NPFL139, Lecture 10 Us

PPO, R2D2, Agent57

Milan Straka

m April 22, 2024

1 4
— L Charles University in Prague @ (7) (0
F//L EUROPEAN UNION Faculty of Mathematics and Physics -~
e o o) meametFnd— |nstitute of Formal and Applied Linguistics .
A LAN GTECH gzveI;pmeln}tDangd Educatir\:an " pp g UnleSS Othel’Wlse Stated

First-order and Second-order Methods ezt

Neural networks usually rely on SGD for finding a minimum, by performing
0 <— 0 — aVeL(0).

A disadvantage of this approach (so-called first-order method) is that we need to specify the
learning rates by ourselves, usually using quite a small one, and perform the update many times.

However, in some situations, we can do better.

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 2/47

Assume we have a function f : R — R and we want to find its root. An SGD-like algorithm
would always move “towards” zero by taking small steps.

Instead, we could consider the linear local approximation A

(i.e., consider a line “touching” the function in a given
point) and perform a step so that our linear local
approximation has a value 0:
T
' — ¢ — f(z) :
(@) .
y=£(x)
Finding Minima
The same method can be used to find minima, because a
minimum is just a root of a derivative, resulting in:
!/ l"’i
T T — /(@) -

f”(w)) X

Second-Order Methods 3/47

The following update is the Newton’'s method of searching for extremes:

(@
F(@)

It is a so-called second-order method, but it is just an SGD update with a learning rate (2]

/
r <« T —

Derivation from Taylor’s Expansion

The same update can be derived also from the Taylor's expansion
1
f(z+e)~ f(z) +ef'(z) + 5 f"(2) + O(=),

which we can minimize for € by

0— 8f(g£—|— €) ~ f'(z) +ef"(x), obtaining z+e==x —]{,,/((Z)).

Second-Order Methods 4/47

Note that the second-order methods (methods utilizing second derivatives) are impractical when
training MLPs with many parameters. The problem is that there are too many second
derivatives — if we consider weights 8 € RP,

® the gradient Vg L(0) has D elements;
® however, we have a D X D matrix with all second derivatives, called the Hessian H:

w O2L(0)
H, 27
706,00,

The Taylor expansion of a multivariate function then has the following form:

fl@+e) = fla) + " V(@) + " He,

from which we obtain the following second-order method update:

x—x— H 'Vi(x).

Second-Order Methods 5/47

Assume we have a model computing a distribution p(y|x; 9).

We define score s(0; x,y) as

def
s(0;z,y) = Vg logp(y|z; 9).
Given the formula for a derivative of a logarithm, the score can also be written as

, d_erOP(y‘wBO)
(05 @,y) = p(ylz;0)

Note that the expectation of the score with respect to the model output y is zero:

E

Vgp(y\:c; 0)
’ y

Second-Order Methods

6/47

Let D be the data generating distribution, and D a dataset sampled from D.
Assuming @ € RY | we define the Fisher Information Matrix F(0) ¢ RP*D as the

covariance matrix of the score:
def T
F(e) — EmNDEy\wND [(3(07 Z, y) o ES(O, €, y)) (8(07 T, y) o ES(O, T, y))] .
Because the expectation of the score is zero, the definition simplifies to
F(8) X EqpEyjap |5(6; 2,)s(6; 2,y)" |
The first expectation is usually computed over ID. When the y|@ is taken from p(y|x; @), the

matrix is called Empirical Fisher, and it can be computed with a single forward and backward
pass through the model.

Second-Order Methods

7/47

Fisher Information Matrix
Now consider the usual NLL loss L(y|x;0) = — log p(y|x; 0). Its Hessian is
Hpyz0) = VoVe — log p(y|x; 0).
We get that
EenDEyjopHe(y|2:0) = F(O).

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU

Agentb7

U=

8/47

Fisher Information Matrix

Lets consider
Dx1 (p(ylz; 0) |p(ylx; 0 + d))

The expectation over & ~ D of the Taylor expansion to the second order gives

1
Eo~pDxr, (p(yle; 0)|1p(y|2; 0 + d)) ~ §dTFd +O(1d])*).

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU

Agentb7

U=

9/47

The Direction of the SGD Gradient Update et

Consider the

1
lim — arg min £(ID; 0 + d).
0 € d|d|<e

We get that
d x —VeL(D;0),
therefore,
d— e —VoL(DD; 0) |
Ve L(ID;0)|

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 10/47

The Direction of the FIM Gradient Update

Consider now

arg min L(D; 0 +d).
d, D1 (p(y|2;0)|p(y|®;6+d))<e

We get that
dox —F(0) 'VeL(D;0).

Note that if we consider just a diagonal of F(@)™1, the resulting algorithm is similar to Adam.

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

U=

11/47

Kakade (2002) introduced natural policy gradient, a second-order method utilizing the Fisher
Information Matrix.

Using policy gradient theorem, we are able to compute Vv,. Normally, we update the
parameters by using directly this gradient. This choice is justified by the fact that a vector d
which maximizes v, (s; @ + d) under the constraint that ||d||? is bounded by a small constant
is exactly the gradient Vu_..

