NPFL139, Lecture 13

PlaNet, ST and Gumbel-softmayx,
DreamerV2, DreamerV3

Milan Straka

= May 13, 2024

Charles University in Prague

4 *
F/,L a EUROPEAN UNION Faculty of Mathematics and Physics

. : : .
A LANGTECH Oranionat Prooramme e Institute of Formal and Applied Linguistics

U=
st

Development and Education un |eSS Ot herWISG St a ted

PlaNet Fx

In Nov 2018, an interesting paper from D. Hafner et al. proposed a Deep Planning Network
(PlaNet), which is a model-based agent that learns the MDP dynamics from pixels, and then
chooses actions using a CEM planner utilizing the learned compact latent space.

The PlaNet is evaluated on selected tasks from the DeepMind control suite

(a) Cartpole (b) Reacher (c) Cheetah (d) Finger (e) Cup (f) Walker

Figure 1 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV/2 @ 2Model @"2Policy @3 2/46

In PlaNet, partially observable MDPs following the stochastic dynamics are considered:

The main goal is to train the first three — the transition function, the observation function, and

the reward function.

PlaNet

transition function:
observation function:
reward function:

policy:

st ~ p(8¢|St—1,a¢-1),

(3t)7
ry ~ P(Tt St)
(

atg ~ p at‘0<t7 a<t)

3/46

Algorithm 1: Deep Planning Network (PlaNet)

Input:

R Actionrepeat p(s¢ | st—1,a¢—1) Transition model
S Seed episodes p(o: | s¢) Observation model
C' Collect interval p(r¢ | s¢) Reward model

B Batch size q(st | o<t,a<¢) Encoder

L Chunk length p(e) Exploration noise

a Learning rate

1 Initialize dataset D with S random seed episodes.
2 Initialize model parameters 6 randomly.
3 while not converged do

// Model fitting
4 for update step s = 1..C do

5 Draw sequence chunks { (o, az,)L F}E, ~ D
uniformly at random from the dataset.

6 Compute loss £(6) from Equation 3.

7 Update model parameters 6 < 6 — aVyL(6).

// Data collection
8 01 ¢ env.reset ()

9 for time step t = 1.. (%1 do

10 Infer belief over current state ¢(s; | o<y, a<) from
the history.

1 a; < planner (q(s; | o<¢, a<t),p) . see
Algorithm 2 in the appendix for details.

2 Add exploration noise € ~ p(¢) to the action.

13 for action repeat k = 1..R do

14 ‘ rf,ofH < env.step (as)

15 Te, 0441 ZkRzl rF 054-1

16 ’D(—DU{(Ot;atart)fT:l}

Because an untrained agent will most likely not cover all needed
environment states, we need to iteratively collect new experience
and train the model. The authors propose S = 5, C' = 100,

B =50, L = 50, R between 2 and 8.

For planning, CEM algorithm (capable of solving all tasks with a
true model) is used; H = 12, I = 10, J = 1000, K = 100.

Algorithm 2: Latent planning with CEM

Input: H Planning horizon distance q(st | 0<¢,a<t) Current state belief
I Optimization iterations p(st | $t—1,a:—1) Transition model
J Candidates per iteration p(re | s¢) Reward model

K Number of top candidates to fit

1 Initialize factorized belief over action sequences ¢(a.¢+#) < Normal(0, I).
2 for optimization iteration i = 1..1 do
// Evaluate J action sequences from the current belief.

3 for candidate action sequence j = 1..J do

4 ai:jt)-o—H ~ q(ase+n)

s s 1~ a(se | onay aram) TIEE psy | sro1,al)))
‘ RO = S Blp(r, | 57))

// Re-fit belief to the K best action sequences.
i)\
7 K+ argsort({R(”}](-;l)lzK o
1 1
8 Htt+H = ¢ Zke)c Quiygy Ott+H = -1 Zke)c ‘at:t+H — sty H|-
9 | qawiym) < Normal(peim, 054 g 1)
10 return first action mean [i;.

PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV?2 @ 2Model @ 2Policy @3

4/46

First let us consider a typical latent-space model,
consisting of

transition function: s; ~ p(s¢|ss—1,a:1)

(d) Deterministic model (RNN) (b) Stochastic model (SSM) (c) Recurrent state-space model (RSSM)

observation function: Oy ~ p(ot\st),

reward function: 7 ~ p(r¢|ss).

The transition model is Gaussian with mean and variance predicted by a network, the
observation model is Gaussian with identity covariance and mean predicted by a deconvolutional
network, and the reward model is a scalar Gaussian with unit variance and mean predicted by a
neural network.

To train such a model, we turn to variational inference, and use an encoder

T)
q(su.r|onT,arr—1) = | [,_; 9(8t|8t—1, a1, 0¢), which is a Gaussian with mean and variance
predicted by a convolutional neural network.

LatentModel

5/46

Using the encoder, we obtain the following variational lower bound on the log-likelihood of the
observations (for rewards the bound is analogous):

log P(01:T |a1:T)

— log/Hp(st\st—l,at—l)P(0t|3t)dsl:T
t

> Z (I\Eq(st0<t,a<t) lng(Ot‘StZ - Eq(st_1|o§t_1,a<t_1)DKL (Q(St |0§t7 a’<t) Hp(st‘st—la a't—l))) y

t=1 ~~ N ~ /

reconstruction complexity

We evaluate the expectations using a single sample, and use the reparametrization trick to allow
backpropagation through the sampling.

