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First-order and Second-order Methods

Neural networks usually rely on SGD for finding a minimum, by performing

A disadvantage of this approach (so-called first-order method) is that we need to specify the
learning rates by ourselves, usually using quite a small one, and perform the update many times.

However, in some situations, we can do better.

θ ← θ − α∇  L(θ).θ
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Newton’s Root-Finding Method

 

Modification of https://commons.wikimedia.org/wiki/File:Newton–
Raphson_method.svg

Assume we have a function  and we want to find its root. An SGD-like algorithm

would always move “towards” zero by taking small steps.

Instead, we could consider the linear local approximation
(i.e., consider a line “touching” the function in a given
point) and perform a step so that our linear local
approximation has a value 0:

Finding Minima
The same method can be used to find minima, because a
minimum is just a root of a derivative, resulting in:

f : R → R

x ←′ x−  .
f (x)′

f(x)

x ←′ x−  .
f (x)′′

f (x)′
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Newton’s Method

The following update is the Newton’s method of searching for extremes:

It is a so-called second-order method, but it is just an SGD update with a learning rate .

Derivation from Taylor’s Expansion
The same update can be derived also from the Taylor’s expansion

which we can minimize for  by

x ←′ x−  .
f (x)′′

f (x)′

 

f (x)′′
1

f(x+ ε) ≈ f(x) + εf (x) +′
 ε f (x) +

2
1 2 ′′ O(ε ),3

ε

0 =  ≈
∂ε

∂f(x+ ε)
f (x) +′ εf (x),   obtaining  x+′′ ε = x−  .

f (x)′′

f (x)′
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Training MLPs with the Newton’s Method

Note that the second-order methods (methods utilizing second derivatives) are impractical when
training MLPs with many parameters. The problem is that there are too many second
derivatives – if we consider weights ,

the gradient  has  elements;

however, we have a  matrix with all second derivatives, called the Hessian :

The Taylor expansion of a multivariate function then has the following form:

from which we obtain the following second-order method update:

θ ∈ RD

∇  L(θ)θ D

D × D H

H  i,j =def
 .

∂θ  ∂θ  i j

∂ L(θ)2

f(x+ ε) = f(x) + ε ∇f(x) +T
 ε Hε,

2
1 T

x ← x−H ∇f(x).−1
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Fisher Information Matrix

Assume we have a model computing a distribution .

We define score  as

Given the formula for a derivative of a logarithm, the score can also be written as

Note that the expectation of the score with respect to the model output  is zero:

p(y∣x; θ)

s(θ;x, y)

s(θ;x, y) =def ∇  log p(y∣x; θ).θ

s(θ;x, y) =def
 .

p(y∣x; θ)
∇  p(y∣x; θ)θ

y

E  [s(θ;x, y)] =y∼p(x;θ)  p(y∣x; θ)  =
y

∑
p(y∣x; θ)

∇  p(y∣x; θ)θ ∇   p(y∣x; θ) =θ

y

∑ ∇  1 =θ 0.
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Fisher Information Matrix

Let  be the data generating distribution, and  a dataset sampled from .

Assuming , we define the Fisher Information Matrix  as the

covariance matrix of the score:

Because the expectation of the score is zero, the definition simplifies to

The first expectation is usually computed over . When the  is taken from , the

matrix is called Empirical Fisher, and it can be computed with a single forward and backward
pass through the model.

D D D

θ ∈ RD F (θ) ∈ RD×D

F (θ) =def E  E  [(s(θ;x, y) −x∼D y∣x∼D Es(θ;x, y))(s(θ;x, y) − Es(θ;x, y)) ].
T

F (θ) =def E  E  [s(θ;x, y)s(θ;x, y) ].x∼D y∣x∼D
T

D y∣x p(y∣x; θ)
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Fisher Information Matrix

Now consider the usual NLL loss . Its Hessian is

We get that

L(y∣x; θ) = − log p(y∣x; θ)

H  =L(y∣x;θ) ∇  ∇  −θ θ log p(y∣x; θ).

