(S,w)| Vo(S,w)
S+ 5

until S is terminal

Algorithm 9.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Note that the above algorithm is called semi-gradient, because it does not backpropagate
through 9(S¢11; w):

w  w+ a(Riq + [~done] - yO(Si1;w) — 9(Sy; w)) V0 (Sy; w).

In other words, the above rule is in fact not an SGD update, because there does not exist a
sufficiently continuous function J(w), for which we would get the above update.

To sketch a proof, consider a linear 0(Sy; w) = > . (S:);w; and assume such a J(w) exists.
Then

8?0@'J(w) — (Rt+1 + Y0 (St1;w) — (St w))m(st)i-

We now verify that the second derivatives are not equal, which is a contradiction with the
Schwarz's theorem (stating that partial derivatives commute as long as they are differentiable):

8 ij(w) — (’yw(StH)i — aj(St)i)ZU(St)j = Y2 (St+1)ix(St); — x(St)ix(St);

ow; Ow;

oy o (W) = (&(Se1)j — 2(81);)2(S1)i = v2(Ser1)2(S0)i — 2(Sp)i(Sh);

ij 8wl
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Note that “fixing” the algorithm by allowing to backpropagate through the bootstrap estimate
Rii1 + 0(Sti1; w) would not work at all. If we consider such an update

N R 2
Wiyl < Wt — %Oéth (Rt+1 + U(St+1; w) — ’U(St; wt))

— w; + a(Rt+1 + @(St+1; w) — 'D(St; 'wt))th ('ﬁ(St; ’wt) — @(St+1; w)),

then for a linear method © (a(s); w) = 2(s)Tw we would get

Wiyl < Wy + Oé(Rt—i—l + 0(St1;w) — (S ’wt)) (w(st) — w(St+1))-

To consider a concrete case, assume the x(S;) are one-hot encoded, so the update is in fact
equal to a tabular method. Then we would update not only the value estimate for state .S;, but
also the value estimate for S;, 1 in the opposite direction.
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Temporal Difference Semi-Gradient Convergence Uzt

It can be proven (by using separate theory than for SGD) that the linear semi-gradient TD
methods do converge.

However, they do not converge to the optimum of V E. Instead, they converge to a different
TD fixed point wp.

It can be proven that

1
VE('LUTD) S E min VE(’LU)

However, when 7y is close to one, the multiplication factor in the above bound is quite large.
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Temporal Difference Semi-Gradient Policy Evaluation Uz

As before, we can utilize n-step TD methods.

n-step semi-gradient TD for estimating v ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function o : 8t x R? — R such that ¢(terminal,-) = 0
Algorithm parameters: step size a > 0, a positive integer n

Initialize value-function weights w arbitrarily (e.g., w = 0)

All store and access operations (S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T + o0
Loop fort =0,1,2,...:
| Ift <T, then:

| Take an action according to 7(+|.Sy)

| Observe and store the next reward as R;y; and the next state as Sy
| If Si41 is terminal, then T <t + 1

| 7+ t—n+1 (7 isthe time whose state’s estimate is being updated)

| Ifr>0:
|

|

|

i
frd+n< T, then: G + G + 7”@(57+H,W) (GT:T+n)

w <+ w+ a|G — 0(S;,w)] Vo(S,,w)
Until7 =T -1

v
Algorithm 9.5 of "Reinforcement Learning: An Introduction, Second Edition".
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Temporal Difference Semi-Gradient Policy Evaluation

Recall the previous described 1000-state random walk, where
transitions lead uniformly randomly to any of 100 neighboring
states on the left or on the right. Using state aggregation, we Vale

can partition the 1000 states into 10 groups of 100 states.
Monte Carlo policy evaluation result is on the right:

The results using one-step TD(0) are presented below (left);

1

0.0137

. /R/lpgmﬁimaﬁe Distribution
scale VALS U~y A scale
a H
i {0.0017
-1 - -0
1 State 1000

the effect of increasing m in an m-step variant is on the right.
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Sarsa with Function Approximation

Until now, we talked only about policy evaluation. Naturally, we can extend it to a full Sarsa
algorithm:

Episodic Semi-gradient Sarsa for Estimating ¢ ~ ¢,

Input: a differentiable action-value function parameterization §: 8 x A x R4 —+ R
Algorithm parameters: step size a > 0, small € > 0
Initialize action-value function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A <+ initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
w <+ w+a[R—§(S, A, w)|V§(S, A w)
Go to next episode
Choose A" as a function of ¢(S’,-,w) (e.g., e-greedy)
W < W + a[R +~q(S’, A, w) — (S, A, W)] Vq(S, A, w)
S+ S5
A+ A

Modified from Algorithm 10.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Sarsa with Function Approximation Uz

Additionally, we can incorporate n-step returns:

Episodic semi-gradient n-step Sarsa for estimating ¢ ~ ¢, or ¢,

Input: a differentiable action-value function parameterization ¢ : 8 x A x R? — R
Input: a policy 7 (if estimating ¢, )

Algorithm parameters: step size a > 0, small € > 0, a positive integer n

Initialize action-value function weights w € R? arbitrarily (e.g., w = 0)

All store and access operations (S, A, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ay ~ 7(+|Sp) or e-greedy wrt G(Sp, -, w)

T < o0
Loop for t =0,1,2,... :
| Ift <T, then:

| Take action Ay

] Observe and store the next reward as R;y; and the next state as Siy1
] If S;41 is terminal, then:

| T+t+1

] else:

| Select and store A1 ~ 7(:|St41) or e-greedy wrt ¢(Siy1,-, W)
| 7« t—n+1 (7 is the time whose estimate is being updated)

| Ifr>0:

|

|

|

G — eriisgrnT) Ni=T1R;
If 74+ n<T,then G+ G+9"¢(Srin, Arin, W) (Grirtn)
W<+ w+a|G—q(S A, w)|V§(S:, A, w)

Untilr=T -1

Modified from Algorithm 10.2 of "Reinforcement Learning: An Introduction, Second Edition".
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The performances are for semi-gradient Sarsa(\) algorithm (which we did not talked about yet)

with tile coding of 8 overlapping tiles covering position and velocity, with offsets of (1, 3).
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Mountain Car Example via Sarsa UL

1000

Mountain Car “°
Steps per episode

log scale
averaged over 100 runs 200

100

0 560
Episode

Figure 10.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Figure 10.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy Divergence With Function Approximation
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Off-policy Divergence With Function Approximation

Consider a deterministic transition between two states whose values are computed using the

same weight:

Figure from Section 11.2 of "Reinforcement Learning: An Introduction, Second Edition".

® [f initially w = 10, the TD error will be also 10 (or nearly 10 if v < 1).
® |f for example @ = 0.1, w will be increased to 11 (by 10%).
® This process can continue indefinitely.

However, the problem arises only in off-policy setting, where we do not decrease value of the
second state from further observation.
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The previous idea can be implemented for instance by the following Baird's counterexample:

B A N B B S
// : | | : ! !
' v
' @ @
|
|
|
|
\
\
\
\
\ m(solid|-) =1
\
\\ b(dashed|-) = 6/7
\ b(solid|-) = 1/7
N T v = 0.99

The rewards are zero everywhere, so the value function is also zero everywhere. We assume the
initial values of weights are 1, except for wy = 10, and that the learning rate a = 0.01.
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Off-policy Divergence With Function Approximation et

For off-policy semi-gradient Sarsa, or even for off-policy dynamic-programming update (where
we compute expectation over all following states and actions), the weights diverge to +o00.

Using on-policy distribution converges fine.
a A A
w— W+ — Z (E7r [Rey1 + v0(Se1;w)|Se = 8] — v(s;w))Vv(s; w)

Semi-gradient Off-policy TD Semi-gradient DP

7

R B
SIS

\ m(solid|-) = 1

\ b(dashed|) = 6/7,

b(solid|-) = 1/7
\ g v = 0.99

\ e
\ P
\ -
-
N -7 10

Figure 11.1 of "Reinforcement Learning: An Introduction, Second Edition".

A 300}
'

wr

. T .
Steps 1000 0 Sweeps 1000
Figure 11.2 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy Divergence With Function Approximation

The divergence can happen when all following elements are combined:

® functional approximation;
® bootstrapping;
® off-policy training.

