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Partially Observable MDPs

 Recall that a partially observable Markov
decision process extends the Markov decision
process to a sextuple , where

the MDP components

 is a set of states,

 is a set of actions,

is a probability that action  will lead

from state  to , producing a reward ,

 is a discount factor,

are extended by:

 is a set of observations,

 is an observation model, where observation  is used as agent input

instead of the state .
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Partially Observable Stochastic Game

 

Figure 1.3 of "Cooperative Multi-Agent Reinforcement
Learning",

https://dspace.cuni.cz/handle/20.500.11956/127431

A partially observable stochastic game (POSG) is a 9-tuple 

, where

 is the set of all possible states,

 is the number of agents,

 is the set of all possible actions for agent , with 

,

 is the set of all possible observations for agent ,

 is the reward function for agent ,

 is the observation model for agent , a distribution of

observing  after performing action  leading to state ,

 is the transition model,

 is the initial state distribution,

 is a discount factor.
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Partially Observable Stochastic Game

 

Figure 1.3 of "Cooperative Multi-Agent Reinforcement
Learning",

https://dspace.cuni.cz/handle/20.500.11956/127431

We denote

joint actions/policy/observation across all agents as vectors

joint actions/policy/observation for all agents but agent  as

a =def (a , … , a ) ∈1 N A ,Π

i

a−i =def (a , … , a , a , … , a ),1 i−1 i+1 N
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Agent-Environment Cycle Game

However, when actually implementing POSG, various ambiguities exist in the order of execution.
Therefore, agent-environment cycle game (AECG) has been proposed, 
a 12-tuple  where

 is the set of all possible states,

 is the number of agents, including  for “environment” agent; ,

 is the set of all possible actions for agent , with , ,

 is the set of all possible observations for agent ,

 is the reward distribution for agent ,

 is the deterministic transition function for agent ,

 is the transition function for the environment,

 is the observation model for agent ,

 is the next agent function,

 is the initial state,

 is the initial agent,  is a discount factor.
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Agent-Environment Cycle Game

 

Figure 1.3 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

 

Figure 1.4 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

It holds that for every POSG, there is an equivalent AECG, and vice versa.
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Game Settings

Depending on the reward function, there are several game settings:

fully cooperative, when ,

cooperative, when ,

competitive, when ,

zero-sum, when ,

∀i, ∀j : R (s  ,a  , s  ) =i
t t t+1 R (s  ,a  , s  )j

t t t+1
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t t t+1
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t t t+1
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i
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The MARL Problem

We define a trajectory  as a sequence of states and actions

where:

,

,

.

A return for an agent  and trajectory  is

τ

τ =def (s  ,a  , s  ,a  , s  , …),0 0 1 1 2
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The MARL Problem

For a given policy , the expected return for agent  is

where a probability of a trajetory  is

For a given joing policy , best response is

π i

J (π)i =def E  [R (τ )],τ∼π
i
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The MARL Goal

It is unfortunately not clear what the goal of MARL should be, given that it is a multi-criterion
optimization problem.

One possibility is to seek for Nash equilibrium, which is a joint policy  fulfilling

In other words,  is a best response to  for all agents .

A Nash equilibrium exists for any finite game (finite number of players, each with a finite
number of strategies). Unfortunately, there can be multiple Nash equilibria with different payoffs
(Nash equilibrium is just a “local” optimum).

Stag hunt

A\B Stag Rabbit

Stag 2\2 0\1

Rabbit 1\0 1\1

 Prisoner's dilemma

A\B Stay silent Testify

Stay silent 1\1 3\0

Testify 0\3 2\2

π  ∗

∀i ∈ [N], ∀π :i J (π  ) ≥i
∗ J (π ,π  ).i i

∗
−i

π  ∗
i π  ∗

−i i
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MARL Training Schemes

Centralized Scheme
 

Figure 3.1 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

A joint model for all agents, a single critic.
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MARL Training Schemes

Concurrent/Parameter-Sharing Scheme
 

Figure 3.2 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

 

Figure 3.3 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

Each agent is trained independently. When the agents are homogenous, their models can be
optionally shared (the parameter-sharing scheme).

