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The MuZero algorithm extends the AlphaZero by a trained model, alleviating the requirement
for a known MDP dynamics. It is evaluated both on board games and on the Atari domain.

At each time-step t, for each of 1 < k < K steps, a model iy with parameters 6, conditioned
on past observations 01, ...,0; and future actions a;,1,...,a;., predicts three future

quantities:
® the p0|lcy pt ~ 7T(a,t+k+1 |01, e o9 Oty Qe a,t_|_k),
o the Value funct|0n 'Ut ~~ E |:’U:t_i_k_|_]_ _|_ 'YUt_i_k_i_z —|_ e o o |01, s ey Ot, a,t_|_1, o o0y at+k] y

® the immediate reward 'rf N Ups ke,

where u; are the observed rewards and 7 is the behaviour policy.
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At each time-step t (omitted from now on for simplicity), the model is composed of three
components: a representation function, a dynamics function, and a prediction function.

® The dynamics function, (7%, s*) < gg(s*~1, a¥), simulates the MDP dynamics and
predicts an immediate reward r* and an internal state s*. The internal state has no explicit
semantics, its only goal is to accurately predict rewards, values, and policies.

® The prediction function, (p®,v*) < f5(s*), computes the policy and the value function,
similarly as in AlphaZero.

® The representation function, s¥ hg(01,...,0¢), generates an internal state encoding the
past observations.
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Figure 1 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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The MCTS algorithm is very similar to the one used in AlphaZero, only the trained model is
used. It produces a policy 7t and a value estimate 14.

® All actions, including the invalid ones, are allowed at any time, except at the root, where the
invalid actions (available from the current state) are disallowed.

® No states are considered terminal during the search.
® During the backup phase, we consider a general discounted bootstrapped return

k-1 -
Gy = E :t—O YV Th1et T UL

® Furthermore, the expected return is generally unbounded. Therefore, MuZero normalize the
Q-value estimates to [0, 1] range by using the minimum and maximum the values observed
in the search tree until now:

Q(S, CL) = Q(S’ CL) B mins’,a’ETree Q(S,, CL,)

ma’XSI,a/ETree Q(S’, a/) — minsl,afeTree Q(S/’ a/) .
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To select a move, we employ a MCTS algorithm and then sample an action from the obtained
policy, Atr1 ~~ Tt.
For games, the same strategy of sampling the actions a; as in AlphaZero is used. In the Atari

domain, the actions are sampled according to the visit counts for the whole episode, but with a
given temperature 1"

(als) = N(s,a) /"
B Zb N(Sab)l/T,

where T is decayed during training — for first 500k steps it is 1, for the next 250k steps it is
0.5 and for the last 250k steps it is 0.25.

While for the board games 800 simulations are used during MCTS, only 50 are used for Atari.

In case of Atari, the replay buffer consists of 125k sequences of 200 actions.
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During training, we utilize a sequence of K moves. We estimate the return using bootstrapping
as 2 = Ugy1 + YUpro + ...+ 'y”_lut+n + Y™ V¢1p. The values K =5 and n = 10 are used
in the paper, with batch size 2048 for the board games and 1024 for Atari.

The loss is then composed of the following components:

K
L:(0) = Zﬁ(utwarf) + LY (2eiky vf) + LP (k5 D7) + cl|0].
k=0

Note that in Atari, rewards are scaled by sign(z)(+/|z| +1 — 1) + ez for e = 1072, and
authors utilize a cross-entropy loss with 601 categories for values —300, ..., 300, which they
claim to be more stable (this can be considered distributional RL).

Furthermore, in Atari the discount factor v = 0.997 is used, and the replay buffer elements are
sampled according to prioritized replay with priority o< | — z|®, and importance sampling with
exponent [ is used to account for changing the sampling distribution (¢ = 8 = 1 is used).
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MuZero UL

Model
g0 = hg(o1, ..., 0¢)
rk,sF = gyp(s*71,a") p*, v % = (o, ..., 00,0, ..., a%)
P, = fy(s")
Search
vy, T = MCTS(s), o)
a; ~ T
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Learning Rule

[ R
DV, = :U'9(017 c o901y Aty eeey at+k)
; ur for games
t = -
U1 + YUpro + ... ¥ Uiy + "4, for general MDPs

