
NPFL139, Lecture 10

PPO, R2D2, Agent57

Milan Straka

April 22, 2024

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

First-order and Second-order Methods

Neural networks usually rely on SGD for finding a minimum, by performing

A disadvantage of this approach (so-called first-order method) is that we need to specify the
learning rates by ourselves, usually using quite a small one, and perform the update many times.

However, in some situations, we can do better.

θ ← θ − α∇ L(θ).θ

2/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Newton’s Root-Finding Method

Modification of https://commons.wikimedia.org/wiki/File:Newton–
Raphson_method.svg

Assume we have a function and we want to find its root. An SGD-like algorithm

would always move “towards” zero by taking small steps.

Instead, we could consider the linear local approximation
(i.e., consider a line “touching” the function in a given
point) and perform a step so that our linear local
approximation has a value 0:

Finding Minima
The same method can be used to find minima, because a
minimum is just a root of a derivative, resulting in:

f : R → R

x ←′ x− .
f (x)′

f(x)

x ←′ x− .
f (x)′′

f (x)′

3/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Newton’s Method

The following update is the Newton’s method of searching for extremes:

It is a so-called second-order method, but it is just an SGD update with a learning rate .

Derivation from Taylor’s Expansion
The same update can be derived also from the Taylor’s expansion

which we can minimize for by

x ←′ x− .
f (x)′′

f (x)′

f (x)′′
1

f(x+ ε) ≈ f(x) + εf (x) +′
 ε f (x) +

2
1 2 ′′ O(ε),3

ε

0 = ≈
∂ε

∂f(x+ ε)
f (x) +′ εf (x), obtaining x+′′ ε = x− .

f (x)′′

f (x)′

4/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Training MLPs with the Newton’s Method

Note that the second-order methods (methods utilizing second derivatives) are impractical when
training MLPs with many parameters. The problem is that there are too many second
derivatives – if we consider weights ,

the gradient has elements;

however, we have a matrix with all second derivatives, called the Hessian :

The Taylor expansion of a multivariate function then has the following form:

from which we obtain the following second-order method update:

θ ∈ RD

∇ L(θ)θ D

D × D H

H i,j =def
 .

∂θ ∂θ i j

∂ L(θ)2

f(x+ ε) = f(x) + ε ∇f(x) +T
 ε Hε,

2
1 T

x ← x−H ∇f(x).−1

5/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Fisher Information Matrix

Assume we have a model computing a distribution .

We define score as

Given the formula for a derivative of a logarithm, the score can also be written as

Note that the expectation of the score with respect to the model output is zero:

p(y∣x; θ)

s(θ;x, y)

s(θ;x, y) =def ∇ log p(y∣x; θ).θ

s(θ;x, y) =def
 .

p(y∣x; θ)
∇ p(y∣x; θ)θ

y

E [s(θ;x, y)] =y∼p(x;θ) p(y∣x; θ) =
y

∑
p(y∣x; θ)

∇ p(y∣x; θ)θ ∇ p(y∣x; θ) =θ

y

∑ ∇ 1 =θ 0.

6/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Fisher Information Matrix

Let be the data generating distribution, and a dataset sampled from .

Assuming , we define the Fisher Information Matrix as the

covariance matrix of the score:

Because the expectation of the score is zero, the definition simplifies to

The first expectation is usually computed over . When the is taken from , the

matrix is called Empirical Fisher, and it can be computed with a single forward and backward
pass through the model.

D D D

θ ∈ RD F (θ) ∈ RD×D

F (θ) =def E E [(s(θ;x, y) −x∼D y∣x∼D Es(θ;x, y))(s(θ;x, y) − Es(θ;x, y))].
T

F (θ) =def E E [s(θ;x, y)s(θ;x, y)].x∼D y∣x∼D
T

D y∣x p(y∣x; θ)

7/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Fisher Information Matrix

Now consider the usual NLL loss . Its Hessian is

We get that

L(y∣x; θ) = − log p(y∣x; θ)

H =L(y∣x;θ) ∇ ∇ −θ θ log p(y∣x; θ).