E  E  H  =x∼D y∣x∼D L(y∣x;θ) F (θ).
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Fisher Information Matrix

Lets consider

The expectation over  of the Taylor expansion to the second order gives

D  (p(y∣x; θ)∥p(y∣x; θ +KL d))

x ∼ D

E  D  (p(y∣x; θ)∥p(y∣x; θ +x∼D KL d)) ≈  d Fd+
2
1 T O(∥d∥ ).3
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The Direction of the SGD Gradient Update

Consider the

We get that

therefore,

   L(D; θ +
ε→0
lim

ε

1

d,∥d∥≤ε
arg min d).

d ∝ −∇  L(D; θ),θ

d = ε  .
∥∇  L(D; θ)∥θ

−∇  L(D; θ)θ
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The Direction of the FIM Gradient Update

Consider now

We get that

Note that if we consider just a diagonal of , the resulting algorithm is similar to Adam.

 L(D; θ +
d,D  (p(y∣x;θ)∥p(y∣x;θ+d))≤εKL

arg min d).

d ∝ −F (θ) ∇  L(D; θ).−1
θ

F (θ)−1
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Natural Policy Gradient

Kakade (2002) introduced natural policy gradient, a second-order method utilizing the Fisher
Information Matrix.

Using policy gradient theorem, we are able to compute . Normally, we update the

parameters by using directly this gradient. This choice is justified by the fact that a vector 

which maximizes  under the constraint that  is bounded by a small constant

is exactly the gradient .

However, for the Fisher information matrix

we might to update the parameters using .

It can be shown that the Fisher information metric is the only Riemannian metric (up to
rescaling) invariant to change of parameters under sufficient statistic.

∇v  π

d

v  (s; θ +π d) ∥d∥2

∇v  π

F (θ) =def E  E  [(∇  log π(a∣s; θ))(∇  log π(a∣s; θ)) ],s π(a∣s;θ) θ θ
T

d  F =def
F (θ) ∇v  

−1
π
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Natural Policy Gradient

 

Figure 3 of "Reinforcement learning of motor skills with policy gradients" by Jan Peters et al.

An interesting property of using the  to update the parameters is that

updating  using  will choose an arbitrary better action in state ;

updating  using  chooses the best action (maximizing expected return),

similarly to tabular greedy policy improvement.

However, computing  in a straightforward way is too costly.

d  F

θ ∇v  π s

θ F (θ) ∇v  

−1
π

d  F
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Truncated Natural Policy Gradient

Duan et al. (2016) in paper Benchmarking Deep Reinforcement Learning for Continuous
Control propose a modification to the NPG to efficiently compute .

Following Schulman et al. (2015), they suggest to use conjugate gradient algorithm, which can
solve a system of linear equations  in an iterative manner, by using  only to compute

products  for a suitable .

Therefore,  is found as a solution of

and using only 10 iterations of the algorithm seem to suffice according to the experiments.

Furthermore, Duan et al. suggest to use a specific learning rate suggested by Peters et al
(2008) of

d  F

Ax = b A

Av v

d  F

F (θ)d  =F ∇v  π

 .
 (∇v  ) F (θ) ∇v  π

T −1
π

α
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Trust Region Policy Optimization

Schulman et al. in 2015 wrote an influential paper introducing TRPO as an improved variant of
NPG.

Considering two policies , we can write

where  is the advantage function  and  is the on-policy

distribution of the policy .

Analogously to policy improvement, we see that if , policy  performance increases

(or stays the same if the advantages are zero everywhere).

However, sampling states  is costly. Therefore, we instead consider

π, π~

v  =π~ v  +π E  E  a  (a∣s),s∼μ( )π~ a∼ (a∣s)π~ π

a  (a∣s)π q  (a∣s) −π v (s)π μ( )π~

π~

a  (a∣s) ≥π 0 π~

s ∼ μ( )π~

L  ( ) =π π~ v  +π E  E  a  (a∣s).s∼μ(π) a∼ (a∣s)π~ π
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Trust Region Policy Optimization

Using  is usually justified by  and .