LatentModel 6/46

To derive the training objective, we employ importance sampling and the Jensen’s inequality:
log p(o1.7|ay.7)

T
= log Ep(s,.0/a1) Hp 0t|5t)
t=1

N

— 1OgE (s1r|ovr,arT) Hp Ot|3t 8t|3t—17 at—l)/Q(3t|0§t7 a’<t)
t=1
T
> Ey(si|ovrarr) Zlogp(ot\st) + log p(st]st-1,a:-1) — log q(s¢|o<t, a<y)
t=1
T
B Z (EE a(stlo<y,a-r) 108 p(0t|st2 ~ Bo(sislocracn) DKL (‘J(St\oéh a<t)|[p(st|st-1, at—1)),)'

t N

1 ~\” \”

reconstruction complexity

LatentModel 7/46

The purely stochastic transitions struggle to store information for multiple timesteps. Therefore,
the authors propose to include a deterministic path to the model (providing access to all
previous states), obtaining the recurrent state-space model (RSSM):

~__l
4

'
l
\

(a) Deterministic model (RNN) (b) Stochastic model (SSM) (c) Recurrent state-space model (RSSM)

deterministic state model: h; = f(ht_1,8:1,a:-1),

stochastic state function: s; ~ p(s; ht),

(
observation function: o; ~ p(o:|hy, st),
reward function: 7, ~ p(r:|h:, s¢),
(

encoder: g ~ q(s¢|ht,0).
RSSM 8/46

Table 1: Comparison of PlaNet to the model-free algorithms A3C and D4PG reported by Tassa et al. (2018). The training
curves for these are shown as orange lines in Figure 4 and as solid green lines in Figure 6 in their paper. From these, we
estimate the number of episodes that D4PG takes to achieve the final performance of PlaNet to estimate the data efficiency
gain. We further include CEM planning (H = 12,1 = 10, J = 1000, K = 100) with the true simulator instead of learned
dynamics as an estimated upper bound on performance. Numbers indicate mean final performance over 5 seeds and 10

trajectories.
e,
[P)
g En E E S = 8
T .5 éé o $ = &0 = a8 ==
. . SR 2 O =2 £33 =2z &
Method Modality Episodes © »n &H& O Ew Q0 B2
A3C proprioceptive 100,000 558 285 214 129 105 311
D4PG pixels 100,000 862 967 524 985 980 968
PlaNet (ours) pixels 1,000 821 832 662 700 930 951
CEM + true simulator simulator state 0 850 964 656 825 993 994
Data efficiency gain PlaNet over D4PG (factor) 250 40 500+ 300 100 90

RSSM

9/46

PlaNet — Ablations Urzt

Cartpole Swing Up Reacher Easy Cheetah Run
1000 1000 1000

800 A 800 A 800 A

600 - 600 A

400 A

2004 0 200

0 T T T 0 0 T T T
5 250 500 750 1000 5 250 500 750 1000 5 250 500 750 1000
Finger Spin Cup Catch Walker Walk
1000 Fe===mmmmmmmme=e==——1 1000 Femmmme——e e 1000
800 - 800 - ' 800 -
600 /\/ 600 - 600 -
400 - 400 4. 400 -
200 - 200 -] 200 -
0 1 1 1 0 1 1 1 O T T T
5 250 500 750 1000 5 250 500 750 1000 5 250 500 750 1000
—— PlaNet (RSSM) —— Stochastic (SSM) —==- DA4PG (100k episodes) .
—— Deterministic (GRU) —== A3C (100k episodes, proprio)

Figure 4 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV2 @ 2Model @ 2Policy @ 10/46

PlaNet — Ablations Urzt

Cartpole Swing Up Reacher Easy Cheetah Run
1000 1000 1000
800 800 800
600 600 600
400 A 400 400
200 - 200 - 200 -
0 T T T 0 - T T T 0 T T T
5 250 500 750 1000 5 250 500 750 1000 5 250 500 750 1000
Finger Spin Cup Catch Walker Walk
1000 Fe===c=ssrssss s s 1000 Eepen e 1000
800 800 ‘ 800
600 600 600
400 - 400 - 400 -
200 200 200
0 T T T 0 T T T 0 T T T
5 250 500 750 1000 5 250 500 750 1000 5 250 500 750 1000
—— PlaNet =~ —— Random collection = === D4PG (100k episodes) _
—— Random shooting ——== A3C (100k episodes, proprio)

Figure 5 of "Learning Latent Dynamics for Planning from Pixels", https://arxiv.org/abs/1811.04551

Random collection: random actions; random shooting: best action out of 1000 random segs.

NPFL139, Lecture 13 JEEE\E: LatentModel RSSM ST Gumbel-Softmax DreamerV/2 &"2Model &"2Policy &% 11/46

Consider that we would like to have discrete neurons on the hidden layer of a neural network.

Note that on the output layer, we relaxed discrete prediction (i.e., an arg max) with a
continuous relaxation — softmax. This way, we can compute the derivatives and also predict
the most probable class. (It is possible to derive softmax as an entropy-regularized arg max.)

