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Rainbow DQN Extensions

Multi-step Learning
Instead of Q-learning, we use -step variant of Q-learning, which estimates return as

This changes the off-policy algorithm to on-policy (because the “inner” actions are sampled
from the behaviour distribution, but should follow the target distribution); however, it is not
discussed in any way by the authors.
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Rainbow DQN Extensions

Noisy Nets
Noisy Nets are neural networks whose weights and biases are perturbed by a parametric
function of a noise.

The parameters  of a regular neural network are in Noisy nets represented as

where  is zero-mean noise with fixed statistics. We therefore learn the parameters .

A fully connected layer  with parameters  is represented in the following

way in Noisy nets:

Each  is initialized to , where  is the number of input neurons of the layer in question,

and  is a hyperparameter; commonly 0.5.
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Rainbow DQN Extensions

Noisy Nets
The noise  can be for example independent Gaussian noise. However, for performance reasons,

factorized Gaussian noise is used to generate a matrix of noise. If  is noise corresponding to

a layer with  inputs and  outputs, we generate independent noise  for input neurons,

independent noise  for output neurons, and set

The authors generate noise samples for every batch, sharing the noise for all batch instances
(consequently, during loss computation, online and target network use independent noise).

Deep Q Networks

When training a DQN, -greedy is no longer used and all policies are greedy, and all fully

connected layers are parametrized as noisy nets (therefore, the network is thought to generate a
distribution of rewards; therefore, greedy actions still explore).
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Rainbow DQN Extensions

Noisy Nets
 

Table 1 of "Noisy Networks for Exploration" by Meire Fortunato et al.

 

Figure 2 of "Noisy Networks for Exploration" by Meire Fortunato et al.
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Rainbow DQN Extensions

Noisy Nets
 

Figure 3 of "Noisy Networks for Exploration" by Meire Fortunato et al.
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Rainbow DQN Extensions

Distributional RL
Instead of an expected return , we could estimate the distribution of expected returns 

 – the value distribution.

The authors define the distributional Bellman operator  as:

The authors of the paper prove similar properties of the distributional Bellman operator
compared to the regular Bellman operator, mainly being a contraction under a suitable metric

(for Wasserstein metric , the authors define 

and prove that  is a γ-contraction in ).
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Wasserstein Metric

For two probability distributions , Wasserstein metric  is defined as

where  is a set of all couplings, each being a a joint probability distribution whose

marginals are  and , respectively. A possible intuition is the optimal transport of probability

mass from  to .

For distributions over reals with CDFs , the optimal transport has an analytic solution:

where  and  are quantile functions, i.e., inverse CDFs.

For , the 1-Wasserstein metric correspond to area “between” F and G, and in that case

we can compute it also as 
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Rainbow DQN Extensions

Distributional RL
The distribution of returns is modeled as a discrete distribution parametrized by the number of
atoms  and by . Support of the distribution are atoms

The atom probabilities are predicted using a  distribution as

N ∈ N V  ,V  ∈MIN MAX R
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Rainbow DQN Extensions

 

Figure 1 of "A Distributional Perspective on
Reinforcement Learning" by Marc G. Bellemare et al.

Distributional RL
After the Bellman update, the support of the distribution 

 is not the same as the original support. We

therefore project it to the original support by proportionally
mapping each atom of the Bellman update to immediate neighbors
in the original support.

The network is trained to minimize the Kullbeck-Leibler divergence between the current
distribution and the (mapped) distribution of the one-step update
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Rainbow DQN Extensions

Distributional RL
 

Algorithm 1 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow DQN Extensions

Distributional RL
 

Figure 6 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.

 

Figure 4 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow DQN Extensions

Distributional RL
 

Figure 18 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow DQN Extensions

Distributional RL
 

Figure 3 of "A Distributional Perspective on Reinforcement Learning" by Marc G. Bellemare et al.
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Rainbow Architecture

Rainbow combines all described DQN extensions. Instead of -step updates, -step updates are

utilized, and KL divergence of the current and target return distribution is minimized:

The prioritized replay chooses transitions according to the probability

Network utilizes dueling architecture feeding the shared representation  into value

computation  and advantage computation  for atom , and the

final probability of atom  in state  and action  is computed as
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Rainbow Hyperparameters

Finally, we replace all linear layers by their noisy equivalents.

 

Table 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Rainbow Results

 

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.

 

Table 2 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.
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Rainbow Results

 

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.

 

Figure 3 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo
Hessel et al.
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Rainbow Ablations

 

Figure 2 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Rainbow Ablations

 

Figure 4 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.

20/39NPFL139, Lecture 5 -step NoisyNets DistributionalRL Rainbow Quantile Regression Implicit Quantile RegressionN



Distributional RL with Quantile Regression

Although the authors of C51 proved that the distributional Bellman operator is a contraction
with respect to Wasserstein metric , they were not able to actually minimize it during

training; instead, they minimize the KL divergence between the current value distribution and
one-step estimate.