Schulman et al. additionally proves that if we denote 

, then

Therefore, TRPO maximizes  subject to , where

 is used instead of  for

performance reasons;
 is a constant found empirically, as the one implied by the above equation is too small;

importance sampling is used to account for sampling actions from .

L  ( ) =π π~ v  +π E  E  a  (a∣s)s∼μ(π) a∼ (a∣s)π~ π

L  ( )π π~ L  (π) =π v  π ∇  L  ( )∣  =π~ π π~ =ππ~ ∇  v  ∣  π~ π~ =ππ~

α = D (π  ∥π  ) =KL
max

old new

max  D  (π  (⋅∣s)∥π  (⋅∣s))s KL old new

v  ≥π  new L  (π  ) −π  old new  α   where   ε =
(1 − γ)2

4εγ
 ∣a  (s, a)∣.

s,a
max π

L  (π  )π  θ  0 θ D  (π  ∥π  ) <KL
θ  0

θ  0 θ δ

D  (π  ∥π  ) =KL
θ  0

θ  0 θ E  [D  (π  (⋅∣s)∥π  (⋅∣s))]s∼μ(π  )θ  0 KL old new D  KL
max

δ

π
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Trust Region Policy Optimization

The parameters are updated using , utilizing the conjugate gradient

algorithm as described earlier for TNPG (note that the algorithm was designed originally for
TRPO and only later employed for TNPG).

To guarantee improvement and respect the  constraint, a line search is in fact performed.

We start by the learning rate of  and shrink it exponentially until the

constraint is satistifed and the objective improves.

maximize  L  (π  ) =π  θ  0 θ E  [  a  (a∣s)]  subject to  D  (π  ∥π  ) <s∼μ(π  ),a∼π  (a∣s)θ  0 θ  0 π  (a∣s)θ  0

π  (a∣s)θ
π  θ  0 KL

θ  0
θ  0 θ δ

d  =F F (θ) ∇L  (π  )−1
π  θ  0 θ

D  KL

 δ/(d  F (θ) d  )F
T −1

F
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Trust Region Policy Optimization

 

Figure 1 of "Benchmarking Deep Reinforcement Learning for Continuous Control" by Duan et al.

 

Table 1 of "Benchmarking Deep Reinforcement Learning for Continuous Control" by Duan et al.
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Proximal Policy Optimization

A simplification of TRPO which can be implemented using a few lines of code.

Let . PPO maximizes the objective (i.e., you should minimize its negation)

Such a  is a lower (pessimistic) bound.

 

Figure 1 of "Proximal Policy Optimization Algorithms" by Schulman et al.

r  (θ)t =def
 

π(A  ∣S  ;θ  )t t old

π(A  ∣S  ;θ)t t

L (θ)CLIP =def E  [min (r  (θ)  , clip(r  (θ), 1 −t t Ât t ε, 1 + ε)  ))].Ât

L (θ)CLIP
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Proximal Policy Optimization

The advantages  are additionally estimated using the so-called generalized advantage

estimation, which is just an analogue of the truncated n-step lambda-return:

 Ât

 =Ât  γ λ (R  +
i=0

∑
n−1

i i
t+1+i γV (S  ) −t+i+1 V (S  )).t+i

20/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57



Proximal Policy Optimization – The Algorithm

 

Algorithm 1 of "Proximal Policy Optimization Algorithms" by Schulman et al.

The rollout phase should be usually performed using vectorized environments.

It is important to correctly handle episodes that did not finish in a rollout, using
bootstrapping to estimate the return from the rest of the episode. That way, PPO can learn
in long-horizont games with  much smaller than episode length.