However, on a hidden layer, we also need to sample from the predicted categorical distribution,
and then backpropagate the gradients.

ST 12/46

Stochastic Gradient Estimators

3) (©)]

£ Viog Py(2)

l/'\([)

<> Deterministic,
differentiable node
O Stochastic node

T Forward pass

JIPy(Z)

a0

dlogPy(Y)
a0

i Backpropagation

Figure 2: Gradient estimation in stochastic computation graphs. (1) Vg f(z) can be computed via
backpropagation if x(6) is deterministic and differentiable. (2) The presence of stochastic node
z precludes backpropagation as the sampler function does not have a well-defined gradient. (3)
The score function estimator and its variants (NVIL, DARN, MuProp, VIMCO) obtain an unbiased
estimate of Vg f(x) by backpropagating along a surrogate loss f log py(z), where f = f(x) — b and
b is a baseline for variance reduction. (4) The Straight-Through estimator, developed primarily for
Bernoulli variables, approximates Vyz ~ 1. (5) Gumbel-Softmax is a path derivative estimator for
a continuous distribution y that approximates z. Reparameterization allows gradients to flow from

f(y) to 6. y can be annealed to one-hot categorical variables over the course of training.
Figure 2 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV/2 @ 2Model @ 2Policy @ 13/46

Consider a model with a discrete categorical latent variable z sampled from p(z;0), with a loss
L(z;w). Several gradient estimators have been proposed:

® A REINFORCE-like gradient estimation.
Using the identity Vgp(2z;0) = p(2;0)Vglogp(z;0), we obtain that

VoE. [L(z;w)] = E. [L(z;w)Valogp(z;0)].
Analogously as before, we can also include the baseline for variance reduction, resulting in
VoE: |L(z;w)] = E; [(L(2;w) — b) Ve logp(z; 0)].

® A straight-through (ST) estimator.

The straight-through estimator has been proposed by Y. Bengio in 2013. It is a biased
estimator, which assumes that Vgz ~ Vgp(z; @), which implies V,,.gyz ~ 1. Even if the

bias can be considerable, it seems to work quite well in practice.

ST 14/46

The Gumbel-softmax distribution was proposed independently in two papers in Nov 2016
(under the name of Concrete distribution in the other paper).

It is a continuous distribution over the simplex (over categorical distributions) that can
approximate sampling from a categorical distribution.

Let z be a categorical variable with class probabilities p = (p1,p2, ..., PK).

Recall that the Gumbel-Max trick (based on a 1954 theorem from E. J. Gumbel) states that we
can draw samples z ~ P using

z = one-hot (arg max (gz' + log Pi))7

where g; are independent samples drawn from the Gumbel(0, 1) distribution.

To sample g from the distribution Gumbel(0, 1), we can sample © ~ U(0, 1) and then
compute g = — log(— logu).

Gumbel-Softmax 15/46

Gumbel-Softmax Uz

To obtain a continuous distribution, we relax the arg max into a softmax with temperature T°
as

e(gi+10gpi)/T
Zj elgj+logp;)/T "

& =

As the temperature 1" goes to zero, the generated samples become one-hot, and therefore the
Gumbel-softmax distribution converges to the categorical distribution p(2).

a) 5 Categorical T=0.1 7=0.5 T=1.0 7 =10.0
k=
(s
)
b)
)
o
@

category
Figure 1 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV?2 @ 2Model @ Policy @ 16/46

The Gumbel-softmax distribution can be used to reparametrize the sampling of the discrete
variable using a fully differentiable estimator.

However, the resulting sample is not
discrete, it only converges to a discrete
sample as the temperature I" goes to zero.

If it is a problem, we can combine the
Gumbel-softmax with a straight-through
estimator, obtaining ST Gumbel-softmax, S

Deterministic,
differentiable node

Where we: () stochastic node
® discretize Yy as z = argmax y, I

(] ~ I
assume VH 2z~ VB y' orin Other Figure 2: Gradient estimation in stochastic computation graphs. (1) Vg f(z) can be computed via

d 8_2 ~ 1 backpropagation if x(6) is deterministic and differentiable. (2) The presence of stochastic node
words, 6y ~ . z precludes backpropagation as the sampler function does not have a well-defined gradient. (3)
The score function estimator and its variants (NVIL, DARN, MuProp, VIMCO) obtain an unbiased
estimate of Vy f(z) by backpropagating along a surrogate loss f log pg(z), where f = f(z) —band
b is a baseline for variance reduction. (4) The Straight-Through estimator, developed primarily for
Bernoulli variables, approximates Vgz = 1. (5) Gumbel-Softmax is a path derivative estimator for
a continuous distribution y that approximates z. Reparameterization allows gradients to flow from
f(y) to 8. y can be annealed to one-hot categorical variables over the course of training.

PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV/2 @ 2Model @ 2Policy @ 17/46

Gumbel-Softmax Estimator Results

Table 1: The Gumbel-Softmax estimator outperforms other estimators on Bernoulli and Categorical
latent variables. For the structured output prediction (SBN) task, numbers correspond to negative
log-likelihoods (nats) of input images (lower is better). For the VAE task, numbers correspond to
negative variational lower bounds (nats) on the log-likelihood (lower is better).

SF DARN MuProp ST Annealed ST Gumbel-S. ST Gumbel-S.