However, for the Fisher information matrix
F(0) il EsEr(als:0) [(V@ log 7(als; 0)) (Vg log 7(als; 0))T} :

we might to update the parameters using dp = F(6)"!Vu,.

It can be shown that the Fisher information metric is the only Riemannian metric (up to
rescaling) invariant to change of parameters under sufficient statistic.

NPG

12/47

Natural Policy Gradient Urzt

1 T > —T T T = T ARRLARY 1 T 4 — ALTRRANY
2 sl = -——— S N RASRR 4 AR R MRS
09 £~ el - ~ AN 09 1.7 7~ -~ I - \ \\\ ASAAY
’, e b Gy AR N L AN
0.8 F-7 ~ = Z - —— - ™~ \ WY 0.8 —// o _ e _ VRN
g 7 = o S MWW G A
N 07T _ - ~ ; WY A 07 F _ NS
& s -~ NN -
g o6~ s SO 8 oosho T = g N o \\\\
2 P s N e VAN 8 - i 2
5 . LU S a - \ ~
S 04F e S R R ~ N 5 04F N T -— Y M
- - s = T - ~
c ~ = ~
=] L — | 1 il
bt S
02r 3 02+ E
01 f @ @ @ @ 0.1 | =—=p> _——— _— L ——
0 L | | L o] L L L 0 1 L i L 0 L L L L
-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2
Controller gain 6=k Controller gain 8,=k
(a) Vanilla policy gradient. (b) Natural policy gradient.

Figure 3 of "Reinforcement learning of motor skills with policy gradients" by Jan Peters et al.

An interesting property of using the dr to update the parameters is that

® updating 0 using Vv, will choose an arbitrary better action in state s;
® updating O using F(B)_1VU7T chooses the best action (maximizing expected return),
similarly to tabular greedy policy improvement.

However, computing dr in a straightforward way is too costly.

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 13/47

Duan et al. (2016) in paper Benchmarking Deep Reinforcement Learning for Continuous
Control propose a modification to the NPG to efficiently compute dp.

Following Schulman et al. (2015), they suggest to use conjugate gradient algorithm, which can
solve a system of linear equations Ax = b in an iterative manner, by using A only to compute

products Aw for a suitable v.

Therefore, dF is found as a solution of
F(0)dr = Vv,

and using only 10 iterations of the algorithm seem to suffice according to the experiments.

Furthermore, Duan et al. suggest to use a specific learning rate suggested by Peters et al
(2008) of

a

Vv (Vv)TF(0) Vv,

NPG 14/47

Schulman et al. in 2015 wrote an influential paper introducing TRPO as an improved variant of
NPG.

Considering two policies 7, 7r, we can write
Vi = Ug T ESNu(ﬁ)EaNﬁ(a|s) Qr (a’|3)7

where a,(a|s) is the advantage function g (a|s) — v;(s) and u(7) is the on-policy
distribution of the policy .

Analogously to policy improvement, we see that if a(als) > 0, policy 7 performance increases
(or stays the same if the advantages are zero everywhere).

However, sampling states s ~ u(7) is costly. Therefore, we instead consider

Lﬂ(ﬁ') = Ur + ESNN(w)EaNﬁ(a|s) Ar (CL‘S).

TRPO 15/47

L (ﬁ-) = U + ESN,U,(TI') anfr(a\s) Qr (CL|S)

T=T-

Using L () is usually justified by L;(7w) = vy and Vi L (7)|7=r = Vzvz
Schulman et al. additionally proves that if we denote o = DR (To1d || Tnew) =
max; DK1, (old (+|8)]|Tew (:]8)), then

4
V. > Ly (Tpew) — ¥ _8?;)2 o where ¢ = max la:(s,a)l.

Therefore, TRPO maximizes Ly, (mg) subject to DY (g, ||me) < 8, where

max

o D% (ma,||me) = Esp(mo,) DKL (7ro1d (+]8) || 7new (+|8))] is used instead of DR}

performance reasons;
® § is a constant found empirically, as the one implied by the above equation is too small:

® importance sampling is used to account for sampling actions from 7r.

for

TRPO 16/47

maximize Ln, (79) = Eywy(ry,) a~mo, (als) [;‘;((‘1‘33) A, (a|s)} subject to DY (g, ||7e) < &

The parameters are updated using dr = F(0) 'V Ly, (mp), utilizing the conjugate gradient

algorithm as described earlier for TNPG (note that the algorithm was designed originally for
TRPO and only later employed for TNPG).

To guarantee improvement and respect the Dkr1, constraint, a line search is in fact performed.

We start by the learning rate of \/5/(d£F(9)_1dF) and shrink it exponentially until the

constraint is satistifed and the objective improves.