E E H =x∼D y∣x∼D L(y∣x;θ) F (θ).

8/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Fisher Information Matrix

Lets consider

The expectation over of the Taylor expansion to the second order gives

D (p(y∣x; θ)∥p(y∣x; θ +KL d))

x ∼ D

E D (p(y∣x; θ)∥p(y∣x; θ +x∼D KL d)) ≈ d Fd+
2
1 T O(∥d∥).3

9/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

The Direction of the SGD Gradient Update

Consider the

We get that

therefore,

 L(D; θ +
ε→0
lim

ε

1

d,∥d∥≤ε
arg min d).

d ∝ −∇ L(D; θ),θ

d = ε .
∥∇ L(D; θ)∥θ

−∇ L(D; θ)θ

10/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

The Direction of the FIM Gradient Update

Consider now

We get that

Note that if we consider just a diagonal of , the resulting algorithm is similar to Adam.

 L(D; θ +
d,D (p(y∣x;θ)∥p(y∣x;θ+d))≤εKL

arg min d).

d ∝ −F (θ) ∇ L(D; θ).−1
θ

F (θ)−1

11/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Natural Policy Gradient

Kakade (2002) introduced natural policy gradient, a second-order method utilizing the Fisher
Information Matrix.

Using policy gradient theorem, we are able to compute . Normally, we update the

parameters by using directly this gradient. This choice is justified by the fact that a vector

which maximizes under the constraint that is bounded by a small constant

is exactly the gradient .

However, for the Fisher information matrix

we might to update the parameters using .

It can be shown that the Fisher information metric is the only Riemannian metric (up to
rescaling) invariant to change of parameters under sufficient statistic.

∇v π

d

v (s; θ +π d) ∥d∥2

∇v π

F (θ) =def E E [(∇ log π(a∣s; θ))(∇ log π(a∣s; θ))],s π(a∣s;θ) θ θ
T

d F =def
F (θ) ∇v

−1
π

12/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Natural Policy Gradient

Figure 3 of "Reinforcement learning of motor skills with policy gradients" by Jan Peters et al.

An interesting property of using the to update the parameters is that

updating using will choose an arbitrary better action in state ;

updating using chooses the best action (maximizing expected return),

similarly to tabular greedy policy improvement.

However, computing in a straightforward way is too costly.

d F

θ ∇v π s

θ F (θ) ∇v

−1
π

d F

13/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Truncated Natural Policy Gradient

Duan et al. (2016) in paper Benchmarking Deep Reinforcement Learning for Continuous
Control propose a modification to the NPG to efficiently compute .

Following Schulman et al. (2015), they suggest to use conjugate gradient algorithm, which can
solve a system of linear equations in an iterative manner, by using only to compute

products for a suitable .

Therefore, is found as a solution of

and using only 10 iterations of the algorithm seem to suffice according to the experiments.

Furthermore, Duan et al. suggest to use a specific learning rate suggested by Peters et al
(2008) of

d F

Ax = b A

Av v

d F

F (θ)d =F ∇v π

 .
 (∇v) F (θ) ∇v π

T −1
π

α

14/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Trust Region Policy Optimization

Schulman et al. in 2015 wrote an influential paper introducing TRPO as an improved variant of
NPG.

Considering two policies , we can write

where is the advantage function and is the on-policy

distribution of the policy .

Analogously to policy improvement, we see that if , policy performance increases

(or stays the same if the advantages are zero everywhere).

However, sampling states is costly. Therefore, we instead consider

π, π~

v =π~ v +π E E a (a∣s),s∼μ()π~ a∼ (a∣s)π~ π

a (a∣s)π q (a∣s) −π v (s)π μ()π~

π~

a (a∣s) ≥π 0 π~

s ∼ μ()π~

L () =π π~ v +π E E a (a∣s).s∼μ(π) a∼ (a∣s)π~ π

15/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Trust Region Policy Optimization

Using is usually justified by and .