SBN (Bern.) | 72.0 59.7 58.9 58.9 58.7 58.5 59.3
SBN (Cat.) | 73.1 67.9 63.0 61.8 61.1 59.0 59.7
VAE (Bern.) | 112.2 1109 109.7 116.0 111.5 105.0 111.5
VAE (Cat.) | 110.6 128.8 107.0 110.9 107.8 101.5 107.8

Table 1 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144

Bernoulli SBN N, Categorical SBN

Bernoulli VAE Cateqgorical VAE

—— SF —— SF

—— DARN —+— SF —— SF

faud, ST —— DARN —+— DARN

—=— Slope-Annealed S —=— Slope-Annealed ST —— ST = ST

—— MuProp —— MuProp —=— Slope-Annealed ST —=— Slope-Annealed ST
o —+— Gumbel-Softmax kR0 —+— Gumbel-Softmax —— MuProp —— MuProp
8 ST Gumbel-Softmax] ST Gumbel-Softmax —+— Gumbel-Softmax —+— Gumbel-Softmax
< E ST Gumbel-Softmax ST Gumbel-Softmax
[l o
~ X R —
5 3 z 2
: g T T
§» ? < £
2" 2° g | g
> > <1 2
S =1 @ @
© © 10 :
=} o
9}] =
z z e I

e Rt SR
M ¢ NSRS w05 B e e T e S DD AD S
BRSPS
T e pa SRR
St
E) 0) EQ 0 0)
Steps (x1e3) Steps (x1e3)) 0 w0 0 T 20)
Steps (x1e3) Steps (x1e3)
(a) (b)
(@ (b)

Figure 3: Test loss (negative log-likelihood) on the structured output prediction task with binarized
MNIST using a stochastic binary network with (a) Bernoulli latent variables (392-200-200-392) and 1 . . .
. . atent variables (784 — 200 — 784) and (b) categorical latent variables (784 — (20 x 10) — 200).
b) categorical latent variables (392-(20 x 10)-(20 x 10)-392).
(0 catee Figzire 3(of ”Cate)g(grica/ Re;aranzeterization with Gumbel-Softmax", Figure 4 of "Categorical Reparametzrizat{on with Gumtljje/—Softmax”,
https://arxiv.org/abs/1611.01144 ttps://arxiv.org/abs/1611.01144

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV/2 @ 2Model @"2Policy @3

Figure 4: Test loss (negative variational lower bound) on binarized MNIST VAE with (a) Bernoulli

18/46

Applications of Discrete Latent Variables UL

The discrete latent variables can be used among others to:

® allow the SAC algorithm to be used on discrete actions, using either Gumbel-softmax
relaxation (if the critic takes the actions as binary indicators, it is possible to pass not just
one-hot encoding, but the result of Gumbel-softmax directly), or a straight-through
estimator;

® model images using discrete latent variables
0 VQ-VAE, VQ-VAE-2 use “codebook loss” with a straight-through estimator

E1 92 83 EK

Embedding
Space

2,0 ~ q(z}x)

Encoder Decoder
Figure 1 of "Neural Discrete Representation Learning”, https://arxiv.org/abs/1711.00937

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV?2 @ 2Model @ Policy @ 19/46

Applications of Discrete Latent Variables UL

® VQ-GAN combines the VQ-VAE and Transformers, where the latter is used to generate a
sequence of the discrete latents.

real/fake
Codebook Z\ (Transformer I \ flr|f|r
0 — .IIIII il | ARANAN:
] p(S)ZHiP(3i|3<i) rl sl el f
. . +— - —[‘
e | | I aaaE
N
N-1 3
j o
\\ \
S CNN
S o Discriminator
\\
~
~

CNN
Decoder

argmin, cz |2 — 2|
>

Encoder

guantization

Figure 2 of "Taming Transformers for High-Resolution Image Synthesis", https://arxiv.org/abs/2012.09841

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV?2 @ 2Model @ Policy @ 20/46

PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV/2 @ 2Model @ 2Policy @ 21/46

Applications of Discrete Latent Variables — DALL-E UL

® |n DALL-E, Transformer is used to model a sequence of words followed by a sequence of
the discrete image latent variables.

The Gumbel-softmax relaxation is used to train the discrete latent states, with temperature
annealed with a cosine decay from 1 to 1/16 over the first 150k (out of 3M) updates.

\3

S

s 1 P

Lor a1y A ;
s eig Y

6.

(a) a tapir made of accordion.
a tapir with the texture of an
accordion.

NPFL139, Lecture 13 PlaNet

(b) an illustration of a baby (c¢) a neon sign that reads (d) the exact same cat on the
hedgehog 1in a christmas “backprop”. a neon sign that top as a sketch on the bottom
sweater walking a dog reads “‘backprop”. backprop
neon sign
Figure 2 of "Zero-Shot Text-to-Image Generation", https://arxiv.org/abs/2102.12092

LatentModel RSSM ST Gumbel-Softmax DreamerV?2 @ 2Model @"2Policy @ 22/46

DreamerV2 UL

The PlaNet model was followed by Dreamer (Dec 2019) Atari Performance

and DreamerV2 (Oct 2020), which train an agent using B Model-based
reinforcement learning using the model alone. After 200M B Model-free
environment steps, it surpasses Rainbow on a collection 1.6 1
of 55 Atari games (the authors do not mention why they 4 5 _
do not use all 57 games) when training on a single GPU
for 10 days per game.