In the Sutton's and Barto's book, these are called the deadly triad.
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Deep Q Networks

NPFL139, Lecture 4 Semi-Gradient Off-policy Divergence DQN Rainbow DDQN Prioritized Replay Dueling Networks 23/66



Volodymyr Mnih et al.: Playing Atari with Deep Reinforcement Learning (Dec 2013 on arXiv),

in Feb 2015 accepted in Nature as Human-level control through deep reinforcement learning.

Off-policy Q-learning algorithm with a convolutional neural network function approximation of
action-value function.

Training can be extremely brittle (and can even diverge as shown earlier).
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Figure 1 of "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Preprocessing: 210 x 160 128-color images are converted to grayscale and then resized to
84 x &4.
Frame skipping technique is used, i.e., only every 4 frame (out of 60 per second) is

considered, and the selected action is repeated on the other frames.
Frame stacking is utilizied — the input to the network are the last 4 frames (considering

only the frames kept by frame skipping), i.e., the network inpus is an image with 4

channels.
The network is fairly standard, performing
32 filters of size 8 X 8 with stride 4 and RelLU,

O

O 64 filters of size 4 X 4 with stride 2 and RelLU,
O 64 filters of size 3 X 3 with stride 1 and RelLU,
O
@)

fully connected layer with 512 units and Rel. U,
output layer with 18 output units (one for each action)
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® Network is trained with RMSProp to minimize the following loss:
ef o
L= E(s,0,r,s')~data [(r + [~done] - ymax, Q(s',a’;0) — Q(s, a; 0))2} :

® An e-greedy behavior policy is utilized (starts at € = 1 and gradually decreases to 0.1).
Important improvements:

e experience replay: the generated episodes are stored in a buffer as (s, a,r,s’) quadruples,

and for training a transition is sampled uniformly (off-policy training);
® separate target network @: to prevent instabilities, a separate target network is used to

estimate one-step returns. The weights are not trained, but copied from the trained network
after a fixed number of gradient updates;

® reward clipping: because rewards have wildly different scale in different games, all positive
rewards are replaced by +1 and negative by —1; life loss is used as an end of episode.

o furthermore, (r 4 [~done] - y maxy Q(s',a’;0) — Q(s,a;0)) is also clipped to
[—1, 1] (i.e., a smoothy, loss or Huber loss).
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Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax, Q(¢(s;),a; 0)
Execute action a; in emulator and observe reward r, and image x;  ;
Set s;4+1=S5¢,a¢,%:+1 and preprocess ¢, . ; =¢(s;+1)
Store transition ((/’)t,at,rt,qﬁt +1) in D
Sample random minibatch of transitions (qﬁ.,aj,rj,(/ﬁj +1) from D

tj if episode terminates at step j+ 1
Sety; = rj+y maxy Q(¢j+1,a’; 9_) otherwise

Perform a gradient descent step on (yj —Q <(/)-,aj; 9) ) ’ with respect to the
network parameters 0
Every C steps reset Q =Q
End For
End For

Semi-Gradient Off-policy Divergence DQN Rainbow DDQN Prioritized Replay Dueling Networks 28/66



Deep Q Network
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Figure 3 of "Human-level control through deep reinforcement learning” by Volodymyr Mnih et al.
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Extended Data Figure 2b of "Human-level control through deep reinforcement learning” by Volodymyr Mnih et al.
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Deep Q Networks Hyperparameters Vet

minibatch size 32

replay buffer size 1M

target network update frequency 10k

discount factor 0.99

training frames 50M
RMSProp learning rate and both momentums 0.00025, 0.95
initial €, final € (linear decay) and frame of final ¢ 1.0, 0.1, 1M
replay start size 50k

no-op max 30
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Rainbow
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Rainbow

There have been many suggested improvements to the DQN architecture. In the end of 2017,
the Rainbow: Combining Improvements in Deep Reinforcement Learning paper combines 6 of

them into a single architecture they call Rainbow.