K

Et(g) - Zﬁr(ut—l-kn ’l"f) + L (zt—i-k7 ’Uf) + £p(ﬂ-t+k7pf) + cH0H2
k=0
Losses
r [0 for games
£5{u;r) = %\ —p(u)T log p(r) for general MDPs

) [ (z—q)? for games
L (za Q) — %\ —QO(Z)T log go(q) for general MDPs

LP(w,p) = —7" logp
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Agent Median Mean Env. Frames Training Time Training Steps

Ape-X [18] 434.1% 1695.6% 22.8B 5 days 8.64M
R2D2 [21] 1920.6%  4024.9% 37.5B 5 days 2.16M
MuZero 2041.1%  4999.2% 20.0B 12 hours IM
IMPALA [9] 191.8% 957.6% 200M — —
Rainbow [17] 231.1% — 200M 10 days —
UNREAL? [19] 250%* 880%* 250M — —
LASER [36] 431% - 200M — —
MuZero Reanalyze  731.1% 2168.9 % 200M 12 hours IM

MuZero Reanalyze is optimized for greater sample efficiency. It revisits past trajectories by re-
running the MCTS using the network with the latest parameters, notably

® using the fresh policy as target in 80% of the training updates, and
® always using the fresh v* < fy(s¥) in the bootstrapped target 2;.

Some hyperparameters were changed too — 2.0 samples were drawn per state instead of 0.1, the
value loss was weighted down to 0.25, and the m-step return was reduced to n = 5.
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Figure 3 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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MuZero — Planning Ablations
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Figure S3 of "Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model" by Julian Schrittwieser et al.
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Game Random Human SimPLe [20] Ape-X [18] R2D2 [21] MuZero MuZero normalized
alien 227.75 7,127.80 616.90 40,805.00 229,496.90 741,812.63 10,747.5 %
amidar 5.77 1,719.53 74.30 8,659.00 29,321.40 28,634.39 1,670.5 %
assault 222.39 742.00 527.20 24,559.00 108,197.00 143,972.03 27,664.9 %
asterix 210.00 8,503.33 1,128.30  313,305.00 999,153.30 998,425.00 12,036.4 %
asteroids 719.10  47,388.67 793.60 155,495.00 357,867.70 678,558.64 1,452.4 %
atlantis 12,850.00  29,028.13 20,992.50  944,498.00  1,620,764.00  1,674,767.20 10,272.6 %
bank heist 14.20 753.13 34.20 1,716.00 24,235.90 1,278.98 171.2 %
battle zone 2,360.00  37,187.50 4,031.20 98,895.00 751,880.00 848,623.00 2,429.9 %
beam rider 363.88  16,926.53 621.60 63,305.00 188,257.40 454,993.53 2,744.9 %
berzerk 123.65 2,630.42 - 57,197.00 53,318.70 85,932.60 3,423.1 %
bowling 23.11 160.73 30.00 18.00 219.50 260.13 172.2 %
boxing 0.05 12.06 7.80 100.00 98.50 100.00 832.2 %
breakout 1.72 30.47 16.40 801.00 837.70 864.00 2,999.2 %
centipede 2,090.87 12,017.04 - 12,974.00 599,140.30 1,159,049.27 11,655.6 %
chopper command 811.00 7,387.80 979.40 721,851.00 986,652.00 991,039.70 15,056.4 %
crazy climber 10,780.50  35,829.41 62,583.60 320,426.00 366,690.70 458,315.40 1,786.6 %
defender 2,874.50 18,688.89 - 411,944.00 665,792.00 839,642.95 5,291.2 %
demon attack 152.07 1,971.00 208.10 133,086.00 140,002.30 143,964.26 7,906.4 %
double dunk -18.55 -16.40 - 24.00 23.70 23.94 1,976.3 %
enduro 0.00 860.53 - 2,177.00 2,372.70 2,382.44 276.9 %
fishing derby 91.71 -38.80 -90.70 44.00 85.80 91.16 345.6 %
freeway 0.01 29.60 16.70 34.00 32.50 33.03 111.6 %
frostbite 65.20 4,334.67 236.90 9,329.00 315,456.40 631,378.53 14,786.7 %
gopher 257.60 2,412.50 596.80 120,501.00 124,776.30 130,345.58 6,036.8 %
gravitar 173.00 3,351.43 173.40 1,599.00 15,680.70 6,682.70 204.8 %
hero 1,026.97  30,826.38 2,656.60 31,656.00 39,537.10 49,244.11 161.8 %
ice hockey -11.15 0.88 -11.60 33.00 79.30 67.04 650.0 %
jamesbond 29.00 302.80 100.50 21,323.00 25,354.00 41,063.25 14,986.9 %
kangaroo 52.00 3,035.00 51.20 1,416.00 14,130.70 16,763.60 560.2 %
# best 0 5 0 5 13 37
MuZero HOModel HOMCTS H0Training AlphaZero Policy Target Gumbel-Softmax GumbelZero