TRPO 17/47

(e)

% V“
A
(b) (© (d
® (@

Figure 1. Illustration of locomotion tasks: (a) Swimmer; (b) Hop-
per; (c) Walker; (d) Half-Cheetah; (e) Ant; (f) Simple Humanoid;

and (g) Full Humanoid.
Task Random REINFORCE TNPG RWR REPS TRPO CEM CMA-ES DDPG
Cart-Pole Balancing 77.1+£0.0 4693.7+ 14.0 3986.4 + 748.9 4861.5 + 12.3 565.6 £137.6 4869.8 + 37.6 4815.4+ 4.8 2440.4+568.3 46344 + 87.8
Inverted Pendulum* —153.44+0.2 13.44+ 18.0 209.7 + 55.5 84.7+ 13.8 —113.34+ 4.6 2472 =+ 76.1 38.2+ 25.7 —40.1+ 5.7 400 +£244.6
Mountain Car —415.44+0.0 —67.1+ 1.0 -665 + 4.5 —79.44+ 1.1 -275.6£166.3 -61.7 + 0.9 —66.0+ 2.4 —85.0+ 7.7 —288.4+170.3
Acrobot —1904.5+1.0 —508.1+ 91.0 —395.84+121.2 —352.7+ 35.9 —1001.5+ 10.8 —326.0+f 24.4 —436.8+ 14.7 —-785.6+ 13.1 -223.6 + 5.8
Double Inverted Pendulum* 149.74+0.1 4116.5+ 65.2 44554 + 37.6 3614.8 £368.1 446.7+114.8 44124 + 504 2566.2+178.9 1576.1+ 51.3 2863.4+154.0
Swimmer* —1.74+0.1 92.3+ 0.1 960 + 0.2 60.7+ 5.5 3.8+ 3.3 960 £ 0.2 68.8+ 24 649+ 14 85.8+ 1.8
Hopper 8.4+£0.0 714.0+ 29.3 11551 =+ 579 553.2+ 71.0 86. 7+ 17.6 1183.3 =+ 150.0 63.1+ 7.8 20.3+ 14.3 267.1+ 43.5
2D Walker —1.7+0.0 506.5+ 78.8 1382.6 4+ 108.2 136.0+ 15.9 —37.0+ 38.1 13538 + 85.0 84.5+ 19.2 771+ 243 318.4+181.6
Half-Cheetah —90.8+0.3 1183.14+ 69.2 1729.5 + 184.6 376.1+ 28.2 34.5+ 38.0 1914.0 =+ 120.1 330.4 £274.8 441.34+107.6 2148.6 =+ 702.7
Ant* 13.4+0.7 548.3+ 55.5 706.0 4+ 127.7 376+ 3.1 39.0+ 9.8 730.2 + 61.3 49.2+ 5.9 17.8+ 15.5 326.2+ 20.8
Simple Humanoid 41.5+0.2 128.14+ 34.0 255.0 =+ 245 93.3+ 174 28.3+ 4.7 2697 + 403 60.6+ 12.9 28.7+ 3.9 99.4+ 28.1
Full Humanoid 13.240.1 262.2+ 10.5 2884 4+ 252 46.7+ 5.6 41.7+ 6.1 2870 =+ 234 36.9+ 2.9 N/A + N/A 119.0+ 31.2
Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agentb7

18/47

Proximal Policy Optimization Uz

A simplification of TRPO which can be implemented using a few lines of code.

Let r,(0) = W?zglﬁtgitéfll)' PPO maximizes the objective (i.e., you should minimize its negation)
LP(9) = E, [min (rt(B)flt, clip(r¢(0),1 —e,1 + a)flt))]

Such a LMP () is a lower (pessimistic) bound.

A<O
JCLIP A>0

1—.61

—i r
0 1 1+e€ LCLIP

Figure 1 of "Proximal Policy Optimization Algorithms" by Schulman et al.

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 19/47

Proximal Policy Optimization

The advantages A; are additionally estimated using the so-called generalized advantage
estimation, which is just an analogue of the truncated n-step lambda-return:

n—1

A, = ZWZN (Ret1+i + 7V (Strir1) — V(Seri)).
i—0

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

U=

20/47

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do
for actor=1,2,..., N do
Run pohcy Tp,,q 10 environment for T° tlmesteps

Compute advantage estimates Ay,... Ar
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT
Oolq < 0
end for

® The rollout phase should be usually performed using vectorized environments.

® |t is important to correctly handle episodes that did not finish in a rollout, using
bootstrapping to estimate the return from the rest of the episode. That way, PPO can learn
in long-horizont games with 7" much smaller than episode length.

® |ncreasing IV increases parallelism, while increasing 1" increase the number of steps that
must be performed sequentially.

PPO 21/47

Proximal Policy Optimization UL

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1
v Y 1000
2000 o i 2500 'Y Y W 8000
. “‘ ; ‘ 800
1500
2000 6000
1000 1500 600
4000
500 1000 400
0 500 2000 200
-500
0 0 0
0 1000000 0 1000000 0 1000000 0 1000000
Reacher-v1 Swimmer-v1 Walker2d-v1
— A2C
120 .
-20 —— A2C + Trust Region
100 3000 —— CEM
60 50 2000 —— Vanilla PG, Adaptive
—— TRPO
-80 40
1000
20
-100
0
-120 0
0 1000000 0 1000000 0 1000000

Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million

timesteps.
Figure 3 of "Proximal Policy Optimization Algorithms" by Schulman et al.

