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Off-policy Correction Using Control Variates

Let  be the estimated -step return

which can be written recursively as

For simplicity, we do not explicitly handle the first case (“the episode has already ended”) in the
following.

G  t:t+n n

G  t:t+n =def
 γ R  +(

k=t

∑
t+n−1

k−t
k+1) [episode still running in t+ n]γ V (S  ),n

t+n

G     t:t+n
⎩
⎨

⎧0
V (S  )t
R  + γG  t+1 t+1:t+n

if  episode ended before t,
if  n = 0,
otherwise.
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Off-policy Correction Using Control Variates

Note that we can write

which yields

Denoting the TD error as , we can therefore write the -step

estimated return as a sum of TD errors:

Incidentally, to correctly handle the “the episode has already ended” case, it would be enough to

define .

  

G  − V (S  )t:t+n t = R  + γG  − V (S  )t+1 t+1:t+n t

= R  + γ(G  − V (S  ))+ γV (S  ) − V (S  ),t+1 t+1:t+n t+1 t+1 t

G  −t:t+n V (S  ) =t R  +t+1 γV (S  ) −t+1 V (S  ) +t γ(G  −t+1:t+n V (S  )).t+1

δ  t =def
R  +t+1 γV (S  ) −t+1 V (S  )t n

G  =t:t+n V (S  ) +t  γ δ  .
i=0

∑
n−1

i
t+i

δ  t =def
R  +t+1 [¬done] ⋅ γV (S  ) −t+1 V (S  )t
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Return Formulations

Recursive definition Formulation with TD errors

G  t:t+n =def
R  +t+1 γG  t+1:t+n V (S  ) +t  γ δ  ∑i=0

n−1 i
t+i
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Off-policy Correction Using Control Variates

Now consider applying the IS off-policy correction to  using the importance sampling

ratio

First note that

which can be extended to

G  t:t+n

ρ  t =def
 ,    ρ  

b(A  ∣S  )t t

π(A  ∣S  )t t
t:t+n =def

 ρ  .
i=0

∏
n

t+i

E  [ρ  ] =A  ∼bt t  b(A  ∣S  )  =
A  t

∑ t t
b(A  ∣S  )t t

π(A  ∣S  )t t 1,

E  [ρ  ] =b t:t+n 1.

5/42NPFL139, Lecture 9 CVariates ETraces Returns TD( ) Vtrace IMPALA PopArtλ



Off-policy Correction Using Control Variates

Until now, we used

However, such correction has unnecessary variance. Notably, when expanding 

the  depends only on , not on , and given that the expectation of the

importance sampling ratio is 1, we can simplify to

Such an estimate can be written recursively as

G  t:t+n
IS =def

ρ  G  .t:t+n−1 t:t+n

G  t:t+n

G  =t:t+n
IS ρ  (R  +t:t+n−1 t+1 γG  ),t+1:t+n

R  t+1 ρ  t ρ  t+1:t+n−1

G  =t:t+n
IS ρ  R  +t t+1 ρ  γG  .t:t+n−1 t+1:t+n

G  =t:t+n
IS ρ  (R  +t t+1 γG  ).t+1:t+n

IS
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Return Formulations

Recursive definition Formulation with TD errors

G  t:t+n =def
R  +t+1 γG  t+1:t+n V (S  ) +t  γ δ  ∑i=0

n−1 i
t+i

G  t:t+n
IS =def

ρ  (R  +t t+1 γG  )t+1:t+n
IS
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Off-policy Correction Using Control Variates

We can reduce the variance even further – when , we might consider estimating the

return using  instead of 0.

To utilize this idea, we turn to control variates, which is a general method of reducing
variance of Monte Carlo estimators. Let  be an unknown expectation, which we estimate using

an unbiased estimator . Assume we have another correlated statistic  with a known

expectation .

We can then use an estimate , which is also an unbiased estimator of ,

with variance

To arrive at the optimal value of , we can set the derivative of  to 0, obtaining

ρ  =t 0
V (S  )t

μ

m k

κ

m∗ =def
m − c(k − κ) μ

Var(m ) =∗ Var(m) + c Var(k) −2 2cCov(m, k).

c Var(m )∗

c =  .
Var(k)

Cov(m, k)
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Off-policy Correction Using Control Variates

In case of the value function estimate

we might consider using  as the correlated statistic , with known expectation ,

because if , then our return estimate is probably an overestimate, and vice versa.

The optimal value of  should then be

which is however difficult to compute. Instead, considering the estimate when , we get

Because a reasonable estimate in case of  is , we use .