Median human-normalized score

200%

100%

0%

DQN
DDQN

A3C

Prioritized DDQN
Dueling DDQN /

Distributional DQN
Noisy DQN
Rainbow /

Off-policy Divergence

44 100 200
Millions of frames

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Double Deep Q-Network
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Q-learning and Maximization Bias Uz

Because behaviour policy in Q-learning is e-greedy variant of the target policy, the same
samples (up to e-greedy) determine both the maximizing action and estimate its value.

100%
N(-0.1,1)
(8)— ;

75%! left right
% left
actions  50%r Q-learning
from A

\ Double
o590, | Q- Iearnlng
\\'\’N‘\"‘“\f«wx/\m\
5% - — - - — - ____ MM Ay e et i et S o - optimal
Ot. . . .
1 100 200 300

Episodes

Figure 6.5 of "Reinforcement Learning: An Introduction, Second Edition".
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Double Q-learning Uz

Double Q-learning, for estimating ()1 ~ ()2 ~ .

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q1(s,a) and Q2(s,a), for all s € §,a € A(s), such that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + Q)2
Take action A, observe R, S’
With 0.5 probabilility:

Q1(S, 4)  Qi1(S, 4) + o R +7Qs(S', argmax, Qu (8", @) — Q1(S, 4))
else:

Qa(S, 4) « Q(S, 4) + (R +7Q: (S, argmax, Qa(S', @) — Qa(S, 4) )
S5

until S is terminal

Moditfication of Algorithm 6.7 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).
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Rainbow DQN Extensions U

Double Deep Q-Network

Similarly to double Q-learning, instead of

r+ymaxQ(s',a’;8) — Q(s, 0 6),

we minimize

r _|_ny( argmax Q(S CL 0) 0) — Q(Saa; 9)

E max, Q —Vi(s)
10 l mm Q(s,argmax, Q(s a)) — Vi(s)
0.0 H 'o '1
\/

v o P

error

0 0
<1

number of actions
Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €4 and the errors {¢, }_; are independent standard
normal random variables. The second set of action values
Q)’', used for the blue bars, was generated identically and in-

dependently. All bars are the average of 100 repetitions.
Figure 1 of "Deep Reinforcement Learning with Double Q-learning” by Hado van Hasselt et al.
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Rainbow DQN Extensions Uz

Double Deep Q-Network

True value and an estimate All estimates and max Bias as function of state Average error

max, Q¢(s,a) — max, Q«(s,a) 1061

1
0 —0.02
1 Double-Q estimate
max, Q¢(s,a) — max, Q«(s,a) 10.47
0 - — +0.02
] Double-Q estimate
1 1
4 4 \ ! 4
Qi(s,a) I v max, Q:(s,a) 1
2 2 VoSN 2 +3.35
1 v — v 1
0 - - = 0 = — NS ‘ 0 —0.0¢
Q(s,a) Double-Q estimate 0:02
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
state state state

Figure 2: Illustration of overestimations during learning. In each state (x-axis), there are 10 actions. The left column shows the true values
V. (s) (purple line). All true action values are defined by Q. (s, a) = Vi(s). The green line shows estimated values Q(s, a) for one action
as a function of state, fitted to the true value at several sampled states (green dots). The middle column plots show all the estimated values
(green), and the maximum of these values (dashed black). The maximum is higher than the true value (purple, left plot) almost everywhere.
The right column plots shows the difference in orange. The blue line in the right plots is the estimate used by Double Q-learning with a
second set of samples for each state. The blue line is much closer to zero, indicating less bias. The three rows correspond to different true
functions (left, purple) or capacities of the fitted function (left, green). (Details in the text)

Figure 2 of "Deep Reinforcement Learning with Double Q-learning” by Hado van Hasselt et al.
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Rainbow DQN Extensions

Double Q-learning
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Figure 3 of "Deep Reinforcement Learning with Double Q-learning” by Hado van Hasselt et al.
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Double Q-learning

Performance on episodes taking at most 5 minutes and no-op starts on 49 games:

DQN  Double DQN
Median 93.5% 114.7%

Mean 241.1% 330.3%

Performance on episodes taking at most 30 minutes and using 100 human starts on each of the
49 games:

DQN  Double DQN  Double DQN (tuned)
Median 47.5% 88.4% 116.7%
Mean 122.0% 273.1% 475.2%

The Double DQN follows the training protocol of DQN; the tuned version increases the target
network update from 10k to 30k steps, decreases exploration during training from € = 0.1 to

e = 0.01, and uses a shared bias for all action values in the output layer of the network.
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Prioritized Replay
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Prioritized Replay

Instead of sampling the transitions uniformly from the replay buffer, we instead prefer those
with a large TD error. Therefore, we sample transitions according to their probability

W

Py X T—I—'}/mE/iJXQ(S/,a,;é) _Q(Saa;e) )

where w controls the shape of the distribution (which is uniform for w = 0 and corresponds to
TD error for w = 1).