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 22 /47

Proximal Policy Optimization

Results from the SAC paper:

Hopper-v2 Walker2d-v2 HalfCheetah-v2
4000 7000
6000 15000
3000
. € 5000 12500
2 2 210000
1S 2 4000 v
o 2000 ° °
) o o 7500 H St AN
© © 3000 o© W
[[(] WY 18
% 1000 2 2000 2 5000 ,"' !
2500 -——r’——L—_["
1000 ' 1
0 0
0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
million steps million steps million steps
Ant-v2 Humanoid-v2 7000 Humanoid (rllab)
—— SAC (learned temperature)
8000 X
6000 —— SAC (fixed temperature)
—— DDPG
c c 5000
é 6000 E TD3
2 © 4000 —— PPO
& &
8 4000 © 3000
g g
3 2 2000
2000
| 1000
0 0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 2 4 6 8 10 0 2 4 6 8 10
million steps million steps million steps

Figure 1: Training curves on continuous control benchmarks. Soft actor-critic (blue and yellow) performs
consistently across all tasks and outperforming both on-policy and off-policy methods in the most challenging

tasks.
Figure 1 of "Soft Actor-Critic Algorithms and Applications" by Tuomas Haarnoja et al.

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 23/47

Proximal Policy Optimization

® There are a few tricks that influence the peformance of PPO significantly; see the following
nice blogpost about many of them:

https:/ /iclr-blog-track.github.io /2022 /03 /25 /ppo-implementation-details /

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

U=

24 /47

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

® The paper What Matters for On-Policy Deep Actor-Critic Methods? A Large-Scale Study
https://openreview.net/forum?id=nlAxjsniDzg performs a evaluation of many
hyperparameters of the PPO algorithm.

Main takeaways:

O Start with clipping threshold 0.25, but try increasing/decreasing it.

O Initialization of the last policy layer influences the results considerably; recommendation
is to use 100 times smaller weights.

O Use softplus to parametrize standard deviation of actions, use a negative offset to

decrease initial standard deviation of actions, tune it if possible.

Use tanh do transform the action distribution.

Do not share weights between the policy and value network; use a wide value network.

Always normalize observations; check if normalizing value function helps.

Use GAE with A = 0.9, do not use Huber loss. Adam with 3e-4 is a safe choice.

Perform multiple passes over the data, recompute advantages at the beginning of every
one of them.
O The discount factor 7y is important, tune it per environment starting with v = 0.99.

O O O O O

PPO 25/47

https://openreview.net/forum?id=nIAxjsniDzg

So far, we have clipped the rewards in DQN on Atari environments.

Consider a Bellman operator T
(Ta)(5,0) £ By oy |7+ ymaxq(s,a))

Instead of clipping the magnitude of rewards, we might use a function A : R — R to reduce
their scale. We define a transformed Bellman operator 7}, as

(Thg)(s,a) = Eg rp [h('r + Y max h1 (q(s’, a’)))]

TransRews 26/47

It is easy to prove the following two propositions from a 2018 paper Observe and Look Further:
Achieving Consistent Performance on Atari by Tobias Pohlen et al.
k— o0

1. If h(z) = az for a > 0, then ﬁlkq% hoq, = ag..

The statement follows from the fact that it is equivalent to scaling the rewards by a

constant o.

k
2. When h is strictly monotonically increasing and the MDP is deterministic, then 7;lkq AN

h o q..

This second proposition follows from
hOQ* = hOTQ* — hOT(h_l OhOQ*) — ﬁz(hOQ*)y

where the last equality only holds if the MDP is deterministic.

TransRews 27/47

For stochastic MDP, the authors prove that if A is strictly monotonically increasing, Lipschitz
continuous with Lipschitz constant Lj,, and has a Lipschitz continuous inverse with Lipschitz

constant Ly-1, then for v < th -, Ty, is again a contraction. (Proof in Proposition A.1.)
—

For the Atari environments, the authors propose the transformation
h(z) ¥ sign(z) (\/\:13\ T1- 1) tex

with € = 1072. The additive regularization term ensures that A1 is Lipschitz continuous.

It is straightforward to verify that

V1+tde(|z|+1+¢€) -1
2¢e

—1

h™!(z) = sign(z)

In practice, discount factor larger than th : is being used — however, it seems to work.
o

TransRews

28/47

Proposed in 2019, to study the effects of recurrent state, experience replay and distributed
training.
R2D2 utilizes prioritized replay, n-step double Q-learning with m = 5, convolutional layers

followed by a 512-dimensional LSTM passed to duelling architecture, generating experience by a
large number of actors (256; each performing approximately 260 steps per second) and learning
from batches by a single learner (achieving 5 updates per second using mini-batches of 64
sequences of length 80).

Rewards are transformed instead of clipped, and no loss-of-life-as-episode-end heuristic is used.

Instead of individual transitions, the replay buffer consists of fixed-length (1 = 80) sequences

of (s,a,r), with adjacent sequences overlapping by 40 time steps.

The prioritized replay employs a combination of the maximum and the average absolute 5-step
TD errors §; over the sequence: p = nmax; d; + (1 — n7)d, for both 1 and the priority

exponent set to 0.9.