Increasing  increases parallelism, while increasing  increase the number of steps that

must be performed sequentially.

T

N T
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Proximal Policy Optimization

 

Figure 3 of "Proximal Policy Optimization Algorithms" by Schulman et al.
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Proximal Policy Optimization

Results from the SAC paper:

 

Figure 1 of "Soft Actor-Critic Algorithms and Applications" by Tuomas Haarnoja et al.
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Proximal Policy Optimization

There are a few tricks that influence the peformance of PPO significantly; see the following
nice blogpost about many of them:

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
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Proximal Policy Optimization

The paper What Matters for On-Policy Deep Actor-Critic Methods? A Large-Scale Study
https://openreview.net/forum?id=nIAxjsniDzg performs a evaluation of many
hyperparameters of the PPO algorithm.

Main takeaways:
Start with clipping threshold 0.25, but try increasing/decreasing it.
Initialization of the last policy layer influences the results considerably; recommendation
is to use 100 times smaller weights.
Use softplus to parametrize standard deviation of actions, use a negative offset to
decrease initial standard deviation of actions, tune it if possible.
Use  do transform the action distribution.

Do not share weights between the policy and value network; use a wide value network.
Always normalize observations; check if normalizing value function helps.
Use GAE with , do not use Huber loss. Adam with 3e-4 is a safe choice.

Perform multiple passes over the data, recompute advantages at the beginning of every
one of them.
The discount factor  is important, tune it per environment starting with .

tanh

λ = 0.9

γ γ = 0.99
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Transformed Rewards

So far, we have clipped the rewards in DQN on Atari environments.

Consider a Bellman operator 

Instead of clipping the magnitude of rewards, we might use a function  to reduce

their scale. We define a transformed Bellman operator  as

T

(T q)(s, a) =def E  [r +s ,r∼p′ γ  q(s , a )].
a′

max ′ ′

h : R → R
T  h

(T  q)(s, a)h =def E  [h(r +s ,r∼p′ γ  h (q(s , a )))].
a′

max −1 ′ ′

26/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57



Transformed Rewards

It is easy to prove the following two propositions from a 2018 paper Observe and Look Further:
Achieving Consistent Performance on Atari by Tobias Pohlen et al.

1. If  for , then .

The statement follows from the fact that it is equivalent to scaling the rewards by a
constant .

2. When  is strictly monotonically increasing and the MDP is deterministic, then 

.

This second proposition follows from

where the last equality only holds if the MDP is deterministic.

h(z) = αz α > 0 T  q  h
k k→∞

h ∘ q  =∗ αq  ∗

α

h T  q  h
k k→∞

h ∘ q  ∗

h ∘ q  =∗ h ∘ T q  =∗ h ∘ T (h ∘−1 h ∘ q  ) =∗ T (h ∘h q  ),∗
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Transformed Rewards

For stochastic MDP, the authors prove that if  is strictly monotonically increasing, Lipschitz

continuous with Lipschitz constant , and has a Lipschitz continuous inverse with Lipschitz

constant , then for ,  is again a contraction. (Proof in Proposition A.1.)

For the Atari environments, the authors propose the transformation

with . The additive regularization term ensures that  is Lipschitz continuous.

It is straightforward to verify that

In practice, discount factor larger than  is being used – however, it seems to work.

h

L  h

L  h−1 γ <  

L  L  h h−1

1 T  h

h(x) =def sign(x)  − 1 +( ∣x∣ + 1 ) εx

ε = 10−2 h−1

h (x) =−1 sign(x)   − 1  .(
2ε

 − 11 + 4ε(∣x∣ + 1 + ε)
)

2

 L  L  h h−1

1
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Recurrent Replay Distributed DQN (R2D2)

Proposed in 2019, to study the effects of recurrent state, experience replay and distributed
training.