Game Random Human SimPLe [20] Ape-X [18] R2D2 [21] MuZero MuZero normalized
krull 1,598.05 2,665.53 2,204.80 11,741.00 218,448.10 269,358.27 25,083.4 %
kung fu master 258.50  22,736.25 14,862.50 97,830.00 233,413.30 204,824.00 910.1 %
montezuma revenge 0.00 4,753.33 - 2,500.00 2,061.30 0.00 0.0 %
ms pacman 307.30 6,951.60 1,480.00 11,255.00 42,281.70 243,401.10 3,658.7 %
name this game 2,292.35 8,049.00 2,420.70 25,783.00 58,182.70 157,177.85 2,690.5 %
phoenix 761.40 7,242.60 - 224,491.00 864,020.00 955,137.84 14,725.3 %
pitfall -229.44 6,463.69 - -1.00 0.00 0.00 34 %
pong -20.71 14.59 12.80 21.00 21.00 21.00 118.2 %
private eye 2494  69,571.27 35.00 50.00 5,322.70 15,299.98 22.0 %
gbert 163.88 13,455.00 1,288.80 302,391.00 408,850.00 72,276.00 542.6 %
riverraid 1,338.50 17,118.00 1,957.80 63,864.00 45,632.10 323,417.18 2,041.1 %
road runner 11.50 7,845.00 5,640.60 222,235.00 599,246.70 613,411.80 7,830.5 %
robotank 2.16 11.94 - 74.00 100.40 131.13 1,318.7 %
seaquest 68.40  42,054.71 683.30 392,952.00 999,996.70 999,976.52 2,381.5 %
skiing -17,098.09 -4,336.93 - -10,790.00 -30,021.70 -29,968.36 -100.9 %
solaris 1,236.30 12,326.67 - 2,893.00 3,787.20 56.62 -10.6 %
space invaders 148.03 1,668.67 - 54,681.00 43,223.40 74,335.30 4,878.7 %
star gunner 664.00 10,250.00 - 434,343.00 717,344.00 549,271.70 5,723.0 %
surround -9.99 6.53 - 7.00 9.90 9.99 120.9 %
tennis -23.84 -8.27 - 24.00 -0.10 0.00 153.1 %
time pilot 3,568.00 5,229.10 - 87,085.00 445,377.30 476,763.90 28,486.9 %
tutankham 1143 167.59 - 273.00 395.30 491.48 307.4 %
up n down 533.40 11,693.23 3,350.30 401,884.00 589,226.90 715,545.61 6,407.0 %
venture 0.00 1,187.50 - 1,813.00 1,970.70 0.40 0.0 %
video pinball 0.00 17,667.90 - 565,163.00 999,383.20 981,791.88 5,556.9 %
wizard of wor 563.50 4,756.52 - 46,204.00 144,362.70 197,126.00 4,687.9 %
yars revenge 3,092.91 54,576.93 5,664.30 148,595.00 995,048.40 553,311.46 1,068.7 %
zaxxon 32.50 9,173.30 - 42,286.00 224,910.70 725,853.90 7,940.5 %
# best 0 5 0 5 13 37
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Recall that in AlphaZero, actions are selected according to a variant of PUCT algorithm:

a* = arg max, (Q(Sa a) +C(s)P(s,a) 1+ g((t:)a) ) |

with a slightly time-increasing exploration rate C(s) = log (HNSg;%%) + 1.25 ~ 1.25.