R2D2 29/47

Recurrent Replay Distributed DQN (R2D2) UL

(a) Computation of AQ

Inltlal state Final state

| <] 0.06 - 0.06 ‘
(ht_|_ o |)] 0.04 - . 0.04- -+ I
¢ my Vt+m 02 . . '
o M N 'S LRI NTE

. eogl eorm ltos eogl eorm ltos rw
explore obstructed explore object
(c) goals large rewards many lasertag three opponents small rooms watermaze
1 1 1 1 I I I 1 1 I 1 1 1 1 1 I I 1 50 | I I I 1 1 1 1 I . 1 1 1 I I
£ 50 - A
2 150- 40 - v
2 40 -
B 100 20 30
S N
8 //./V 20 - Burn-in Zero-State Stored-State [, _
W s0- f 0
c 10 - P
3 40 IEEEEE
= o0- 0- 0-
T T 1 1 I I I 1 1 1 I m I 1 W I
0 1 2 3 4 2 0 1 2 3 4 0 1 2 3 4
Updates 1e6 # Updates 1e6 # Updates 1e6 # Updates 1e6

Figure 1: Top row shows Q-value discrepancy A() as a measure for recurrent state staleness. (a)
Diagram of how A(is computed, with green box indicating a whole sequence sampled from replay.
For simplicity, [= 0 (no burn-in). (b) AQ measured at first state and last state of replay sequences,
for agents training on a selection of DMLab levels (indicated by initials) with different training
strategies. Bars are averages over seeds and through time indicated by bold line on x-axis in bottom

row. (¢) Learning curves on the same levels, varying the training strategy, and averaged over 3 seeds.
Figure 1 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 30/47

Recurrent Replay Distributed DQN (R2D2) Pl
2000%
®R2D2(120h)
®R2D2(72h)
1500%
L0
S GE) Atari-57 DMLab-30
n 8 Human-Normalized Score Median Mean | Median Mean-Capped
ke
O~ Ape-X (Horgan et al., 2018) 434.1% 1695.6% - -
Nin ®R2D2(48h) R
T L . eactor (Gruslys et al., 2018) 187.0% = = =
£ 0 1000% IMPALA, deep (Espeholtetal., 2018) | 191.8% 957.6% | 49.0% 45.8%
e O IMPALA, shallow (re-run) - - 89.7% 73.6%
o ®R2D2(24h) IMPALA, deep (re-run) - - 107.5% 85.1%
e R2D2+ - - 99.5% 85.7%
% = R2D2, feed-forward 589.2% 1974.4% - -
500%| _R2D2(12h)_ ape X (120h) R2D2 ” | 19206% 4024.9% | 96.9% 783%
o ApeX (70n) Table 1 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
Ape-X (20h)
® ®Reactor ® Prio.DQN
® IMPALA(shallow) eDQN
0% 0 50 100 150 200 250 300
Training Time (Hours)
Figure 2 of "Recurrent Experience Replay in Distributed
Reinforcement Learning” by Steven Kapturowski et al.
NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 31/47

Number of actors 256
Actor parameter update interval 400 environment steps
Sequence length m 80 (+ prefix of [= 40 in burn-in experiments)
Replay buffer size 4 x 10 observations (10° part-overlapping sequences)
Priority exponent 0.9
Importance sampling exponent 0.6
Discount -y 0.997
Minibatch size 64 (32 for R2D2+ on DMLab)
Optimizer Adam (Kingma & Ba, 2014)
Optimizer settings learning rate = 1074, ¢ = 1073
Target network update interval 2500 updates
Value function rescaling h(z) = sign(z)(y/|z| +1—1) + ex, e = 1077

Table 2: Hyper-parameters values used in R2D2. All missing parameters follow the ones in Ape-X
(Horgan et al., 2018).

R2D2 32/47

Recurrent Replay Distributed DQN (R2D2) Vet

Atari-57 - Human-normalized Median

2000%
e R2D2
1600% | mmm= R2D2, FF
I Ape_x
12000 | = Rainbow
mmmmm Reactor
800%
400%

0%%

10’ 108 10° 101°
Environment Frames (Log-Scale)

Figure 9 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 33/47

Recurrent Replay Distributed DQN (R2D2)

Ablations comparing the reward clipping instead of value rescaling (Clipped), smaller discount
factor v = 0.99 (Discount) and Feed-Forward variant of R2D2. Furthermore, life-loss reset

evaluates resetting an episode on life loss, with roll preventing value bootstrapping (but not

LSTM

NPFL139, Lecture 10 Second-Order Methods

unrolling).