R2D2 utilizes prioritized replay, -step double Q-learning with , convolutional layers

followed by a 512-dimensional LSTM passed to duelling architecture, generating experience by a
large number of actors (256; each performing approximately 260 steps per second) and learning
from batches by a single learner (achieving 5 updates per second using mini-batches of 64
sequences of length 80).

Rewards are transformed instead of clipped, and no loss-of-life-as-episode-end heuristic is used.

Instead of individual transitions, the replay buffer consists of fixed-length ( ) sequences

of , with adjacent sequences overlapping by 40 time steps.

The prioritized replay employs a combination of the maximum and the average absolute 5-step
TD errors  over the sequence: , for both  and the priority

exponent set to 0.9.

n n = 5

m = 80
(s, a, r)

δ  i p = ηmax  δ  +i i (1 − η)δ̄ η
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Recurrent Replay Distributed DQN (R2D2)

 

Figure 1 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

 

Figure 2 of "Recurrent Experience Replay in Distributed
Reinforcement Learning" by Steven Kapturowski et al.

 

Table 1 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

 

Table 2 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

 

Figure 9 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Recurrent Replay Distributed DQN (R2D2)

Ablations comparing the reward clipping instead of value rescaling (Clipped), smaller discount
factor  (Discount) and Feed-Forward variant of R2D2. Furthermore, life-loss reset

evaluates resetting an episode on life loss, with roll preventing value bootstrapping (but not
LSTM unrolling).

 

Figure 4 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

 

Figure 7 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

γ = 0.99
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Utilization of LSTM Memory During Inference

 

Figure 5 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.
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Agent57

The Agent57 is an agent (from Mar 2020) capable of outperforming the standard human
benchmark on all 57 games.

Its most important components are:

Retrace; from Safe and Efficient Off-Policy Reinforcement Learning by Munos et al.,
https://arxiv.org/abs/1606.02647,
Never give up strategy; from Never Give Up: Learning Directed Exploration Strategies by
Badia et al., https://arxiv.org/abs/2002.06038,
Agent57 itself; from Agent57: Outperforming the Atari Human Benchmark by Badia et al.,
https://arxiv.org/abs/2003.13350.
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Retrace

where there are several possibilities for defining the traces :

importance sampling, ,

the usual off-policy correction, but with possibly very high variance,
note that  in the on-policy case;

Tree-backup TB(λ), ,

the Tree-backup algorithm extended with traces,
however,  can be much smaller than 1 in the on-policy case;

Retrace(λ), ,

off-policy correction with limited variance, with  in the on-policy case.

The authors prove that  has a unique fixed point  for any .

Rq(s, a) q(s, a) + E  [  γ  c  (R  + γE  q(S  ,A  ) − q(S  ,A ))],=def
b

t≥0

∑ t (∏
j=1

t

t) t+1 A  ∼πt+1 t+1 t+1 t t

c  t

c  =t ρ  =t  

b(A  ∣S  )t t

π(A  ∣S  )t t

c  =t 1

c =t λπ(A  ∣S  )t t

c  t

c =t λmin (1,  )
b(A  ∣S  )t t

π(A  ∣S  )t t

c  =t 1

R q  π 0 ≤ c  ≤t  

b(A  ∣S  )t t

π(A  ∣S  )t t
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Never Give Up

The NGU (Never Give Up) agent performs curiosity-driver exploration, and augment the
extrinsic (MDP) rewards with an intrinsic reward. The augmented reward at time  is then 

, with  a scalar weight of the intrinsic reward.

The intrinsic reward fulfills three goals:

1. quickly discourage visits of the same state in the same episode;

2. slowly discourage visits of the states visited many times in all episodes;

3. ignore the parts of the state not influenced by the agent's actions.

The intrinsic rewards is a combination of the episodic novelty  and life-long novelty :

t

r  t
β =def

r  +t
e βr  t

i β

r  t
episodic α  t

r  t
i =def

r  ⋅t
episodic clip(1 ≤ α  ≤t L = 5).
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Never Give Up

 

Figure 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

The episodic novelty works
by storing the embedded
states  visited during

the episode in episodic
memory .