Schulman et al. additionally proves that if we denote

, then

Therefore, TRPO maximizes subject to , where

 is used instead of for

performance reasons;
 is a constant found empirically, as the one implied by the above equation is too small;

importance sampling is used to account for sampling actions from .

L () =π π~ v +π E E a (a∣s)s∼μ(π) a∼ (a∣s)π~ π

L ()π π~ L (π) =π v π ∇ L ()∣ =π~ π π~ =ππ~ ∇ v ∣ π~ π~ =ππ~

α = D (π ∥π) =KL
max

old new

max D (π (⋅∣s)∥π (⋅∣s))s KL old new

v ≥π new L (π) −π old new α where ε =
(1 − γ)2

4εγ
 ∣a (s, a)∣.

s,a
max π

L (π)π θ 0 θ D (π ∥π) <KL
θ 0

θ 0 θ δ

D (π ∥π) =KL
θ 0

θ 0 θ E [D (π (⋅∣s)∥π (⋅∣s))]s∼μ(π)θ 0 KL old new D KL
max

δ

π

16/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Trust Region Policy Optimization

The parameters are updated using , utilizing the conjugate gradient

algorithm as described earlier for TNPG (note that the algorithm was designed originally for
TRPO and only later employed for TNPG).

To guarantee improvement and respect the constraint, a line search is in fact performed.

We start by the learning rate of and shrink it exponentially until the

constraint is satistifed and the objective improves.

maximize L (π) =π θ 0 θ E [a (a∣s)] subject to D (π ∥π) <s∼μ(π),a∼π (a∣s)θ 0 θ 0 π (a∣s)θ 0

π (a∣s)θ
π θ 0 KL

θ 0
θ 0 θ δ

d =F F (θ) ∇L (π)−1
π θ 0 θ

D KL

 δ/(d F (θ) d)F
T −1

F

17/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Trust Region Policy Optimization

Figure 1 of "Benchmarking Deep Reinforcement Learning for Continuous Control" by Duan et al.

Table 1 of "Benchmarking Deep Reinforcement Learning for Continuous Control" by Duan et al.

18/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Proximal Policy Optimization

A simplification of TRPO which can be implemented using a few lines of code.

Let . PPO maximizes the objective (i.e., you should minimize its negation)

Such a is a lower (pessimistic) bound.

Figure 1 of "Proximal Policy Optimization Algorithms" by Schulman et al.

r (θ)t =def

π(A ∣S ;θ)t t old

π(A ∣S ;θ)t t

L (θ)CLIP =def E [min (r (θ) , clip(r (θ), 1 −t t Ât t ε, 1 + ε)))].Ât

L (θ)CLIP

19/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Proximal Policy Optimization

The advantages are additionally estimated using the so-called generalized advantage

estimation, which is just an analogue of the truncated n-step lambda-return:

 Ât

 =Ât γ λ (R +
i=0

∑
n−1

i i
t+1+i γV (S) −t+i+1 V (S)).t+i

20/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Proximal Policy Optimization – The Algorithm

Algorithm 1 of "Proximal Policy Optimization Algorithms" by Schulman et al.

The rollout phase should be usually performed using vectorized environments.

It is important to correctly handle episodes that did not finish in a rollout, using
bootstrapping to estimate the return from the rest of the episode. That way, PPO can learn
in long-horizont games with much smaller than episode length.

Increasing increases parallelism, while increasing increase the number of steps that

must be performed sequentially.

T

N T

21/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Proximal Policy Optimization

Figure 3 of "Proximal Policy Optimization Algorithms" by Schulman et al.

22/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Proximal Policy Optimization

Results from the SAC paper:

Figure 1 of "Soft Actor-Critic Algorithms and Applications" by Tuomas Haarnoja et al.