Breakout
E 800 - L
>
ko)
o 600 - L
()
©
'8 400 - L
h mm— R2D2
< 200- C!ipped |
] mmmm Discount
= . mmmm Feed-Forward |
1 1 1 1 1
0.0 0.5 1.0 1.5 2.0
Updates 1e6
Breakout
1 1 1 1 1 1
E 800 -
>
ko)
oc 600 - L
()
©
3 400- L
a
w
c - L
® 200 e Life-Loss (reset)
= . mmmm | jfe-Loss (roll)

1 1 1 1 1 1 1 1
00 02 04 06 08 1.0 1.2 1.4
Updates 1e6

' Gra'vitar'

1 1 1
1.0 2.0

40000

30000

20000

10000

0

MsPacman

600000 -

500000 -

400000 -

300000 -

200000 -

100000 -

-I 1 1 1 3
0.0 1.0

0.5 15 270
Updates

le6

700000 -

' QB'ert '

1 1
15 2.0
le6

170
Updates

|
0.0

SeaQuest

"~ 1000000 -
800000 -
600000 -
" 400000 -
200000 -
0 -

1 1 1 1 1

0.0 0.5 1.0 15 2.0
Updates 1e6

Figure 4 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

0.5 1.5
Updates 1e6
Gravitar
12000 - L

10000 -

8000 -

6000 -

4000 -

2000 -

0
1 1 1 1 1 1 1 1
0.0 02 04 06 08 1.0 1.2 1.4

Updates 1e6

60000 -
50000 -
40000 -
30000 -
20000 -
10000 -

0 -

MsPacman

1 1 1 1 1 1 1 I-
00 02 04 06 08 1.0 1.2 1.4
Updates 1e6

L 1000000 -
800000 -
600000 -
400000 -

200000 -

0

QBert

1 1 1 1 1 1 1 1
00 02 04 06 08 1.0 1.2 1.4
Updates 1e6

t 1000000-I
~ 800000 -
~ 600000 -
= 400000 -

- 200000 -

SeaQuest

0
1 1 1 1 1 1 1 1
00 02 04 06 08 1.0 1.2 1.4

Updates 1e6

Figure 7 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

NPG

TRPO

PPO TransRews

R2D2 Retrace

NGU Agentb7

34/47

Utilization of LSTM Memory During Inference

Mean Episode Reward

25000
C
(G 20000 ——
S 15000
(o)
Q_I 10000
- 7ero State
v 5000
E = Stored State
0
00 120 80 40
k
(O]
N
M 40
- 30 -
3 s
© 5o T 1
;I 15 1 I/
E 10
+—~ 5
g 0
O oo 120 80k 40

NPFL139, Lecture 10 Second-Order Methods

1

1

NPG

TR
00 % Greedy Action Match - AQ
80 16
60 12
40 8
20 4
0 0 — e
120 80 40 0 120 80 40 0
k
00 0.8
80 0.6
60 ===
0.4
40 =
20 0.2
0 0
120 80 40 0 120 80 40 0
Figure 5 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
TRPO PPO TransRews R2D2 Retrace NGU Agent57 35/47

The Agent57 is an agent (from Mar 2020) capable of outperforming the standard human
benchmark on all 57 games.

lts most important components are:

® Retrace; from Safe and Efficient Off-Policy Reinforcement Learning by Munos et al.,

https://arxiv.org/abs/1606.02647,
® Never give up strategy; from Never Give Up: Learning Directed Exploration Strategies by

Badia et al., https://arxiv.org/abs/2002.06038,
® Agenth7 itself; from Agent57: Outperforming the Atari Human Benchmark by Badia et al.,

https://arxiv.org/abs/2003.13350.

Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agentb7 36/47

https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2003.13350

Rq(s,a) = q(s,a) + Ey [27 (H) (Rt—i—l +YE 4, ~7q(St1, Apy1) — Q(StaAt))la

t>0

where there are several possibilities for defining the traces ¢;:

7T(At|st)
b(At|Sy) !
O the usual off-policy correction, but with possibly very high variance,
O note that ¢; = 1 in the on-policy case;

® Tree-backup TB(}), c; = Am(A:]Sy),

O the Tree-backup algorithm extended with traces,
O however, ¢; can be much smaller than 1 in the on-policy case;

®* importance sampling, ¢; = p; =

® Retrace(7), ¢; = Amin (1, Z((i;ﬂg:))),

O off-policy correction with limited variance, with ¢; = 1 in the on-policy case.

The authors prove that R has a unique fixed point g, for any 0 < ¢; < Z((jzﬂgz)).

Retrace

37/47

The NGU (Never Give Up) agent performs curiosity-driver exploration, and augment the

extrinsic (MDP) rewards with an intrinsic reward. The augmented reward at time £ is then

tﬂ o« ré + Br!, with 8 a scalar weight of the intrinsic reward.

The intrinsic reward fulfills three goals:
1. quickly discourage visits of the same state in the same episode;
2. slowly discourage visits of the states visited many times in all episodes;

3. ignore the parts of the state not influenced by the agent's actions.

episodic

The intrinsic rewards is a combination of the episodic novelty 7, and life-long novelty a;:

pi & pepisodic olin (1 <o <L= 5).

NGU 38/47

The episodic novelty works
by storing the embedded
states f(.S;) visited during

the episode in episodic
memory M .

i

A

codic
The 7,77 is then

estimated as

episodic 1

r = .
: \/ visit count of f(S;)

plalrs, ziq1)

@)
classifier b %‘

: embedding \

network

o

<---->

life-long novelty
module

episodic novelty
module

|
g : multiplicative
| modulation

> 077

| ———O0—
A

|
——> —> |
|
|

\
: k-nearest \
| neighbors \
| controllable state \
| episodic |
- O |
| \
: embedding network }
| \
| f episodic memory M \

The visit count is estimated using similarities of k-nearest neighbors of f(.S;) measured via an

3

d(ac,z)2

inverse kernel K (z,z) =
) +€
dm

episodic 1

Ty

Second-Order Methods NPG

TRPO

: \/ZfiENk K(f(S), fi) +c

PPO

TransRews

for d,,, a running mean of the k-nearest neighbor distance:

, with pseudo-count ¢=0.001.