The  is then

estimated as

The visit count is estimated using similarities of -nearest neighbors of  measured via an

inverse kernel  for  a running mean of the -nearest neighbor distance:

f(S  )t

M

r  t
episodic

r  =t
episodic

 .
 visit count of f(S  )t

1

k f(S  )t
K(x, z) =  

 +ε
d  m
2

d(x,z)2
ε d  m k

r  =t
episodic

 ,  with pseudo-count c=0.001.
 + c K(f(S  ), f  )∑f  ∈N  i k

t i

1
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Never Give Up

 

Figure 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

The state embeddings are
trained to ignore the parts
not influenced by the actions
of the agent.

To this end, Siamese
network  is trained to

predict , i.e.,

the action  taken by the

agent in state  when the

resulting state is .

The life-long novelty  is trained using random network distillation (RND),

where a predictor network  tries to predict the output of an untrained convolutional network 

by minimizing the mean squared error; the  and  are the running mean and standard

deviation of the error .

f

p(A  ∣S  ,S  )t t t+1

A  t

S  t

S  t+1

α  =t 1 +  

σ  err

∥  −g∥ −μ  ĝ 2
err

 ĝ g

μ  err σ  err

∥  −ĝ g∥2
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Never Give Up

 

Figure 17 of "Never Give Up:
Learning Directed Exploration

Strategies" by A. P. Badia et al.

 

Figure 7b of "Never Give Up: Learning
Directed Exploration Strategies" by A. P.

Badia et al.

The NGU agent uses transformed Retrace loss with the augmented reward

To support multiple policies concentrating either on the
extrinsic or the intrinsic reward, the NGU agent trains a
parametrized action-value function  which

corresponds to reward  for  and ,

…,  and .

For evaluation,  is employed.

r  t
i =

def
r  ⋅t

episodic clip(1 ≤ α  ≤t L = 5).

q(s, a, β  )i
r  t
β  i β  =0 0 γ  =0 0.997

β  =N−1 β γ  =N−1 0.99

q(s, a, 0)
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Never Give Up

 

Table 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

 

Figure 4 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.
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Never Give Up Ablations

 

Figure 2 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

 

Figure 3 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.
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Agent57

The Agent57 is an agent (from Mar 2020) capable of outperforming the standard human
benchmark on all 57 games.

Its most important components are:

Retrace; from Safe and Efficient Off-Policy Reinforcement Learning by Munos et al.,
https://arxiv.org/abs/1606.02647,
Never give up strategy; from Never Give Up: Learning Directed Exploration Strategies by
Badia et al., https://arxiv.org/abs/2002.06038,
Agent57 itself; from Agent57: Outperforming the Atari Human Benchmark by Badia et al.,
https://arxiv.org/abs/2003.13350.
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Agent57

 

Figure 10 of "Agent57: Outperforming the Atari Human
Benchmark" by A. P. Badia et al.

Then Agent57 improves NGU with:

splitting the action-value as 

, where

 is trained with  as targets, and

 is trained with  as targets.

instead of considering all  equal, we train a meta-

controller using a non-stationary multi-arm bandit algorithm,
where arms correspond to the choice of  for a whole episode

(so an actor first samples a  using multi-arm bandit problem

and then updates it according to the observed return), and
the reward signal is the undiscounted extrinsic episode return;
each actor uses a different level of -greedy behavior;

 is increased from  to .

q(s, a, j; θ) =def
q(s, a, j; θ ) +e

β  q(s, a, j; θ )j
i

q(s, a, j; θ )e r  e

q(s, a, j; θ )i r  i

(β  , γ  )j j

j

j

ε  l

γ  N−1 0.997 0.9999
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Agent57 – Results

 

Figure 1 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

 

Table 1 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.
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Agent57 – Ablations

 

Figure 4 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

 

Figure 8 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia
et al.
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