2.0

Human Gamer
0.8 +

During training, a policy is learned from 486B compact 041
states “dreamed” by the model, which is 10,000 times 0.0 -

more than the 50|\/I ol?servatlons from the real Q}\O 0@* \Q$ 0Q$ Q}Q’\' N
environment (with action repeat 4). N QI;)\Q e@(ﬁ\ 6\((\
: < <
Interestingly, the latent states are represented as a vector © L AO o
. . . . igure 1 o astering Atari with Discrete VVorl oaels”,
of several categorical variables — 32 variables with 32 https: //arxiv.org/abs/2010.02193

classes each are utilized in the paper.

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV?2 @ 2Model @ Policy @ 23/46

DreamerV2 — Model Learning Uz

The model in DreamerV?2 is learned using the RSSM, collecting agent experiences of
observations, actions, rewards, and discount factors (0.995 within episode and 0 at an episode
end). Training is performed on batches of 50 sequences of length at most 50 each.

recurrent model: h; = f,(hi—1,8t-1,0:-1), * E 2 E

representation model: s; ~ g, (s¢|h, 1),
transition predictor: §; ~ 5| h (W TTT] |
P t ~ Po(5tlhe), man_snjl)
image predictor: I; ~ T hy. s EEEEE Ny
gep t pQO(t| ty t)7 EE EERlk:
reward predictor: 7 ~ p,(7¢|hs, St), Ry —
discount prediCtor: ’Vt ~ pQO (’S/t | ht) St) . Figure 2 of "Mastering Atari with Discrete World Models",

https://arxiv.org/abs/2010.02193

Algorithm 1: Straight-Through Gradients with Automatic Differentiation

sample = one_hot (draw(logits)) # sample has no gradient
probs = softmax(logits) # want gradient of this
sample = sample + probs — stop_grad(probs) # has gradient of probs

Algorithm 1 of "Mastering Atari with Discrete World Models", https: //arxiv.org/abs/2010.02193

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV2 @ 2Model @"2Policy @3 24 /46

The following loss function is used:

T
E(SO) — Eqw(sl;T\al;T,wl;T) [Z o]'nggo (',Et ’ht7 St)]'nggo (rt|ht7 St)]'nggo (’Yt|ht7 St)

t:]. \ - _J/
1mage\l:)g loss rewar(;Tog loss dlscount log loss
+BDxr, [QQO(St‘hta ;) Hpgo(st‘ht)] } :
KI?lross

In the KL term, we train both the prior and the encoder. However, regularizing the encoder
towards the prior makes training harder (especially at the beginning), so the authors propose
KL balancing, minimizing the KL term faster for the prior (¢ = 0.8) than for the posterior.

Algorithm 2: KL Balancing with Automatic Differentiation

kl _loss = alpha +* compute_kl (stop_grad(approx_posterior), prior)
+ (1 - alpha) * compute_kl (approx_posterior, stop_grad(prior))

PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV?2 @ 2Model @ 2Policy @3 25/46

DreamerV2 — Policy Learning Uz

The policy is trained solely from the model, ; ""1 rz as r4 A
starting from the encountered posterior states i
and then considering H = 15 actions simulated \/ \/ \/
o o //

in the compact latent state.

We train an actor predicting 7y, (a;|s;) and a
critic predicting

Ve (81) = By [2,0t (T iy 7)) -

The critic is trained by estimating the truncated
A-return as

x

Figure 3 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

(1= Nve(Zer) + AV, if t < H,

VA =r +
CTTY e () if ¢ = H.

and then minimizing the MSE.

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV2 @ 2Model @ "2Policy @ 26/46

The actor is trained using two approaches:

® the REINFORCE-like loss (with a baseline), which is unbiased, but has a high variance (even
with the baseline);

® the reparametrization of discrete actions using a straight-through gradient estimation, which
is biased, but has lower variance.

H-1 . \
L(Y) =Ep, 1, [Z (—plog Ty (at|st) stop_gradient(V;* — v, (st)z

t:]. N

NV
reinforce

~(1-pV) —nH(als))|

NV NV
dynamics backprop entropy regularizer

For Atari domains, authors use p = 1 and n = 1073 (they say it works “substantially better”),
while for continuous actions, p = 0 works “substantially better” (presumably because of the
bias in case of discrete actions) and 7 = 10™* is used.

@"2Policy 27/46

The authors evaluate on 55 Atari games. They argue that the commonly used metrics have
various flaws:
® gamer-normalized median ignores scores on half of the games,
® gamer-normalized mean is dominated by several games where the agent achieves super-
human performance by several orders.

They therefore propose two additional ones:
® record-normalized mean normalizes with respect to any registered human world record for
each game; however, in some games the agents still achieve super-human-record

performance;
® clipped record-normalized mean additionally clips each score to 1; this measure is used as

the primary metric in the paper.