R2D2 Retrace NGU Agentb7 39/47

The state embeddings are ielong novely | RNP o eor
dul
trained to ignore the parts (“’xt"”f“) e % —~
| g
—
l

|
: multiplicative
| modulation

not influenced by the actions st é‘

of the agent. %
. . embedding
To this end, Siamese @ network @
. . !

network f is trained to SEEAN
predict p(A4;|S;, Siy1), ie
the action A, taken by the
agent in state S; when the 0 episodiememory M

|
— > |
|
_| | RND prediction network |

% k-nearest
‘ neighbors
l
l

controllable state

O 7,?pisodic

episodic novelty
module

resulting state is Sy, 1.

A 2
The life-long novelty oy = 1 + 19=9"Zterr 5 trained using random network distillation (RND),

err

where a predictor network g tries to predict the output of an untrained convolutional network g
by minimizing the mean squared error; the o, and g are the running mean and standard
deviation of the error ||g — g||*.

Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agentb7 40/47

Never Give Up =
The NGU agent uses transformed Retrace loss with the augmented reward
, def episodic .
rl =rpp cclip(l<o <L=5).
t t = =
§ow .= To support multiple policies concentrating either on the
£ oo : extrinsic or the intrinsic reward, the NGU agent trains a
£ : parametrized action-value function q(s, a, 3;) which
g oos s corresponds to reward ;" for By = 0 and vy = 0.997,
; O I:gicesofthezglic Bb ey _ p— and I — 0.99
(a) Values taken by thelj{ﬂi}]/»figl IBN 1 /B /YN 1
For evaluation, ¢(s, a,0) is employed.
° Irllgices of the slglicy »
(b) Values taken by the {7;} ;! .
Figure 7b of "Never Give l_Jp.I'I Learning (b) E?}?blsgf%\l%]\irz(ﬁf%nt
Directed Exploration Strategies" by A. P. Leagming Dorected Exp/oratigr}
Badia et al Strategies” by A. P. Badia et al.
NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 41/47

Never Give Up

Algorithm Gravitar MR Pitfall! PrivateEye Solaris Venture
Human 3.4k 4.8k 6.5k 69.6k 12.3k 1.2k

Best baseline 15.7k 11.6k 0.0 11k 5.5k 2.0k

RND 3.9k 10.1k -3 8.7k 3.3k 1.9k
R2D2+RND 15.6k+0.6k 10.4k+1.2k -0.5+0.3 19.5k+3.5k 4.3k+0.6k 2.7k+0.0k
R2D2(Retrace) 13.3k+0.6k 2.3k+0.4k -3.5£1.2 32.5k+4.7k 6.0k+1.1k 2.0k+0.0k
NGU(N=1)-RND | 12.4k+0.8k 3.0k£0.0k 15.2k+9.4k 40.6k+0.0k 5.7k+1.8k 46.4+37.9
NGU(N=1) 11.0k+0.7k 8.7k+1.2k 9.4k+2.2k 60.6k+16.3k 5.9k+1.6k 876.3+114.5
NGU(N=32) 14.1k+0.5k 10.4k+1.6k 8.4k+4.5k 100.0k+0.4k 4.9k+0.3k 1.7k+0.1k

Table 1: Results against exploration algorithm baselines. Best baseline takes the best result among
R2D2 (Kapturowski et al., 2019), DQN + PixelCNN (Ostrovski et al., 2017), DQN + CTS (Bellemare
et al., 2016), RND (Burda et al., 2018b), and PPO + CoEx (Choi et al., 2018) for each game.

Table 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

Human Normalized Score

1.0

1.5 2.0
Frames

Mean HN Score on Hard Exploration Games

—— NGU(32)
—— R2D2(Retrace)
— NGU(1)

—— NGU(1)-RND
--=- RND

Human Normalized Score
o e par g EES W
[4)] ~J = N W ~1
(=] w o [¢]] (=] wl

o
%)
(3]

25 3.0 3.5

Median HN Score on Hard Exploration Games

—— NGU(32)
—— R2D2(Retrace)
—— NGU(1)
—— NGU(1)-RND

0.0 0.5 1.0 1.5 2.0

Frames

2.5 3.0 3.5

Figure 4: Human Normalized Scores on the 6 hard exploration games.
Figure 4 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

NPFL139, Lecture 10 Second-Order Methods

NPG

TRPO

PPO

TransRews R2D2

Retrace

NGU Agent57

42/47

Never Give Up Ablations Y

100+

80-

60 -

= Random embedding

— Action prediction embedding

40- —— Baseline RND

% states explored

20-

0 50000 100000 150000 200000 250000
Learner updates

Figure 2: (Left and Center) Sample screens of Random Disco Maze. The agent is in green, and
pathways in black. The colors of the wall change at every time step. (Right) Learning curves for