23/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Proximal Policy Optimization

There are a few tricks that influence the peformance of PPO significantly; see the following
nice blogpost about many of them:

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

24/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

Proximal Policy Optimization

The paper What Matters for On-Policy Deep Actor-Critic Methods? A Large-Scale Study
https://openreview.net/forum?id=nIAxjsniDzg performs a evaluation of many
hyperparameters of the PPO algorithm.

Main takeaways:
Start with clipping threshold 0.25, but try increasing/decreasing it.
Initialization of the last policy layer influences the results considerably; recommendation
is to use 100 times smaller weights.
Use softplus to parametrize standard deviation of actions, use a negative offset to
decrease initial standard deviation of actions, tune it if possible.
Use do transform the action distribution.

Do not share weights between the policy and value network; use a wide value network.
Always normalize observations; check if normalizing value function helps.
Use GAE with , do not use Huber loss. Adam with 3e-4 is a safe choice.

Perform multiple passes over the data, recompute advantages at the beginning of every
one of them.
The discount factor is important, tune it per environment starting with .

tanh

λ = 0.9

γ γ = 0.99

25/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

https://openreview.net/forum?id=nIAxjsniDzg

Transformed Rewards

So far, we have clipped the rewards in DQN on Atari environments.

Consider a Bellman operator

Instead of clipping the magnitude of rewards, we might use a function to reduce

their scale. We define a transformed Bellman operator as

T

(T q)(s, a) =def E [r +s ,r∼p′ γ q(s , a)].
a′

max ′ ′

h : R → R
T h

(T q)(s, a)h =def E [h(r +s ,r∼p′ γ h (q(s , a)))].
a′

max −1 ′ ′

26/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Transformed Rewards

It is easy to prove the following two propositions from a 2018 paper Observe and Look Further:
Achieving Consistent Performance on Atari by Tobias Pohlen et al.

1. If for , then .

The statement follows from the fact that it is equivalent to scaling the rewards by a
constant .

2. When is strictly monotonically increasing and the MDP is deterministic, then

.

This second proposition follows from

where the last equality only holds if the MDP is deterministic.

h(z) = αz α > 0 T q h
k k→∞

h ∘ q =∗ αq ∗

α

h T q h
k k→∞

h ∘ q ∗

h ∘ q =∗ h ∘ T q =∗ h ∘ T (h ∘−1 h ∘ q) =∗ T (h ∘h q),∗

27/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Transformed Rewards

For stochastic MDP, the authors prove that if is strictly monotonically increasing, Lipschitz

continuous with Lipschitz constant , and has a Lipschitz continuous inverse with Lipschitz

constant , then for , is again a contraction. (Proof in Proposition A.1.)

For the Atari environments, the authors propose the transformation

with . The additive regularization term ensures that is Lipschitz continuous.

It is straightforward to verify that

In practice, discount factor larger than is being used – however, it seems to work.

h

L h

L h−1 γ <

L L h h−1

1 T h

h(x) =def sign(x) − 1 +(∣x∣ + 1) εx

ε = 10−2 h−1

h (x) =−1 sign(x) − 1 .(
2ε

 − 11 + 4ε(∣x∣ + 1 + ε)
)

2

 L L h h−1

1

28/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Recurrent Replay Distributed DQN (R2D2)

Proposed in 2019, to study the effects of recurrent state, experience replay and distributed
training.

R2D2 utilizes prioritized replay, -step double Q-learning with , convolutional layers

followed by a 512-dimensional LSTM passed to duelling architecture, generating experience by a
large number of actors (256; each performing approximately 260 steps per second) and learning
from batches by a single learner (achieving 5 updates per second using mini-batches of 64
sequences of length 80).

Rewards are transformed instead of clipped, and no loss-of-life-as-episode-end heuristic is used.