However, the environment is then non-stationary, and using a replay buffer is problematic
because of changing policies of other agents.
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MARL Training Schemes

Centralized Training with Decentralized Execution
 

Figure 3.4 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

Quite a common model, where the agents are independent, but the critics get the observations
and actions of all agents.
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Multi-Agent Deep Deterministic Policy Gradient

 

Figure 3.5 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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Multi-Agent Deep Deterministic Policy Gradient

 

Algorithm 3.1 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

Alternatively, in multi-agent
settings, in some experiments it
was beneficial to estimate the
gradient for the policy update
using the current policy instead
of the action from the replay
buffer; if the line 14 is changed
to

we talk about Soft MADDPG.

∇    Q  (ω,μ  (ω)),θ
i

∣B∣
1

ω

∑ φ
i

θ

15/40NPFL139, Lecture 14 MARL MARL Algorithms MARL Experiments HideAndSeek MERLIN CTF-FTW



Multi-Agent Twin Delayed DDPG

 

Figure 3.6 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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Multi-Agent Twin Delayed DDPG

 

Algorithm 3.2 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

We can again consider a Soft
MATD3 variant.

Furthermore, we can also use the
minimum of both critics during
policy update (shown to be
beneficial by DDPG++ and
SAC). The resulting algorithm is
called (Soft) MATD4.
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MARL Evaluation, Simple Target

 

Figure 6.1 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

 

Figure 6.2 of "Cooperative Multi-Agent Reinforcement Learning",
https://dspace.cuni.cz/handle/20.500.11956/127431

Reward is given for touching a landmark, and for unoccupied landmarks also for distance of the
nearest agent (orignally any agent, but easier variant is an agent not occupying a landmark).

The agents have non-negligible size and get negative reward for colliding.

Actions can be discrete (∅, ←, →, ↑, ↓; ST Gumbel-softmax is used) or continuous.

In the Simple Collect variant, the targets disappear after being occupied for some time, and a
new one appears on a random location.
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MARL Evaluation, Simple Target, Continuous Actions

 

Figure 6.4 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Target, Continuous Actions

 

Table 6.3 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Target, Discrete Actions

 

Figure 6.5 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Target, Discrete Actions

 

Table 6.4 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Confuse

 

Figure 6.3 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431

Some number of cooperaing agents gets rewarded based on the minimum distance of any agent
to the target landmark; but are penalized based on the distance of a single adversary to the
target landmark.

The adversary gets rewarded based on its distance to the target landmark; however, it does not
know which landmark is the target one.

Actions can be again either discrete or continuous.
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MARL Evaluation, Simple Confuse, Continuous Actions

 

Figure 6.6 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Confuse, Continuous Actions

 

Table 6.5 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Confuse, Discrete Actions

 

Figure 6.7 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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MARL Evaluation, Simple Confuse, Discrete Actions

 

Table 6.6 of "Cooperative Multi-Agent Reinforcement Learning", https://dspace.cuni.cz/handle/20.500.11956/127431
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Multi-Agent Hide-and-Seek

As another example, consider https://openai.com/blog/emergent-tool-use/.
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MERLIN

In a partially-observable environment, keeping all information in the RNN state is substantially
limiting. Therefore, memory-augmented networks can be used to store suitable information in
external memory (in the lines of NTM, DNC, or MANN models).

We now describe an approach used by Merlin architecture (Unsupervised Predictive Memory in
a Goal-Directed Agent DeepMind Mar 2018 paper).