G  =t:t+n
IS ρ  (R  +t t+1 γG  ),t+1:t+n

IS

ρ  t k κ = 1
ρ  ≫t 1

c

c =  =
Var(k)

Cov(m, k)
 ,

E  [(ρ  − 1) ]b t
2

E  [(G  − v  (S  ))(ρ  − 1)]b t:t+n
IS

π t t

ρ  =t 0

ρ  (R  +t t+1 γG  )+t+1:t+n
IS c(1 − ρ  )t

ρ  =0t c.

ρ  =t 0 V (S  )t c = V (S  )t
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Off-policy Correction Using Control Variates

The estimate with the control variate term is therefore

which adds no bias, since the expected value of  is zero and  and  are independent.

Similarly as before, rewriting to

results in

G  t:t+n
CV =def

ρ  (R  +t t+1 γG  )+t+1:t+n
CV (1 − ρ  )V (S  ),t t

1 − ρ  t ρ  t S  t

  

G  − V (S  )t:t+n
CV

t = ρ  (R  + γG  )− ρ  V (S  )t t+1 t+1:t+n
CV

t t

= ρ  (R  + γV (S  ) − V (S  ) + γ(G  − V (S  )))t t+1 t+1 t t+1:t+n
CV

t+1

G  =t:t+n
CV V (S  ) +t  γ ρ δ  .∑

i=0

n−1
i
t:t+i t+i
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Return Formulations

Recursive definition Formulation with TD errors

G  t:t+n =def
R  +t+1 γG  t+1:t+n V (S  ) +t  γ δ  ∑i=0

n−1 i
t+i

G  t:t+n
IS =def

ρ  (R  +t t+1 γG  )t+1:t+n
IS

G  t:t+n
CV =def

ρ  (R  +t t+1 γG  )+t+1:t+n
CV (1 − ρ  )V (S  )t t V (S  ) +t  γ ρ  δ  ∑i=0

n−1 i
t:t+i t+i
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Eligibility Traces

Eligibility traces are a mechanism of combining multiple -step return estimates for various

values of .

First note instead of an -step return, we can use any average of -step returns for different

values of , for example .

n

n

n n

n  G  +3
2

t:t+2  G  3
1

t:t+4
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-returnλ

 

Figure 12.2 of "Reinforcement Learning: An Introduction, Second Edition".

For a given , we define -return as

Alternatively, the -

return can be written
recursively as

λ ∈ [0, 1] λ

G  t
λ =def (1 − λ)  λ G  .

i=1

∑
∞

i−1
t:t+i

λ

  

G  t
λ = (1 − λ)G  t:t+1

+ λ(R  + γG  ).t+1 t+1
λ
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-returnλ

In an episodic task with time of termination , we can rewrite the -return to

 

Figure 12.3 of "Reinforcement Learning: An Introduction, Second Edition".

T λ

G  =t
λ (1 − λ)  λ G  +

i=1

∑
T−t−1

i−1
t:t+i λ G  .T−t−1

t
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Truncated -returnλ

We might also set a limit on the largest value of , obtaining truncated -return

The truncated  return can be again written recursively as

Similarly to before, we can express the truncated  return as a sum of TD errors

obtaining an analogous estimate 

n λ

Gt:t+n
λ =def (1 − λ)  λ G  +

i=1

∑
n−1

i−1
t:t+i λ G  .n−1

t:t+n

λ

G  =t:t+n
λ (1 − λ)G  +t:t+1 λ(R  +t+1 γG  ),  G  =t+1:t+n

λ
t:t+1
λ G  .t:t+1

λ

  

G  − V (S  )t:t+n
λ

t = (1 − λ)(R  + γV (S  ))+ λ(R  + γG  ) − V (S  )t+1 t+1 t+1 t+1:t+n
λ

t

= R  + γV (S  ) − V (S  ) + λγ(G  − V (S  )),t+1 t+1 t t+1:t+n
λ

t+1

G  =t:t+n
λ V (S  ) +t  γ λ δ  .∑i=0

n−1 i i
t+i
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Variable sλ

The (truncated) -return can be generalized to utilize different  at each step . Notably, we

can generalize the recursive definition

to

and express this quantity again by a sum of TD errors:

λ λ  i i

G  =t:t+n
λ (1 − λ)G  +t:t+1 λ(R  +t+1 γG  )t+1:t+n

λ

G  =t:t+n
λ  i (1 − λ  )G  +t+1 t:t+1 λ  (R  +t+1 t+1 γG  ),t+1:t+n

λ  i

G  =t:t+n
λ  i V (S  ) +t  γ  λ  δ  .