Instead of individual transitions, the replay buffer consists of fixed-length () sequences

of , with adjacent sequences overlapping by 40 time steps.

The prioritized replay employs a combination of the maximum and the average absolute 5-step
TD errors over the sequence: , for both and the priority

exponent set to 0.9.

n n = 5

m = 80
(s, a, r)

δ i p = ηmax δ +i i (1 − η)δ̄ η

29/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Recurrent Replay Distributed DQN (R2D2)

Figure 1 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

30/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Recurrent Replay Distributed DQN (R2D2)

Figure 2 of "Recurrent Experience Replay in Distributed
Reinforcement Learning" by Steven Kapturowski et al.

Table 1 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

31/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Recurrent Replay Distributed DQN (R2D2)

Table 2 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

32/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Recurrent Replay Distributed DQN (R2D2)

Figure 9 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

33/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Recurrent Replay Distributed DQN (R2D2)

Ablations comparing the reward clipping instead of value rescaling (Clipped), smaller discount
factor (Discount) and Feed-Forward variant of R2D2. Furthermore, life-loss reset

evaluates resetting an episode on life loss, with roll preventing value bootstrapping (but not
LSTM unrolling).

Figure 4 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

Figure 7 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

γ = 0.99

34/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Utilization of LSTM Memory During Inference

Figure 5 of "Recurrent Experience Replay in Distributed Reinforcement Learning" by Steven Kapturowski et al.

35/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Agent57

The Agent57 is an agent (from Mar 2020) capable of outperforming the standard human
benchmark on all 57 games.

Its most important components are:

Retrace; from Safe and Efficient Off-Policy Reinforcement Learning by Munos et al.,
https://arxiv.org/abs/1606.02647,
Never give up strategy; from Never Give Up: Learning Directed Exploration Strategies by
Badia et al., https://arxiv.org/abs/2002.06038,
Agent57 itself; from Agent57: Outperforming the Atari Human Benchmark by Badia et al.,
https://arxiv.org/abs/2003.13350.

36/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2003.13350

Retrace

where there are several possibilities for defining the traces :

importance sampling, ,

the usual off-policy correction, but with possibly very high variance,
note that in the on-policy case;

Tree-backup TB(λ), ,

the Tree-backup algorithm extended with traces,
however, can be much smaller than 1 in the on-policy case;

Retrace(λ), ,

off-policy correction with limited variance, with in the on-policy case.

The authors prove that has a unique fixed point for any .

Rq(s, a) q(s, a) + E [γ c (R + γE q(S ,A) − q(S ,A))],=def
b

t≥0

∑ t (∏
j=1

t

t) t+1 A ∼πt+1 t+1 t+1 t t

c t

c =t ρ =t

b(A ∣S)t t

π(A ∣S)t t

c =t 1

c =t λπ(A ∣S)t t

c t

c =t λmin (1,)
b(A ∣S)t t

π(A ∣S)t t

c =t 1

R q π 0 ≤ c ≤t

b(A ∣S)t t

π(A ∣S)t t

37/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Never Give Up

The NGU (Never Give Up) agent performs curiosity-driver exploration, and augment the
extrinsic (MDP) rewards with an intrinsic reward. The augmented reward at time is then

, with a scalar weight of the intrinsic reward.

The intrinsic reward fulfills three goals:

1. quickly discourage visits of the same state in the same episode;

2. slowly discourage visits of the states visited many times in all episodes;

3. ignore the parts of the state not influenced by the agent's actions.

The intrinsic rewards is a combination of the episodic novelty and life-long novelty :

t

r t
β =def

r +t
e βr t

i β

r t
episodic α t

r t
i =def

r ⋅t
episodic clip(1 ≤ α ≤t L = 5).

38/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Never Give Up

Figure 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

The episodic novelty works
by storing the embedded
states visited during

the episode in episodic
memory .