Random projections vs. learned controllable states and a baseline RND implementation.
Figure 2 of “"Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

Average Human Normalized Score

[4b]

§ mm NGU(N=32)
2 2.0 20 ' s CMR=0.5
48] =

815 | | g = N=16

< mm 3=0.2

= 1.0 10 =05

= B w/o RND
50'5 ﬁ 5 nl | | W/O re

Z 0.0 0

Hard exploration games Dense reward games
Figure 3 of “"Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 43 /47

The Agent57 is an agent (from Mar 2020) capable of outperforming the standard human
benchmark on all 57 games.

lts most important components are:

® Retrace; from Safe and Efficient Off-Policy Reinforcement Learning by Munos et al.,

https://arxiv.org/abs/1606.02647,
® Never give up strategy; from Never Give Up: Learning Directed Exploration Strategies by

Badia et al., https://arxiv.org/abs/2002.06038,
® Agenth7 itself; from Agent57: Outperforming the Atari Human Benchmark by Badia et al.,

https://arxiv.org/abs/2003.13350.

Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agentb7 44/47

https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2003.13350

Then Agent57 improves NGU with:

® splitting the action-value as ¢(s, a, j; 0) = q(s,a,3;0°) +

Bia(s,a,j;0"), where
o q(s,a,j;0° is trained with 7, as targets, and

o q(s,a,j;0") is trained with ; as targets.

® instead of considering all (3;,7;) equal, we train a meta-

controller using a non-stationary multi-arm bandit algorithm,
where arms correspond to the choice of j for a whole episode

(so an actor first samples a 7 using multi-arm bandit problem

and then updates it according to the observed return), and
the reward signal is the undiscounted extrinsic episode return;
each actor uses a different level of €;-greedy behavior;

® ~n_1 is increased from 0.997 to 0.9999.

Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agentb7 45/47

Agentb7/ — Results =

f=1

s

f=1

3

< 50

A

0

]

z

=)

e

o

8 40

g ---- Optimal

2 — Agent57

—— R2D2
NGU
MuZero
30 |
0 1 2 3 4 5 6 7 8 9
Number of frames lel0

Figure 1. Number of games where algorithms are better than the
human benchmark throughout training for Agent57 and state-of-
the-art baselines on the 57 Atari games.
Figure 1 of "Agent57: Qutperforming the Atari Human Benchmark" by A. P. Badia et al.

Table 1. Number of games above human, mean capped, mean and median human normalized scores for the 57 Atari games.

Statistics Agent57 R2D2 (bandit) NGU R2D2 (Retrace) R2D2 MuZero

Capped mean 100.00 96.93 95.07 94.20 94.33 89.92

Number of games > human 57 54 51 52 52 51

Mean 4766.25 5461.66 3421.80 3518.36 4622.09 | 5661.84
Median 1933.49 2357.92 1359.78 1457.63 1935.86 | 2381.51
40th Percentile 1091.07 1298.80 610.44 817.77 1176.05 1172.90

30th Percentile 614.65 648.17 267.10 420.67 529.23 503.05

20th Percentile 324.78 303.61 226.43 267.25 215.31 171.39

10th Percentile 184.35 116.82 107.78 116.03 115.33 75.74

5th Percentile 116.67 93.25 64.10 48.32 50.27 0.03

Table 1 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57 46 /47

Agentb7 — Ablations

100 mmmmmm e
X
=
o P 1
g 90 el e i s b g b adiuh A
3 7 e Pl B,
e ; o B
(3} I, aercamun s
E 60 ?x”'ﬁ?ﬁ—% e
g j
1)
= y
g 40 J
© y
g { .
é ! --=-- Optimal
9 20 " —— Agent57
o, a NGU + separate nets
§ f - NGU + bandit + long trace
0 NGU
0 1 2 3 4 5
Number of frames lel0

Arm chosen on Skiing

N
w

N
o

Index of chosen arm
= =
o w

0

30
5
0 i} 2

3

N w
w o

N
o

Index of chosen arm
= —
o w

w

| mUvaram

5 0 1
lelO

Arm chosen on Crazy climber Arm chosen on Beam rider

Index of chosen arm

30

N
w

N
o

=
o

Index of chosen arm
i
(9,]

[=] [¢]

0

30
25
20
15
10
!
1 2 3

0

4 5
lelO

Fi gure 4. Performance pro gression on the 10- game challeng ing Figure 8. Best arm chosen by the evaluator of Agent57 over train-

set obtained from incorporating each one of the improvements.
Figure 4 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

NPFL139, Lecture 10 Second-Order Methods

NPG TRPO PPO

ing for different games.
Figure 8 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia

TransRews R2D2

Retrace

—
TR
Arm chosen on Hero Arm chosen on Gravitar
2 3 4 5 0 1 2 3 4 5
lel0 lel0
Arm chosen on Jamesbond
30
£ 25
—_
©
$ 20
w
o
S 15
=
o
x 10
L]
e
I\ T
0 { U “ll
2 4 5 1 2 4 5
lel0 lel0
et al.
NGU Agent57 47/47