New transitions are inserted into the replay buffer with maximum probability to support
exploration of all encountered transitions.

When combined with DDQN, the probabilities are naturally computed as

w

pe o |r+Q(s', argmax Q(s',a';0);0) — Q(s,a; )]

Prioritized Replay
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Prioritized Replay
Because we now sample transitions according to p; instead of uniformly, on-policy distribution
and sampling distribution differ. To compensate, we therefore utilize importance sampling with

ratio
B
1/N
D¢

The authors utilize in fact “for stability reasons”

Pt/ hax p;.
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Prioritized Replay

Algorithm 1 Double DQN with proportional prioritization

1: Input: minibatch k, step-size n, replay period K and size /N, exponents « and (3, budget T'.
2: Initialize replay memory H =0, A = 0,p; =1

3: Observe Sy and choose Ay ~ 7y(Sp)

4: fort =1to 7T do

5 Observe S;, R, V¢
6:  Store transition (S;_1, A¢_1, R¢, e, S¢) in H with maximal priority p; = max;<¢ p;
7. if t=0 mod K then
8: for ) =1to kdo
9: Sample transition j ~ P(j) = p$/ >, pf
10: Compute importance-sampling weight w; = (N - P(j )P / max; w;
11: Compute TD-error §; = R + v Qurget (55, argmax, Q(5;,a)) — Q(S;j—-1,4;-1)
12: Update transition priority p; < |d;|
13: Accumulate weight-change A <— A+ w; - §; - VoQ(Sj—1,A4;_1)
14: end for
15: Update weights 6 <— 6 +n - A, reset A =0
16: From time to time copy weights into target network Orger < 0
17:  end if
18:  Choose action A; ~ 7y (.S¢)
19: end for

Semi-Gradient Off-policy Divergence DQN Rainbow DDQN Prioritized Replay Dueling Networks
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Dueling Networks
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Rainbow DQN Extensions Uz

Dueling Networks

Instead of computing directly Q(s, a;8), we compose it from the following quantities:

® average return in a given state s, V(s;0) = I_jl\ >, Q(s,a;0),

® advantage function computing an advantage Q(s,a;0) — V (s;0) of action a in state s.

55

b= I>4

Figure 1 of "Dueling Network Architectures for Deep Reinforcement Learning” by Ziyu Wang et al.

Q(s,a) = V(£(5:0)5m) + A(F(550), a39) — Laea A({j; ),4'39)
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Dueling Networks

CORRIDOR ENVIRONMENT 5 ACTIONS 10 ACTIONS 20 ACTIONS

10°

No. Iterations

10°

No. IteratiorTs
(a) (b) (c) (d)

Figure 3. (a) The corridor environment. The star marks the starting state. The redness of a state signifies the reward the agent receives
upon arrival. The game terminates upon reaching either reward state. The agent’s actions are going up, down, left, right and no action.
Plots (b), (¢) and (d) shows squared error for policy evaluation with 5, 10, and 20 actions on a log-log scale. The dueling network

(Duel) consistently outperforms a conventional single-stream network (Single), with the performance gap increasing with the number of
actions.

No. Iterations

Evaluation is performed using e-greedy exploration with € = 0.001; in the experiment, the
horizontal corridor has a length of 50 steps, while the vertical sections have both 10 steps.
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Rainbow DQN Extensions Uz

Dueling Networks

VALUE ADVANTAGE

E=iNsion E=illsion

VALUE ADVANTAGE

E=iMEion E=iMlsion

Figure 2 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Dueling Networks

Results on all 57 games (retraining the original DQN on the 8 missing games). Single refers
to DDQN with a direct computation of Q(s,a;0), Single Clip corresponds to additional

gradient clipping to norm at most 10 and larger first hidden layer (so that duelling and single
have roughly the same number of parameters).