@"2Policy 28/46

DreamerV2 — Results Uz

Gamer Median Gamer Mean Record Mean Clipped Record Mean
2.4 - 40 A 0-451 0.24 -
1.8 A 30 - 0.30 A 0.16 - - —
1.2 A 20 A 0.15 - 0.08
0.6 - 10 -
0.0 - 0 - 0.00 - 0.00 -

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
—— DreamerV2 —— IQN —— Rainbow C51 DQN le8

Figure 4 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

Agent Gamer Median Gamer Mean Record Mean Clipped Record Mean
DreamerV?2 2.15 42.26 0.44 0.28
DreamerV2 (schedules) 2.64 31.71 043 0.28
IMPALA 1.92 16.72 0.34 0.23
IQN 1.29 11.27 0.21 0.21
Rainbow 1.47 9.95 0.17 0.17
C51 1.09 8.25 0.15 0.15
DQN 0.65 3.28 0.12 0.12

Table 1 of "Mastering Atari with Discrete World Models", https://arxiv.org/abs/2010.02193

Scheduling anneals actor gradient mixing p (from 0.1 to 0), entropy loss scale, KL, Ir.

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV2 @ 2Model @ "2Policy @ 29/46

Latent Variables KL Balancing Image Gradients Reward Gradients

0.24 - 0.24 - 0.24 A 0.24 A

0.18 A 0.18 A 0.16 - 0.18 A

0.12 - 0.12 - 0.08 - 0.12 A

0.06 - 0.06 - 0.00 0.06 -

O'OO_I 1 1 1 1 O'OO_I 1 1 1 1 . 1 1 1 1 1 O.OO_I 1 1 1 1
0.0 0.5 1.01.5 2.0 0.0 0.5 1.01.5 2.0 0.0 0.5 1.01.5 2.0 0.0 0.5 1.0 1.5 2.0
—— Categorical —— Enabled —— Enabled — Enabled 1€8

Gaussian Disabled Disabled Disabled

Agent Gamer Median Gamer Mean Record Mean Clipped Record Mean

DreamerV?2 1.64 13.39 0.36 0.25

No Layer Norm 1.66 11.29 0.38 0.25

No Reward Gradients 1.68 14.29 0.37 0.24

No Discrete Latents 0.85 3.96 0.24 0.19

No KL Balancing 0.87 4.25 0.19 0.16

No Policy Reinforce 0.72 5.10 0.16 0.15

No Image Gradients 0.05 0.37 0.01 0.01

PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV?2 @ "2Model @ "2Policy @ 30/46

Categorical latent variables outperform Gaussian latent variables on 42 games, tie on 5 games
and decrease performance on 8 games (where a tie is defined as being within 5%).

The authors provide several hypotheses why could the categorical latent variables be better:

® (Categorical prior can perfectly match aggregated posterior, because mixture of categoricals
is categorical, which is not true for Gaussians.

® Sparsity achieved by the 32 categorical variables with 32 classes each could be beneficial for
generalization.

® (Contrary to intuition, optimizing categorical variables might be easier than optimizing
Gaussians, because the straight-through estimator ignores a term which would otherwise
scale the gradient, which could reduce exploding/vanishing gradient problem.

® (ategorical variables could be a better match for modeling discrete aspect of the Atari
games (defeating an enemy, collecting reward, entering a room, ...).

@ "2Policy

31/46

Aleorithm Reward Image Latent Single Trainable Atari Accelerator
g Modeling Modeling Transitions GPU Parameters Frames Days

DreamerV?2 22M 200M 10
SimPLe X 74M 4M 40
MuZero X X 40M 20B 80
MuZero Reanalyze X X 40M 200M 80

World Model Behavior Common

Dataset size (FIFO) — 2-10% Imagination horizon H 15 Environment steps per update — 4

Batch size B 50 Discount ¥ 0.995 MPL number of layers — 4

Sequence length L 50 A-target parameter A 0.95 MPL number of units — 400

Discrete latent dimensions — 32 Actor gradient mixing p 1 Gradient clipping — 100

Discrete latent classes — 32 Actor entropy loss scale n 1-1073 Adam epsilon € 1075

RSSM number of units — 600 Actor learning rate — 4-1075 Weight decay (decoupled) — 106

KL loss scale B 0.1 Critic learning rate — 1-1074

KL balancing o 0.8 Slow critic update interval — 100

World model learning rate — 2.1074

Reward transformation — tanh

PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV/2 @ 2Model @ "2Policy @3 32/46

DreamerV3 UsL

Proprio Control Atari 100k BSuite Minecraft Diamond
18 Tasks 26 Tasks 23 Tasks
100 - 0.60 1 1
700 A > > =z >]
5 o 0.55 1 5 o c
600 = E a B E
o o S Kl Z
=) =) o f=§ 2
500 - 0.45 -
(O]
| - g
Visual Control Atari 200M Crafter 0
o
800 - 20 Tasks 300 - 55 Tasks 15 - 1 Task S
600 - 2 S B 2 — Max
o 2007 Ml © 101 7 G Mean
400 7 % % % EI % T T T T T
200 1 sy 1007 o K > il © 10K 100K 1M 10M 100M
) = O will O)
0 0- 0- Environment Steps

Figure 1: Using the same hyperparameters across all domains, DreamerV3 outperforms specialized
model-free and model-based algorithms in a wide range of benchmarks and data-efficiency regimes.
Applied out of the box, DreamerV3 also learns to obtain diamonds in the popular video game
Minecraft from scratch given sparse rewards, a long-standing challenge in artificial intelligence for
which previous approaches required human data or domain-specific heuristics.