The is then

estimated as

The visit count is estimated using similarities of -nearest neighbors of measured via an

inverse kernel for a running mean of the -nearest neighbor distance:

f(S)t

M

r t
episodic

r =t
episodic

 .
 visit count of f(S)t

1

k f(S)t
K(x, z) =

 +ε
d m
2

d(x,z)2
ε d m k

r =t
episodic

 , with pseudo-count c=0.001.
 + c K(f(S), f)∑f ∈N i k

t i

1

39/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Never Give Up

Figure 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

The state embeddings are
trained to ignore the parts
not influenced by the actions
of the agent.

To this end, Siamese
network is trained to

predict , i.e.,

the action taken by the

agent in state when the

resulting state is .

The life-long novelty is trained using random network distillation (RND),

where a predictor network tries to predict the output of an untrained convolutional network

by minimizing the mean squared error; the and are the running mean and standard

deviation of the error .

f

p(A ∣S ,S)t t t+1

A t

S t

S t+1

α =t 1 +

σ err

∥ −g∥ −μ ĝ 2
err

 ĝ g

μ err σ err

∥ −ĝ g∥2

40/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Never Give Up

Figure 17 of "Never Give Up:
Learning Directed Exploration

Strategies" by A. P. Badia et al.

Figure 7b of "Never Give Up: Learning
Directed Exploration Strategies" by A. P.

Badia et al.

The NGU agent uses transformed Retrace loss with the augmented reward

To support multiple policies concentrating either on the
extrinsic or the intrinsic reward, the NGU agent trains a
parametrized action-value function which

corresponds to reward for and ,

…, and .

For evaluation, is employed.

r t
i =

def
r ⋅t

episodic clip(1 ≤ α ≤t L = 5).

q(s, a, β)i
r t
β i β =0 0 γ =0 0.997

β =N−1 β γ =N−1 0.99

q(s, a, 0)

41/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Never Give Up

Table 1 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

Figure 4 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

42/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Never Give Up Ablations

Figure 2 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

Figure 3 of "Never Give Up: Learning Directed Exploration Strategies" by A. P. Badia et al.

43/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Agent57

The Agent57 is an agent (from Mar 2020) capable of outperforming the standard human
benchmark on all 57 games.

Its most important components are:

Retrace; from Safe and Efficient Off-Policy Reinforcement Learning by Munos et al.,
https://arxiv.org/abs/1606.02647,
Never give up strategy; from Never Give Up: Learning Directed Exploration Strategies by
Badia et al., https://arxiv.org/abs/2002.06038,
Agent57 itself; from Agent57: Outperforming the Atari Human Benchmark by Badia et al.,
https://arxiv.org/abs/2003.13350.

44/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2003.13350

Agent57

Figure 10 of "Agent57: Outperforming the Atari Human
Benchmark" by A. P. Badia et al.

Then Agent57 improves NGU with:

splitting the action-value as

, where

 is trained with as targets, and

 is trained with as targets.

instead of considering all equal, we train a meta-

controller using a non-stationary multi-arm bandit algorithm,
where arms correspond to the choice of for a whole episode

(so an actor first samples a using multi-arm bandit problem

and then updates it according to the observed return), and
the reward signal is the undiscounted extrinsic episode return;
each actor uses a different level of -greedy behavior;

 is increased from to .

q(s, a, j; θ) =def
q(s, a, j; θ) +e

β q(s, a, j; θ)j
i

q(s, a, j; θ)e r e

q(s, a, j; θ)i r i

(β , γ)j j

j

j

ε l

γ N−1 0.997 0.9999

45/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Agent57 – Results

Figure 1 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

Table 1 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

46/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

Agent57 – Ablations

Figure 4 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia et al.

Figure 8 of "Agent57: Outperforming the Atari Human Benchmark" by A. P. Badia
et al.

47/47NPFL139, Lecture 10 Second-Order Methods NPG TRPO PPO TransRews R2D2 Retrace NGU Agent57