The paper Jean-Bastien Grill et al.: Monte-Carlo Tree Search as Regularized Policy
Optimization, the authors have shown how to interpret this algorithm as a regularized policy
optimization.
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Policy optimization is usually an iterative procedure, which in every step improves a current
policy g, according to

def T
Te = argmax gy, Y — R(y, g, ),
yes

where S is a | A|-dimensional simplex and R : 8% — R is an optional (usually convex)
regularization term.
® with R = 0, the above reduces to policy iteration (used for example in DQN);

e with R = 0, if the policy is updated using a single gradient step, the algorithm reduces to

policy gradient;
® when R(y,ms,) = —H(y), we recover the Soft Actor Critic objective;

* for R(y,me,) = DxL(me,|ly) we get an analogue of the TRPO objective, which

motivated PPO;
® the MPO algorithm (which we did not discuss) employs R(y, me,) = Dxr(y||7e, ).

AlphaZero Policy Target
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Let us define the empirical visit distribution 7 as

w 1+ N(s,a)
Al +>2, N(s,b)

7(als)

The added plus ones makes the following analysis easier, but are not strictly necessary.

We also define the multiplier Ay as

. \/Zb N(87 b)
Al + >0, N(s,b)

An(s) = C(s)

With these definitions, we can rewrite the AlphaZero action selection to

Telal))

7(als)

a" = arg max, (Q(s, a) + An

AlphaZero Policy Target
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U=

AlphaZero as Regularized Policy Optimization

a” = arg max, (Q(s, a) + Ay - —
r(als)

For notational simplicity, we will represent (s, a) as a vector q, where g, = Q(s,a), and

similarly the policies as g, 7.

Furthermore, for two vectors a, b, let ¢ denote element-wise division with (£), = %,
9 b b/t b;

With this notation, the action selection can be succinctly written as

a” = arg max, (q—l— )\NQ).
7
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Let 7T be the solution of the following objective:

— def T

T = arg maX,g (q y — AvDxkr (ﬂ'gHy)).
It can be shown that this solution can be computed explicitly as

g

oa—q’

T = AN

where o € R is set such that the result is a proper distribution.

® Note that & > maxpc 4 (g + An7g (b)), because T(a) must be at most 1.
® Furthermore, oz < maxpe4(qp) —|— AN, because we need > 7(a) = 1 and we combine

> 2o <>, )‘NW" = 1 with the fact that ) Avmo(a) o decreasing

a maxp(qp) +>\N da @ 0—(q
function of & > maxy q.

Note the Ay =~ 1/+/ N decreasing the regularization for increasing number of simulations.

AlphaZero Policy Target
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AlphaZero as Regularized Policy Optimization

The action a* selected by the AlphaZero algorithm fulfills

a*

— arg max, (

In other words, 7 “tracks” 7.

0

ON (s, a)

(qTﬁ' — Av Dk (m,||fr))).

Furthermore, it can be also shown that for the selected action a*,

w(a™|s) < w(a®|s),

until in the limit, the two distributions coincide.

NPFL139, Lecture 12 MuZero
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AlphaZero as Regularized Policy Optimization Ut

The 7 can be used in the AlphaZero algorithm in several ways:
® Act: the action in self-play games could be sampled according to 7 (|80t ) instead of 7;

® Search: during search, we could sample the actions stochastically according to 7r instead of
the PUCT rule;

® Learn: we could use 7 as the target policy during training instead of 7;

e All: all of the above.
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AlphaZero as Regularized Policy Optimization UsL
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Figure 1 of "Monte-Carlo Tree Search as Regularized Policy Optimization”, per step on Cheetah Run (Control Suite).

https://arxiv.org/abs/2007.12509 Figure 5 of "Monte-Carlo Tree Search as Regularized Policy Optimization”,
https://arxiv.org/abs,/2007.12509
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Figure 2 of "Monte-Carlo Tree Search as Regularized Policy Optimization”, Figure 3 of "Monte-Carlo Tree Search as Regularized Policy Optimization”,
https: //arxiv.org/abs/2007.12509 https://arxiv.org/abs,/2007.12509
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AlphaZero as Regularized Policy Optimization Ut
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Figure 4. Ablation study at 5 and 50 simulations per step on Ms Pacman (Atari); average across 8 seeds.
Figure 4 of "Monte-Carlo Tree Search as Regularized Policy Optimization", https://arxiv.org/abs/2007.12509
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The Gumbel-softmax distribution was proposed independently in two papers in Nov 2016
(under the name of Concrete distribution in the other paper).