i=0

∑
n−1

i (
j=1

∏
i

t+j) t+i
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Off-policy Traces with Control Variates

Finally, we can combine the eligibility traces with off-policy estimation using control variates:

Recalling that

we can rewrite  recursively as

which we can simplify by expanding  to

Gt:t+n
λ,CV =def (1 − λ)  λ G  +

i=1

∑
n−1

i−1
t:t+i
CV λ G  .n−1

t:t+n
CV

G  =t:t+n
CV ρ  (R  +t t+1 γG  )+t+1:t+n

CV (1 − ρ  )V (S  ),t t

G  t:t+n
λ,CV

G  =t:t+n
λ,CV (1 − λ)G  +t:t+1

CV λ(ρ  (R  +t t+1 γG  )+t+1:t+n
λ,CV (1 − ρ  )V (S  )),t t

G  =t:t+1
CV ρ  (R  +t t+1 γV (S  )) +t+1 (1 − ρ  )V (S  )t t

G  −t:t+n
λ,CV V (S  ) =t ρ  (R  +t t+1 γV (S  ) −t+1 V (S  ))+t γλρ  (G  −t t+1:t+n

λ,CV V (S  )).t+1
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Off-policy Traces with Control Variates

Consequently, analogously as before, we can write the off-policy traces estimate with control
variates as

and by repeating the above derivation we can extend the result also for time-variable , we

obtain

G  =t:t+n
λ,CV

V (S  ) +t  γ λ ρ  δ  ,∑
i=0

n−1
i i

t:t+i t+i

λ  i

G  =t:t+n
λ  ,CVi V (S  ) +t  γ  λ  ρ  δ  .∑

i=0

n−1
i (

j=1

∏
i

t+j) t:t+i t+i

18/42NPFL139, Lecture 9 CVariates ETraces Returns TD( ) Vtrace IMPALA PopArtλ



Return Recapitulation

Recursive definition Formulation with TD errors

G  t:t+n =def
R  +t+1 γG  t+1:t+n V (S  ) +t  γ δ  ∑i=0

n−1 i
t+i

G  t:t+n
IS =def

ρ  (R  +t t+1 γG  )t+1:t+n
IS

G  t:t+n
CV =def

ρ  (R  +t t+1 γG  )+t+1:t+n
CV (1 − ρ  )V (S  )t t V (S  ) +t  γ ρ  δ  ∑i=0

n−1 i
t:t+i t+i

G  t:t+n
λ =def (1 − λ)G  +t:t+1 λ(R  +t+1 γG  )t+1:t+n

λ V (S  ) +t  γ λ δ  ∑i=0
n−1 i i

t+i

G  t:t+n
λ  i =def (1 − λ  )G  +t+1 t:t+1 λ  (R  +t+1 t+1 γG  )t+1:t+n

λ  i V (S  ) +t  γ  λ  δ  ∑i=0
n−1 i (∏

j=1
i

t+j) t+i

  

G  t:t+n
λ,CV (1 − λ)G  =def

t:t+1
CV

+ λ(ρ  (R  + γG  )+ (1 − ρ  )V (S  ))t t+1 t+1:t+n
λ,CV

t t

V (S  ) +t  γ λ ρ  δ  ∑i=0
n−1 i i

t:t+i t+i

  

G  t:t+n
λ  ,CVi

+

(1 − λ  )G  =def
t+1 t:t+1

CV

λ  (ρ  (R  + γG  )+ (1 − ρ  )V (S  ))t+1 t t+1 t+1:t+n
λ  ,CVi

t t

  

V (S  )t

+  γ  λ  ρ  δ  ∑i=0
n−1 i (∏j=1

i
t+j) t:t+i t+i
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TD( )λ

We have defined the -return in the so-called forward view.

 

Figure 12.4 of "Reinforcement Learning: An Introduction, Second Edition".

λ
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TD( )λ

However, to allow on-line updates, we might consider also the backward view

 

Figure 12.5 of "Reinforcement Learning: An Introduction, Second Edition".
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TD( )λ

TD( ) is an algorithm implementing on-line policy evaluation utilizing the backward view.

 

Algorithm 12.2 of "Reinforcement Learning: An Introduction, Second Edition".