 

Figure 1a of "Unsupervised Predictive Memory in a Goal-Directed Agent",
https://arxiv.org/abs/1803.10760

 

Figure 1b of "Unsupervised Predictive Memory in a Goal-Directed Agent",
https://arxiv.org/abs/1803.10760

29/40NPFL139, Lecture 14 MARL MARL Algorithms MARL Experiments HideAndSeek MERLIN CTF-FTW



MERLIN – Memory Module

 

Figure 1b of "Unsupervised Predictive Memory in a Goal-
Directed Agent", https://arxiv.org/abs/1803.10760

Let  be a memory matrix of size .

Assume we have already encoded observations as  and previous

action . We concatenate them with  previously read vectors

and process them by a deep LSTM (two layers are used in the
paper) to compute .

Then, we apply a linear layer to , computing  key vectors 

 of length  and  positive scalars .

Reading: For each , we compute cosine similarity of  and all memory rows , multiply

the similarities by  and pass them through a  to obtain weights . The read vector

is then computed as .

Writing: We find one-hot write index  to be the least used memory row (we keep usage

indicators and add read weights to them). We then compute , and

retroactively update the memory matrix using .

M N  ×mem 2∣e∣

e  t

a  t−1 K

h  t

h  t K

k  , … ,k  1 K 2∣e∣ K β  , … , β  1 K

i k  i M  j

β  i softmax ω  i

Mω  i

v  wr

v  ←ret γv  +ret (1 − γ)v  wr

M ← M + v  [e  , 0] +wr t v  [0, e  ]ret t
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MERLIN — Prior and Posterior

However, updating the encoder and memory content purely using RL is inefficient. Therefore,
MERLIN includes a memory-based predictor (MBP) in addition to policy. The goal of MBP is
to compress observations into low-dimensional state representations  and storing them in

memory.

We want the state variables not only to faithfully represent the data, but also emphasise
rewarding elements of the environment above irrelevant ones. To accomplish this, the authors
follow the hippocampal representation theory of Gluck and Myers, who proposed that
hippocampal representations pass through a compressive bottleneck and then reconstruct input
stimuli together with task reward.

In MERLIN, a (Gaussian diagonal) prior distribution over  predicts next state variable

conditioned on history of state variables and actions , and

posterior corrects the prior using the new observation , forming a better estimate 

.

z

z  t

p(z  ∣z  , a  , … , z  , a  )t
prior

t−1 t−1 1 1

o  t

q(z  ∣o  , z  , z  , a  , … , z  , a  ) +t t t
prior

t−1 t−1 1 1 z  t
prior
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MERLIN — Prior and Posterior

To achieve the mentioned goals, we add two terms to the loss.

We try reconstructing input stimuli, action, reward and return using a sample from the state
variable posterior, and add the difference of the reconstruction and ground truth to the loss.

We also add KL divergence of the prior and the posterior to the loss, to ensure consistency
between the prior and the posterior.

 

Figure 1c of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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MERLIN — Algorithm

 

Algorithm 1 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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MERLIN

 

Figure 2 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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MERLIN

 

Figure 3 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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MERLIN

 

Extended Figure 3 of "Unsupervised Predictive Memory in a Goal-Directed Agent", https://arxiv.org/abs/1803.10760
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For the Win agent for Capture The Flag

 

Figure 2 of "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

Extension of the MERLIN architecture.

Hierarchical RNN with two timescales.

V-Trace with both clipping factors set to 1 is used.

Rewards for 13 pre-defined events (picking a flag, returning a flag, tagging/being tag
with/without a flag, …) are learned by the agent.

Population based training controlling KL divergence penalty weights, internal dense rewards,
slow ticking RNN speed, and gradient flow factor from fast to slow RNN.

In every game, teams of similarly skilled agents were selected, and the authors state it is
crucial to employ several agents instead of just one (30 simultaneously trained agents are
used).
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For the Win agent for Capture The Flag

 

Figure S10 of "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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For the Win agent for Capture The Flag

 

Figure 4 of "Human-level performance in first-person multiplayer games with population-based deep reinforcement learning" by Max Jaderber et al.
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