It is a continuous distribution over the simplex (over categorical distributions) that can
approximate sampling from a categorical distribution.

Let z be a categorical variable with class probabilities p = (p1,p2, ..., PK).

The Gumbel-Max trick (based on a 1954 theorem from E. J. Gumbel) states that we can draw
samples z ~ P using

z = one-hot (arg max (gz' + log Pi)),

where g; are independent samples drawn from the Gumbel(0, 1) distribution.

To sample g from the distribution Gumbel(0, 1), we can sample u ~ U(0, 1) and then
compute g = — log(— logu).

Gumbel-Softmax
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First recall that exponential distribution Exp(A) has @
PDF(z;)\) = de **, CDF(z;)) =1—e 7.

The standard Gumbel(0, 1) distribution has

PDF(z) =e *¢ , CDF(z)=e°

The Gumbel distribution can be used to model the distribution of maximum of a number of
samples from the exponential distribution: if Z is a maximum of N samples from the Exp(1)

distribution, we get that

e N
P(Z —logN < z) = P(Z <z +log N) = CDFgyp1) (:c+logN)N = (1 — eN ) :

which converges to e ¢ = CDF Gumbel(0,1) () for N — oo.
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Let [; be logits of a categorical distribution (so that the class probabilities 7; o eli), and
let g; ~ Gumbel(0, 1). Then

To prove the Gumbel-Max trick, we first reformulate it slightly. @

T, = P(k = argmax;(g; + 1;)).

We first observe that the theorem is invariant to a scalar shift of logits, so we can without loss
of generality assume that ) . el =1 and m; = €.

. def
For convenience, denote u; = g; + ;.

We will use both the PDF and CDF of a Gumbel(0, 1) distribution:

Gumbel-Softmax 28/50



Gumbel-Max Trick Proof

To finish the proof, we compute

P(k = arg max,(g; + lz)) = P(up > u;, Vizp)

(ur,) Hi#k P(uy > u;|ug) duy,
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Gumbel-Softmax Uz

To obtain a continuous distribution, we relax the arg max into a softmax with temperature T°
as

e(gi‘HOgPi)/T
Zj elgj+logp;)/T "

& =

As the temperature I' goes to zero, the generated samples become one-hot, and therefore the
Gumbel-softmax distribution converges to the categorical distribution p(z).

a) S Categorical T=0.1 7=20.5 7=1.0 7 =10.0
k=
(s,
)
b)
)
o
@

category
Figure 1 of "Categorical Reparameterization with Gumbel-Softmax", https://arxiv.org/abs/1611.01144
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Gumbel AlphaZero and MuZero Uz

In AlphaZero, using the MCTS visit counts as the target policy fails to improve the policy for
small number of visits.

3000 9x9 Go n=2 9x9 Go n=4 9x9 Go n=16 9x9 Go n=32 9x9 Go n=200

2500

2000 " ’
<}
o 1500
1000 —— Gumbel MuZero
—— Replacement
500 —— TRPO MuZero
—— MPO MuZero
——— MuZero

0
0 200 400 600 8000 200 400 600 8000 200 400 600 8000 200 400 600 8000 200 400 600 800

Millions of frames Millions of frames Millions of frames Millions of frames Millions of frames

Figure 2: Elo on 9x9 Go, when training with n € {2, 4,16, 32,200} simulations. Evaluation uses

800 simulations. Shades denote standard errors from 2 seeds.
Figure 2 of "Policy improvement by planning with Gumbel", https://openreview.net /forum?id=bERaNdoegnO

In Ivo Danihelka et al.: Policy Improvement by Planning with Gumbel, several
AlphaZero/MuZero improvements are proposed; among other a different target policy, which
guarantees improvement.
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Let 7 be a categorical distributions parametrized with logits(a). Let g € R¥ be a vector of
independent Gumbel(0, 1) random variables.

The Gumbel-Max trick states that
A = argmax, (g(a) + logits(a))

has a distribution A ~ .