λ
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V-trace

V-trace is a modified version of -step return with off-policy correction, defined in the Feb

2018 IMPALA paper as (using the notation from the paper):

where  and  are the truncated importance sampling ratios for :

Note that if  and assuming ,  reduces to -step Bellman target.

n

G  t:t+n
V-trace =def

V (S  ) +t  γ     δ  ,
i=0

∑
n−1

i (∏
j=0

i−1
c̄t+j) ρ̄t+i t+i

  ρ̄t  c̄t  ≥ρ̄ c̄

  ρ̄t =def min  ,  ,      (ρ̄
b(A  ∣S  )t t

π(A  ∣S  )t t ) c̄t =def min ,  .(c̄
b(A  ∣S  )t t

π(A  ∣S  )t t )

b = π ≥c̄ 1 v  s n

23/42NPFL139, Lecture 9 CVariates ETraces Returns TD( ) Vtrace IMPALA PopArtλ



V-trace

Note that the truncated IS weights  and  play different roles:

The  appears defines the fixed point of the update rule. For , the target is the

value function , if , the fixed point is somewhere between  and . Notice that

we do not compute a product of these  coefficients.

Concretely, the fixed point of an operator defined by  corresponds to a value

function of the policy

The  impacts the speed of convergence (the contraction rate of the Bellman operator),

not the sought policy. Because a product of the  ratios is computed, it plays an important

role in variance reduction.

However, the paper utilizes  and out of ,  works empirically the

best, so the distinction between  and  is not useful in practice.

  ρ̄t  c̄t

  ρ̄t  =ρ̄ ∞
v  π  <ρ̄ ∞ v  π v  b

  ρ̄t

G  t:t+n
V-trace

π  (a∣s) ∝
 ρ̄ min (  b(a∣s),π(a∣s)).ρ̄

 c̄t
 c̄t

=c̄ 1  ∈ρ̄ {1, 10, 100}  =ρ̄ 1
 c̄t   ρ̄t
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V-trace Analysis

Let us define the (untruncated for simplicity; similar results can be proven for a truncated
one) V-trace operator  as:

where the expectation  is with respect to trajectories generated by behaviour policy .

Assuming there exists  such that , it can be proven (see Theorem 1 in

Appendix A.1 in the Impala paper if interested) that such an operator is a contraction with a
contraction constant

therefore,  has a unique fixed point.

R

RV (S  )t =def
V (S  ) +t E   γ     δ  ,b [∑

i≥0
i (∏

j=0

i−1
c̄t+j) ρ̄t+i t+i]

E  b b

β ∈ (0, 1] E    ≥b ρ̄0 β

γ −−1 (γ −−1 1)  ≤

≥1+γE    b ρ̄0

  γ E      ∑
i≥0

i
b [(∏

j=0

i−1
c̄j) ρ̄i] 1 − (1 − γ)β < 1,

R
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V-trace Analysis

We now prove that the fixed point of  is . We have:

where the tagged part is zero, since it is the Bellman equation for . This shows that 

, and therefore  is the

unique fixed point of .

Consequently, in  only the last  from

every  is actually needed for off-policy correction;  can be considered as traces.

R V π  

 ρ̄

E  [   δ  ] =b ρ̄t t E  [   (R  +b ρ̄t t+1 γV (S  ) −π  

 ρ̄
t+1 V (S  ))  S  ]π  

 ρ̄
t t

=  b(a∣S  ) min  ,  [R  +∑
a

t (ρ̄
b(a∣S  )t

π(a∣S  )t ) t+1 γE  V (s ) −s ∼p(S  ,a)′
t

π  

 ρ̄ ′ V (S )]π  

 ρ̄
t

=   min (  b(a ∣S  ),π(a ∣S  ))

=0

  π  (a∣S  )[R  + γE  V (s ) − V (S  )]∑
a

 ρ̄ t t+1 s ∼p(S  ,a)′
t

π  

 ρ̄ ′ π  

 ρ̄
t

a′

∑ ρ̄ ′
t

′
t

= 0,

V π  

 ρ̄

RV (s) =π  

 ρ̄ V (s) +π  

 ρ̄ E   γ     δ  =b [∑i≥0
i (∏j=0

i−1
c̄t+j) ρ̄t+i t+i] V π  

 ρ̄ V π  

 ρ̄

R

G  =t:t+n
λ  ,CVi V (S  ) +t  γ  λ  ρ  δ  ,∑i=0

n−1 i (∏
j=1
i

t+j) t:t+i t+i ρ  t+i

ρ  t:t+i ρ  t:t+i−1
26/42NPFL139, Lecture 9 CVariates ETraces Returns TD( ) Vtrace IMPALA PopArtλ



IMPALA

Impala (Importance Weighted Actor-Learner Architecture) was suggested in Feb 2018 paper
and allows massively distributed implementation of an actor-critic-like learning algorithm.