Figure 1 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v1

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV/2 @ 2Model @ 2Policy @ 33/46

DreamerV3

———

-

vl

(c) DMLab (d) Minecraft

(a) Control Suite

Figure 2: Four visual domains considered in this work. DreamerV3 succeeds across these diverse
domains, ranging from robot locomotion and manipulation tasks over Atari games with 2D graphics

to complex 3D domains such as DMLab and Minecraft that require spatial and temporal reasoning.
Figure 2 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v1

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV/2 @ 2Model @ 2Policy @ 34 /46

DreamerV3

h,) > h,
4 Z3

(a) World Model Learning (b) Actor Critic Learning

Figure 3: Training process of DreamerV3. The world model encodes sensory inputs into a discrete
representation z; that is predicted by a sequence model with recurrent state h; given actions a;. The
inputs are reconstructed as learning signal to shape the representations. The actor and critic learn

from trajectories of abstract representations predicted by the world model.
Figure 3 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v1

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV/2 @ 2Model @ 2Policy @ 35/46

DreamerV3

Context Input Open Loop Prediction

True

Model

T=0 5 10 15 20 25 30 35 40 45 50

Figure 5: Multi-step video predictions in DMLab (top) and Control Suite (bottom). From 5 frames
of context input, the model predicts 45 steps into the future given the action sequence and without
access to intermediate images. The world model learns an understanding of the underlying 3D

structure of the two environments. Refer to Appendix H for additional video predictions.
Figure 5 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v1

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV?2 @ 2Model @ Policy @ 36/46

DreamerV3 Urzt
symlog(a:) def 31gn(x) log (|w| + 1)’ Transformations
of . 8 1— symlog
symexp(z) = sign(z) (exp(|z|) — 1). log
4 1 — identity
def 2 0
L£(6) = 5 (f(x;0) — symlog(y)) .
def —8 -
y — SymeXp (f(w; 9)) I I I I I
-12 -6 0 6 12
Figure 4: The symlog func-
tion compared to logarithm
and identity.
e O todes’, hespa. v org/abs /3508 04101
PlaNet LatentModel ~ RSSM ST Gumbel-Softmax DreamerV2 & Model @& %Policy @& 37/46

DreamerV3 UsL

RSSM sequence model: he = fo(he—1,8t-1,a:-1),

RSSM encoder: ~ q,(8¢|he, 1),

RSSM dynamics predictor: §; ~ p,(5:|h:),
decoder: Tt ~ Dy (Zt|ht, t),
reward predictor: Fe ~ Dy (Tt e,y 8t),
continue predictor: ; ~ p,(Y¢|he, St).

NPFL139, Lecture 13 PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV/2 @ 2Model @ 2Policy @ 38/46

qu [Z ﬂpredﬁpred "‘ @Edyn() T @Erep(‘)o))},
t=1 1 0 0.5 0.1

Epred(S") = _logpso(wtvbta St) — 10gpcp(7°t\ht, St) — 10gp<p(7t|hta St)a

£dyn(‘P) = max (1 DKL(sg(o(st|he,) H pgo(st|ht)))7

Liap(p) = max (1, Dc(go(silhn, 1) | se(py (su|h))).

@2223

39/46

Breakout MsPacman
320 8000
240 6000
160 4000
80 2000 ;
0 Z
1M 10M 100M 1B iM 10M 100M 1B
Crafter DMLab Goals Small
16
200
12 150
8 100
4 50
100K 1M 10M 100M iM 10M 100M 1B

1 2 —4 —8 —16 32 64

(a) Training Ratio

Breakout MsPacman
10000
320
160 5000
80 2500/"'
0
0 250M 500M 0 250M 500M
Crafter DMLab Goals Small
16
200
12 150
8 100
0 20M 40M 60M 0 150M 300M 450M
—_— XS S =M =L XL
(b) Model Size

Figure 6: Scaling properties of DreamerV3. The graphs show task performance over environment
steps for different training ratios and model sizes reaching from 8M to 200M parameters. The
training ratio is the ratio of replayed steps to environment steps. The model sizes are detailed in
Table B.1. Higher training ratios result in substantially improved data-efficiency. Notably, larger
models achieve not only higher final performance but also higher data-efficiency.

PlaNet LatentModel RSSM ST

Gumbel-Softmax

DreamerV/?2 @ 2Model @ 2Policy @

40/46

Breakout Montezuma PinPad Five Figure D.1: World Model abla-

ggg 2400 238 tions. KL balancing?’ subsantially
200 1600 o0 accelerates learning. Free bits?%%
100 800 0 avoids overfitting in simple envi-
%6 Som 1o0M 150M 0 SGM T00M T150M 0 15m 30m 4sv ronments. Symlog encoding and
Cartpole Humanoid Walk Reacher Hard predictions for proprioceptive ob-
Swingup Sparse (Vision) (Proprio) servations speeds up learning. Ad-
800 800 - 1000 justing the KL scale over the course
288 288 ;38 of training within a reasonable
200{ 200 250 j range to target a fixed KL value i1s
00 —SoM TooM TsoM 0 S0M I00M 150M 0 50M T00M 150M a performant but more complicated
alternative to free bits.
— DreamerV3 — No free bits — Target KL
No KL balance —— No obs symlog

PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV2 @ 2Model @ 2Policy @ 41/46

Breakout Montezuma PinPad Five Figure D.2: Critic ablations. The

300 3000 300 symlog predictions for rewards
200 iggg P igg /J_/ and values in DreamerV3 outper-
100 ol & 0 form non-stationary reward normal-
%0 5oM T00M 1soM 0 50M 100M 150M 0 13w 30m 45w ization. Discrete regression also
Cartpole Humanoid Walk Reacher Hard contributes significantly**. Sym-
Swingup Sparse (Vision) (Proprio) log transformation slightly outper-
800 ggg 900 forms the more complex asymmet-
288 400 800 ric square root transformation of
200 200 700 R2D2%!. Using the slow critic for
00 SOM T00M IS0M 0 S50M 100M 150M 600o 50M 1ooM 1s0M computing targets offers no benefit
over using the fast critic and regu-

—— DreamerV3 —— cont regression —— slow target larizing it towards its own EMA.

reward norm —— sqrt transform

PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV2 @ 2Model @ 2Policy @ 42/46

Breakout Montezuma PinPad Five Figure D.3: Actor ablations. The

300 2400 300 strength of the actor entropy regu-
200 1609 A\ 200 larizer is important especially un-
800 100 .

100 ol #F 0 der sparse rewards, where the right
%0 50M 100M 150M 0 50M 100M 150M 0o 15M 30M 45v amount of stochasticity is needed
Cartpole Humanoid Walk Reacher Hard for exploration. The denominator
Swingup Sparse (Vision) (Proprio) maximum that prevents small re-
900 288 :gg turns (often noise) from being am-
222 N~ 400 840 plified is critical. The percentile re-
. 200 P77 780 turn normalization of DreamerV3
0 50M 100M 150M 0 SOM T0OM 150M -0 50M 100M I50M outperforms normalization based
on return stddev or advantage std-

— Egeger?ue)rrx% oy ?edt\llJarRt?tgde std —— target entropy ey on the sparse reward tasks 2.

PlaNet LatentModel RSSM ST Gumbel-Softmax DreamerV?2 @ 2Model @ 2Policy @7 43/46

Env Action Env Train GPU Model

Benchmark Tasks Steps Repeat Instances Ratio Days Size
DMC Proprio 18 500K 2 4 512 <1 S

DMC Vision 20 IM 2 4 512 <1 S

Crafter 1 IM 1 1 512 2 XL
BSuite 23 — 1 1 1024 <1 XL
Atari 100K 26 400K 4 1 1024 <1 S

Atari 200M 55 200M 4 8 64 16 XL
DMLab 8 50M 4 8 64 4 XL
Minecraft 1 100M 1 16 16 17 XL

Table A.1: Benchmark overview. The train ratio is the number of replayed steps per policy steps
rather than environment steps, and thus unaware of the action repeat. BSuite sets the number
of episodes rather than env steps, both of which vary across tasks. BSuite requires multiple
configurations per environment and one seed per configuration, resulting in 468 runs. For DMC, the
proprioceptive benchmark excludes the quadruped tasks that are present in the visual benchmark
because of baseline availability in prior work. All agents were trained on 1 Nvidia V100 GPU each.

@2223

44 /46

B Model Sizes

Dimension XS S M L XL
GRU recurrent units 256 512 1024 2048 4096
CNN multiplier 24 32 48 64 96
Dense hidden units 256 512 640 768 1024
MLP layers 1 2 3 4 5
Parameters SM 18M 37M 7TTM 200M

Table B.1: Model sizes. The encoder consists of stride 2 convolutions of doubling depth until
resolution 4 x 4 followed by flattening. The decoder starts with a dense layer, followed by reshaping
to 4 x 4 x (' and then inverts the encoder architecture. The dynamics are implemented as RSSM

with vectors of categorical representations, consisting of a GRU and dense layers.

@2223

45 /46

DreamerV3

Name Symbol Value Name Symbol Value
General Actor Critic
Replay capacity (FIFO) — 106 Imagination horizon H 15
Batch size B 16 Discount horizon 1/(1—7) 333
Batch length T 64 Return lambda A 0.95
Activation — LayerNorm + SiLU Critic EMA decay — 0.98
Critic EMA regularizer — 1
World Model Return normalization scale S Per(R,95) — Per(R,5)
Number of latents — 32 Return normalization limit L 1
Classes per latent — 32 Return normalization decay — 0.99
Reconstruction loss scale Bpred 1.0 Actor entropy scale n 3-107*
Dynamics loss scale Bayn 0.5 Learning rate — 3.107°
Representation loss scale Brep 0.1 Adam epsilon € 107°
Learning rate — 1074 Gradient clipping — 100
Adam epsilon € 1078
Gradient clipping — 1000

NPFL139, Lecture 13

PlaNet

Table W.1: DreamerV3 hyper parameters. The same values are used across all benchmark suites,
including proprioceptive and visual inputs, continuous and discrete actions, and 2D and 3D domains.

We do not use any hyperparameter annealing, weight decay, or dropout.
Table W.1 of "Mastering Diverse Domains through World Models", https://arxiv.org/abs/2301.04104v1

LatentModel RSSM ST Gumbel-Softmax DreamerV?2 @ 2Model @"2Policy @ 46/46