The Gumbel-Max trick can be generalized to Gumbel-Top-k trick, capable of producing n
actions without replacement by considering the top m scoring actions argtop(g -+ logits,n):

Al — arg max, (g(a) —+ logits(a)),
Ay = argmax, (g(a) + logits(a)),

Ap =argmaxX,gra, o4 ) (9(a) + logits(a)).
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A. Guaranteed Policy Improvement

For a small number of simulations, PUCT does not guarantee policy improvement.

® Consider for example three actions with prior policy (50%, 30%, 20%) and action values
(0,0,1).

® The PUCT rule will select the first two actions.

® However, the value function of any policy considering just the first two actions is 0, which is
worse than the value function of the prior policy.

In GumbelZero, we start by sampling . actions without replacement using the Gumbel-Max
trick with Gumbel noise g.

Our first attempt is to define a one-hot policy selecting an action A, 1 such that

A, = argmax (g(a) + logits(a) + o(g(a))),
G,E{Al,. . ,An}

where o can be any monotonically increasing transformation.

GumbelZero 33/50



Algorithm 1 Policy Improvement by Planning with Gumbel

Require: k: number of actions.
Require: n < k: number of simulations.
Require: logits € R¥: predictor logits from a policy network .
Sample k& Gumbel variables:
(g € R¥) ~ Gumbel(0)
Find n actions with the highest g(a) + logits(a):
Atopn = argtop(g + logits, n)
Get ¢(a) for each a € Ayopn by visiting the actions.
From the A;,py actions, find the action with the highest g(a) + logits(a) + o(g(a)):
A1 = argmax,c 4., (9(a) + logits(a) + o(g(a)))
return A, 4
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A policy choosing the action

A, 1 = argmax (g(a) + logits(a) + J(q(a))),
CLE{Al,...,An}

guarantees policy improvement, i.e., E[q(An+1)] > Eoorlg(a)].
Considering a fixed Gumbel noise g, we get that

g( argmax g(a)+ logits(a) + o(g(a))) > q( argmax g(a) + logits(a)),
aG{Al,...,An} aE{Al,...,An}

® cither the action chosen on both sides is the same and we get an equality, or
® the action on the left side is different, meaning it has larger g(a).

Finally, if the inequality holds for any g, it holds also in expectation. With the Gumbel-Max
trick transforming the expectation of the right side to sampling an action a ~ 7, we get the

required E|q(A,+1)] > Eqrlg(a)].

GumbelZero
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B. Planning on Stochastic Bandit

When we get only an estimate ¢(a) of the action-value function, it is probably beneficial to
visit an action multiple times.

Furthermore, choosing actions in the root using a UCB-like rule is not optimal:

® UCB minimizes cumulative regret, i.e., maximizes the sum of the obtained returns;
® in the root our goal is to obtain the best possible 4,11, i.e., maximize just E[q(A4,+1)].

The authors evaluated several simple regret minimization algorithms, and chose Sequential
Halving (because it was easier to tune and does not have problem-dependent parameters).
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GumbelZero, B. Planning on Stochastic Bandit

(g € R*) ~ Gumbel

g + logits g + logits + o(q) m
8 ¢ top % o top 3 o top 1
P 3 ’_‘ IJ - 1 action: A
U 2 et 2 actions sl
t
top m actions N(a) =21 +28
8 actions N(a)=9+12
N(a)=3+6
— extra visits to reach n simulations
m = 16 actions
N(a)=3 " .. A
extra Logz(mﬁ J visits to update g
n s . A
I llog2 o J visits to update g
k actions n = 200 simulations

Figure 1: The number of considered actions and their visit counts N (a), when using Sequential
Halving with Gumbel on a k-armed stochastic bandit. The search uses n = 200 simulations and
starts by sampling m = 16 actions without replacement. Sequential Halving divides the budget of
n simulations equally to log,(m) phases. In each phase, all considered actions are visited equally

often. After each phase, one half of the actions is rejected. From the original £ actions, only the best

actions will remain.
Figure 1 of "Policy improvement by planning with Gumbel", https://openreview.net /forum?id=bERaNdoegnO
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Algorithm 2 Sequential Halving with Gumbel

Require: £: number of actions.
Require: m < k: number of actions sampled without replacement.
Require: 7n: number of simulations.
Require: logits € R¥: predictor logits from a policy network .
Sample £ Gumbel variables:
(g € R¥) ~ Gumbel(0)
Find m actions with the highest g(a) + logits(a):
Atopm = argtop(g + logits, m)
Use Sequential Halving with n simulations to identify the best action from the Ao, actions,
by comparing g(a) + logits(a) + o(g(a)).
An—l—l = alg INaX, c Remaining (g(a) + logits(a) + O-(qA(a)))
return A,

The authors utilize m = min(n, 16), and visit each action at least once even when 1 is small

by visiting each action max (1, M ” J) after n simulation, the search is always stopped.

log, m|m
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GumbelZero, C.