Compared to A3C-based agents, which communicate gradients with respect to the parameters
of the policy, IMPALA actors communicate trajectories to the centralized learner.

 

Figure 1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner
Architectures" by Lasse Espeholt et al.

 

Figure 2 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner
Architectures" by Lasse Espeholt et al.

If many actors are used, the policy used to generate a trajectory can lag behind the latest
policy. Therefore, the V-trace off-policy actor-critic algorithm is employed.
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IMPALA

Consider a parametrized functions computing  and , we update the critic in

the direction of

and the actor in the direction of the policy gradient

Finally, we again add the entropy regularization term  to the loss function.

v(s; θ) π(a∣s;ω)

(G  −t:t+n
V-trace v(S  ; θ))∇  v(S  ; θ),t θ t

  ∇  log π(A  ∣S  ;ω)(R  +ρ̄t ω t t t+1 γG  −t+1:t+n
V-trace v(S  ; θ)).t

βH(π(⋅∣S  ;ω))t
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IMPALA

 

Table 1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Population Based Training

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp  and the global gradient norm clipping

threshold.

 

Figure 1 of "Population Based Training of Neural Networks" by Max Jaderberg et al.

ε
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IMPALA – Population Based Training

For Atari experiments, population based training with a population of 24 agents is used to
adapt entropy regularization, learning rate, RMSProp  and the global gradient norm clipping

threshold.

In population based training, several agents are trained in parallel. When an agent is ready

(after 5000 episodes), then:

it may be overwritten by parameters and hyperparameters of another randomly chosen
agent, if it is sufficiently better (5000 episode mean capped human normalized score returns
are 5% better);
and independently, the hyperparameters may undergo a change (multiplied by either 1.2 or
1/1.2 with 33% chance).

ε
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IMPALA – Architecture

 

Figure 3 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA

 

Figure 4 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Learning Curves

 

Figures 5, 6 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Atari Games

 

Table 4 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Atari Hyperparameters

 

Table G1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.
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IMPALA – Ablations

 

Table 2 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by
Lasse Espeholt et al.

No-correction: no off-policy
correction;
-correction: add a small value 

 during gradient

calculation to prevent  to be

very small and lead to unstabilities
during  computation;

1-step: no off-policy correction in
the update of the value function,
TD errors in the policy gradient
are multiplied by the
corresponding  but no s; it can

be considered V-trace “without
traces”.

ε

ε = 10−6

π

log π

ρ c
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IMPALA – Ablations

 

Figure E.1 of "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Lasse Espeholt et al.

The effect of the
policy lag (the
number of updates
the actor is behind
the learned policy)
on the
performance.
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PopArt Normalization

An improvement of IMPALA from Sep 2018, which performs normalization of task rewards
instead of just reward clipping. PopArt stands for Preserving Outputs Precisely, while Adaptively

Rescaling Targets.

Assume the value estimate  is computed using a normalized value predictor 

and further assume that  is an output of a linear function

We can update the  and  using exponentially moving average with decay rate  (in the

paper, first moment  and second moment  is tracked, and the standard deviation is

computed as ; decay rate  is employed).

v(s; θ,σ,μ) n(s; θ)

v(s; θ,σ,μ) =def
σn(s; θ) + μ,

n(s; θ)

n(s; θ) =def
ω f(s; θ −T {ω, b}) + b.

σ μ β

μ υ

σ =  υ − μ2 β = 3 ⋅ 10−4
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PopArt Normalization

Utilizing the parameters  and , we can normalize the observed (unnormalized) returns as 

, and use an actor-critic algorithm with advantage .

However, in order to make sure the value function estimate does not change when the
normalization parameters change, the parameters  used to compute the value estimate

are updated under any change  and  as

In multi-task settings, we train a task-agnostic policy and task-specific value functions
(therefore, , , and  are vectors).

μ σ

(G− μ)/σ (G− μ)/σ − n(S; θ)

ω, b

v(s; θ,σ,μ) =def
σ ⋅ (ω f(s; θ −T {ω, b}) + b) + μ

μ → μ′ σ → σ′

  

ω′

b′

←  ω,
σ′

σ

←  .
σ′

σb+ μ − μ′

μ σ n(s; θ)
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PopArt Results

 

Table 1 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

 

Figures 1, 2 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.
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PopArt Results

 

Figure 3 of "Multi-task Deep Reinforcement Learning with PopArt" by Matteo Hessel et al.

Normalization statistics on chosen environments.
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