30 no-ops Human Starts

Mean Median Mean Median
Prior. Duel Clip | 591.9% 172.1% | 567.0%  115.3%
Prior. Single 434.6%  123.7% | 386.7% 112.9%
Duel Clip 373.1% 151.5% | 343.8% 117.1%
Single Clip 341.2%  132.6% | 302.8% 114.1%
Single 307.3% 117.8% | 332.9% 110.9%
Nature DQN 227.9% 79.1% | 219.6% 68.5%

Dueling Networks
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Multi-step DQN
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Multi-step DQN

Instead of Q-learning, we use n-step variant of Q-learning, which estimates return as
n
- _
> YR, ++"maxQ(s',d';0).
a
i=1

This changes the off-policy algorithm to on-policy (because the “inner” actions are sampled
from the behaviour distribution, but should follow the target distribution); however, it is not

discussed in any way by the authors.
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Noisy Nets
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Noisy Nets

Noisy Nets are neural networks whose weights and biases are perturbed by a parametric
function of a noise.

The parameters @ of a regular neural network are in Noisy nets represented as
O~ u+o@e,

where € is zero-mean noise with fixed statistics. We therefore learn the parameters (u, o).
A fully connected layer y = wa + b with parameters (w, b) is represented in the following
way in Noisy nets:

Y = (”w—l_o-w@sw)w"'([ib‘l'o'b@sb).

Each o; ; is initialized to 2L where 1 is the number of input neurons of the layer in question,

N4D

and o is a hyperparameter; commonly 0.5.
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Noisy Nets

The noise € can be for example independent Gaussian noise. However, for performance reasons,
factorized Gaussian noise is used to generate a matrix of noise. If &; ; is noise corresponding to
a layer with n inputs and ™ outputs, we generate independent noise €; for input neurons,
independent noise €; for output neurons, and set

eij = f(ei)f(g;) for f(x)=sign(z)/|z|.

The authors generate noise samples for every batch, sharing the noise for all batch instances
(consequently, during loss computation, online and target network use independent noise).

Deep Q Networks
When training a DQN, e-greedy is no longer used (all policies are greedy), and all fully

connected layers are parametrized as noisy nets in both the current and target network (i.e.,
networks produce samples from the distribution of returns, and greedy actions still explore).
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Rainbow DQN Extensions

Noisy Nets

Baseline NoisyNet Improvement
Mean Median Mean Median (On median)

DQN 319 83 379 123 48%
Dueling 524 132 633 172 30%
A3C 293 80 347 94 18%
Table 1 of "Noisy Networks for Exploration" by Meire Fortunato et al.
Median score over games 160 Median score over games
80
140
¢ 60 o 120
S S 100
n n
c 40 - 80
© ~ ©
(=] (] © 60
Q A @
=20 A = a0
/I —— DON —— Dueling
0/ —— NoisyNet-DQN 20 —— NoisyNet-Dueling
0 50 100 150 200 00 50 100 150 200
Million frames Million frames

Figure 2 of "Noisy Networks for Exploration" by Meire Fortunato et al.
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Rainbow DQN Extensions Uz

Noisy Nets

Penultimate layer Last layer
=== beam_rider == beam_rider
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Figure 3: Comparison of the learning curves of the average noise parameter > across five Atari games
in NoisyNet-DQN. The results are averaged across 3 seeds and error bars (+/- standard deviation) are
plotted.

Figure 3 of "Noisy Networks for Exploration" by Meire Fortunato et al.

1

The X is the mean-absolute of the noise weights 07y, i.e., ¥ = ——||oy]|1.
ayer size
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Distributional RL
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Distributional RL

Instead of an expected return (s, a), we could estimate the distribution of expected returns
Z(s,a) — the value distribution.

The authors define the distributional Bellman operator 7™ as:
T"Z(s,a) = R(s,a) +~vZ(S',A") for §' ~p(s,a),A ~ n(S).