Better Improved Policy

Using a one-hot policy based on

Ani1 = argmax (g(a) + logits(a) + o(q(a)))
CLE{Al,. . ,An}

results in using a simple policy loss

NPFL139, Lecture 12 MuZero

Lsimple (77) — 10g 7"'(14714—1 ) .
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However, more information from the search might be extracted by using all action-value
functions g(a) produced by the search.

® First, we complete the action values using

. if N :
completedQ(a) = ala) i (a).> 0
Vo otherwise.

® Then, we define improved policy as
' = softmax (logits(a) + o(completedQ(a))).

It can be again proven (appendix C of the paper) that 7’ is an improved policy, so
Ea~n|g(a)] = Eavrlg(a)l.

® A natural loss is then

Lcompleted (7"') = DxkL (ﬂ-, Hﬂ-) y

GumbelZero
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The authors propose to use
a(d(a)) = (Cvisit + mbaX N(b))cscaleQ(a’)a
for Cvisit — 50, Cscale — 1.0.

Furthermore, the authors propose a consistent approximation to v, based on a network-
predicted 0, and the g(a) of the visited actions:

o -0 7(a)q(a)
”mix_1+2b ( +( 22, V) Z(N) >OW(Z) )

Overall, the algorithm denoted in the paper as Gumbel MuZero utilizes Sequential Halving with
Gumbel and trains using the improved policy combining logits and action values completed by

Vmix, Otherwise it is the same as MuZero.
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D. Action Selection in Non-Root Nodes
We might consider utilizing the improved policy 7’ also in the non-root nodes, by for example

sampling actions from it. Additionally, the authors provide a deterministic algorithm of choosing
non-root actions minimizing the difference between 7’ and the current visit counts:

| , NGB +la=0 )
a* = arg min E 7 (b) —
ga b \1+ Evch(c)/

normalized visit counts if taking a

This formula can be simplified to

* ' N(a)
a" = argmax | 7 (a) — 1+S, N

a

When this action selection is used, the authors call the algorithm Full Gumbel MuZero.
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GumbelZero, D. Action Selection in Non-Root Nodes

* | o UN®) +ja=0b\
a —argmmz<7r (b) — 1‘|'ZCN(C)>

I o NB) Y fa=t )
_arg;nln;<(7r (b) 1_|_ZCN(C)) 1—|—ZCN(C)>

) | , N(b) a =1
= argfﬂnz_2<” ®) =17 ZCN(C)> 1+2. Ne)

b
: , N(b
— arg;mn—; (71' (b) — 1—|—Z(c3\f(c)>[a_ b]
_ : N(a)
_argcllrnax (7‘(‘ (a) — 1+ZbN(b)>
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Gumbel AlphaZero and MuZero Uz

2000 9x9 Go n=2 9x9 Go n=4 9x9 Go n=16 9x9 Go n=32 9x9 Go n=200
2500
2000
(@]
o 1500
1000 —— Gumbel MuZero
—— Replacement
—— TRPO MuZero
500 —— MPO MuZero
—— MuZero
0
0 200 400 600 8000 200 400 600 8000 200 400 600 8000 200 400 600 8000 200 400 600 800
Millions of frames Millions of frames Millions of frames Millions of frames Millions of frames

Figure 2: Elo on 9x9 Go, when training with n € {2,4,16, 32,200} simulations. Evaluation uses
800 simulations. Shades denote standard errors from 2 seeds.

Figure 2 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO

“Replacement” is a Gumbel MuZero ablation sampling actions with replacement.
“TRPO MuZero”, “MPO MuZero" use Act+Search+Learn using the previously described
regularized policy with Dk, (7||pew) and DKy, (Trpew ||7) regularizer, respectively.
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Gumbel AlphaZero and MuZero Uz

9x9 Go n=2 9x9 Go n=4 9x9 Go n=16 9x9 Go n=200 9x9 Go n=200
3000
2500
2000
o
= 1500
w — =4
1000 —— m=8
500 —— Gumbel MuZero — m=16
—— Simple policy loss — m=32
0
0 200 400 600 800 O 200 400 600 800 O 200 400 600 800 O 200 400 600 800 O 200 400 600 800
Millions of frames Millions of frames Millions of frames Millions of frames Millions of frames

(a) (b)

Figure 3: Gumbel MuZero ablations on 9x9 Go. (a) Policy loss ablations, when training with
n € {2,4,16,200} simulations. Gumbel MuZero uses the policy loss with completed Q-values.
(b) Sensitivity to the number of sampled actions. Gumbel MuZero samples m actions without
replacement.

Figure 3 of "Policy improvement by planning with Gumbel", https://openreview.net /forum?id=bERaNdoegnO
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Gumbel AlphaZero and MuZero Uz

9x9 Go n=2 9x9 Go n=4 9x9 Go n=16 9x9 Go n=200
3000
2500
2000
o
o 1500
1000
—— Gumbel MuZero
500 —— Completed by value net
—— Simple policy loss
0
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Millions of frames Millions of frames Millions of frames Millions of frames

Figure 6: Detailed policy loss ablations. Gumbel MuZero uses the policy loss with Q-values com-
pleted by the v,,;x value estimator from Appendix D. That works better than Q-values completed by

the raw value network v ...
Figure 6 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO
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Gumbel AlphaZero and MuZero Uz

3000 9x9 Go n=2 9x9 Go n=4 9x9 Go n=16 9x9 Go n=200

2500

2000 = 4
(@]
o 1500
1000
—— Gumbel MuZero
500

——— Full Gumbel MuZero
—— Stochastic non-root

0 200 400 600 800 O 200 400 600 800 O 200 400 600 800 O 200 400 600 800
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Figure 7: A comparison of different action selections at the non-root nodes. Gumbel MuZero uses
the unmodified (deterministic) MuZero action selection at non-root nodes. Full Gumbel MuZero
uses the deterministic action selection from Equation 14, which we compare to stochastic sampling
from 7’ at non-root nodes.

Figure 7 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO
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Gumbel AlphaZero and MuZero Uz

9x9 Go n=2 9x9 Go n=4 9x9 Go n=16 9x9 Go n=200
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500 —— C_visit=5000 —— Stochastic evaluation
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Figure 8: Additional Gumbel MuZero ablations on 9x9 Go. (a) Sensitivity to Q-value scaling by
Cvisit- (D) On the perfect-information game, Gumbel MuZero used zero Gumbel noise at evaluation.
Although, evaluation with stochastic Gumbel noise is not worse. During training, MuZero and

Gumbel MuZero benefit from explorative acting proportional to the visit counts.
Figure 8 of "Policy improvement by planning with Gumbel", https://openreview.net /forum?id=bERaNdoegnO

NPFL139, Lecture 12 MuZero pOModel HOMCTS n0Training AlphaZero Policy Target Gumbel-Softmax GumbelZero 48/50



Gumbel AlphaZero and MuZero Uz

19x19 Go n=400 chess n=400
3000 3000
2500 2500
2000 2000
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Figure 4: Large-scale experiments with n = 400 simulations per move. (a) Elo on 19x19 Go, when

training MuZero. (b) Elo on chess, when training AlphaZero.
Figure 4 of "Policy improvement by planning with Gumbel", https://openreview.net/forum?id=bERaNdoegnO
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Gumbel AlphaZero and MuZero Uz
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Figure 5: Atari results. (a) Mean return on ms_pacman, when training Gumbel MuZero and
MuZero with n € {2,4,16,18,50} simulations. MuZero fails to learn from 4 or less simula-
tions. (b) Mean return on beam_rider for Gumbel MuZero with ¢ € {0.01,0.1,1, 10,100},
compared to MuZero with n = 50 simulations. Shades denote standard errors from 10 seeds.

Figure 5 of "Policy improvement by planning with Gumbel", https://openreview.net /forum?id=bERaNdoegnO
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