The authors of the paper prove similar properties of the distributional Bellman operator
compared to the regular Bellman operator, mainly being a contraction under a suitable metric

(for Wasserstein metric W), the authors define Wy (21, Z5) = sup, , Wp(Z1(s,a), Z»(s,a))
and prove that 7™ is a y-contraction in W},).

59,/66



For two probability distributions u, v, Wasserstein metric Wp is defined as @

of . 1/p
W,(u,v) = inf (B llz — vyl
P(/’La ) el (u,0) ( (z,y) 7” yH ) 9
where I'(u, V) is a set of all couplings, each being a a joint probability distribution whose
marginals are p and v, respectively. A possible intuition is the optimal transport of probability

mass from u to v.

For distributions over reals with CDFs F', GG, the optimal transport has an analytic solution:

1-Wasserstein Distance lllustration

: 1/p s
44% (p,v) = ( / | F—l( q) — G—l( g d q) , o] T S istanee /'
0
where F~ ! and G~ are quantile functions, i.e., inverse CDFs. J

For p = 1, the 1-Wasserstein metric correspond to area “between” F and G, and in that case
we can compute it also as Wi (u, v f ’F )‘ de.
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Distributional RL

The distribution of returns is modeled as a discrete distribution parametrized by the number of
atoms IV € N and by Van, Vmax € R. Support of the distribution are atoms

€ . . . V —V
{z deVM1N+zAz:O§z<N} for Az & MA]?\if_lMIN

The atom probabilities are predicted using a softmax distribution as

. . efi(saa;e)
Zg(s,a) = < z; with probability p; = Zj a0 (-
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Distributional RL

After the Bellman update, the support of the distribution
R(s,a) +vZ(s',a’) is not the same as the original support. We

therefore project it to the original support by proportionally
mapping each atom of the Bellman update to immediate neighbors

in the original support.

N |["° + | — 2
®(R(s,a) +vZ(s',a’) d:ef Z 1— A:IN p;(s',a).
=11 1o

The network is trained to minimize the Kullbeck-Leibler divergence between the current
distribution and the (mapped) distribution of the one-step update

Dxr, (<I> (R+~vZ5(s', arg max EZg(s',a'))) H Z (s, a)) :

Semi-Gradient Off-policy Divergence DQN Rainbow DDQN Prioritized Replay Dueling Networks
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Rainbow DQN Extensions Uz

Distributional RL
Algorithm 1 Categorical Algorithm

input A transition x;, a;, ¢, Ti 11, v € [0, 1]
Q($t+1, CL) = ZZ ZiPi ($t+1, a)
a* < arginax, Q(xt-i-l) a)
m; =0, ¢€0,...,N—1
forj€0,..., N—1do
# Compute the projection of 7'zj onto the support { z; }
Tzj = [re + vz
bj < (7'Zj — VMIN)/AZ #bj € [O,N — 1]
L= [b;], u < [b;]
# Distribute probability of 7'zj
my < my + pi(xit1,a”)(u — by)
My = My + Pj(Te41,0") (b — 1)
end for
output — > . m;logp;(x¢,a;) # Cross-entropy loss

Algorithm 1 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Distributional RL

Mean | Median | >H.B. | >DQN
DQN 228% 79% 24 0
DDQN 307 % 118% 33 43
DUEL. 373% 151% 37 50
PRIOR. 434% 124% 39 48
PR. DUEL. | 592% 172% 39 44
C51 701 % 178 % 40 50
N Laser
Left+Laser
z Right+Laser
2 B right
& Left mm

Figure 4. Learned value distribution during an episode of SPACE
INVADERS. Different actions are shaded different colours. Re-
turns below O (which do not occur in SPACE INVADERS) are not
shown here as the agent assigns virtually no probability to them.

I Noop
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l ]
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Distributional RL
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Figure 18. SPACE INVADERS: Top-Left: Multi-modal distribution with high uncertainty. Top-Right: Subsequent frame, a more certain
demise. Bottom-Left: Clear difference between actions. Bottom-Middle: Uncertain survival. Bottom-Right: Certain success.
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Distributional
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Figure 3 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

Figure 3. Categorical DQN: Varying number of atoms in the discrete distribution. Scores are moving averages over 5 million frames.
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