 

Figure 1 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044

W  p
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Distributional RL with Quantile Regression

 

Modified Figure 2 of "Distributional Reinforcement Learning with
Quantile Regression", https://arxiv.org/abs/1710.10044

The same authors later proposed a different approach, which actually manages to minimize the
1-Wasserstein distance.

In contrast to C51, where  is represented using a discrete distribution on a fixed “comb”

support of uniformly spaces locations, we now represent it as a quantile distribution – as
quantiles  for a fixed probabilities  with .

Formally, we can define the quantile distribution as a
uniform combination of  Diracs:

so that the cumulative density function is a step function
increasing by  on every quantile .
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Distributional RL with Quantile Regression

The quantile distribution offers several advantages:

a fixed support is no longer required;

the projection step  is not longer needed;

this parametrization enables direct minimization of the Wasserstein loss.

Φ
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Distributional RL with Quantile Regression

Recall that 1-Wasserstein distance between two distributions  can be computed as

where ,  are their cumulative density functions.

For arbitrary distribution , the we denote the most accurate quantile distribution as

In this case, the 1-Wasserstein distance can be written as

μ, ν

W  (μ, ν) =1   F  (q) −∫
0

1

μ
−1 F  (q)  dq,ν

−1

F  μ F  ν
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Z  θ
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W  (Z,Z  ) =1 θ    F  (q) −
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τ  i

Z
−1 θ   dq.i
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Distributional RL with Quantile Regression

 

Modified Figure 2 of "Distributional Reinforcement Learning with Quantile Regression",
https://arxiv.org/abs/1710.10044

It can be proven that for continuous ,  is minimized by (for proof, see Lemma 2

of Dabney et al.: Distributional Reinforcement Learning with Quantile Regression, or consider
how the 1-Wasserstein distance changes in the range  when you move ):

We denote the quantile midpoints as

In the paper, the authors prove that the
composition  is γ-contraction in , so

repeated application of  converges to a

unique fixed point.
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Quantile Regression

Our goal is now to show that it is possible to estimate a quantile  by minimizing a

loss suitable for SGD.

Assume we have samples from a distribution .

Minimizing the MSE of  and the samples of ,

yields the mean of the distribution, .

To show that this holds, we compute the derivative of the loss with respect to  and set it

to 0, arriving at

τ ∈ [0, 1]

P

x̂ P

=x~ arg min  E  [( −x̂ x∼P x̂ x) ],2

=x~ E  [x]x∼P

x̂

0 = E  [2( −x x̂ x)] = 2E  [ ] −x x̂ 2E  [x] =x 2( −x̂ E  [x]).x
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Quantile Regression

Assume we have samples from a distribution  with cumulative density function .

Minimizing the mean absolute error (MAE) of  and the samples of ,

yields the median of the distribution, .

We prove this again by computing the derivative with respect to , assuming the functions

are nice enough that the Leibnitz integral rule can be used:

P F  P

x̂ P

=x~ arg min  E  [∣ −x̂ x∼P x̂ x∣],

=x~ F  (0.5)P
−1

x̂

  P (x)∣ −
∂x̂
∂

∫
−∞

∞

x̂ x∣ dx =  [  P (x)( −
∂x̂
∂

∫
−∞

x̂

x̂ x) dx+  P (x)(x−∫
x̂

∞

) dx]x̂

=  P (x) dx−∫
−∞

x̂

 P (x) dx∫
x̂

∞

= 2  P (x) dx−∫
−∞

x̂

1 = 2F  ( ) −P x̂ 1.
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Leibniz integral rule

The Leibniz integral rule for differentiation under the integral sign states that for 

,

−∞ <
a(x), b(x) < ∞

 [  f(x, t) dt] =
∂x
∂

∫
a(x)

b(x)

=   f(x, t) dt+∫
a(x)

b(x)

∂x
∂

(  b(x))f(x, b(x))−
∂x
∂

(  a(x))f(x, a(x)).
∂x
∂
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Quantile Regression

Assume we have samples from a distribution  with cumulative density function .

By generalizing the previous result, we can show that for a quantile , if

then . Let .

This loss penalizes overestimation errors with weight , underestimation errors with .

P F  P

τ ∈ [0, 1]
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x̂

∞

) dx]x̂

= (τ − 1)  P (x) dx+∫
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Quantile Regression

Using the quantile regression, when we have a value distribution , we can find the most

accurate quantile distribution by minimizing

However, the quantile loss is not smooth around zero, which could limit performance when
training a model. The authors therefore propose the quantile Huber loss, which acts as an
asymmetric squared loss in interval  and fall backs to the standard quantile loss outside

this range.

Specifically, let

Z

 E  [ρ  (z −
i=1

∑
N

z∼Z  τ̂i θ)].

[−κ,κ]

ρ  (z −τ
κ θ) =def

  {
 [z ≥ θ] − τ  ⋅  (z − θ)2

1 2

 [z ≥ θ] − τ  ⋅ κ(∣z − θ∣ −  κ)2
1

  if  ∣z − θ∣ ≤ κ,
  otherwise.

30/39NPFL139, Lecture 5 -step NoisyNets DistributionalRL Rainbow Quantile Regression Implicit Quantile RegressionN



Distributional RL with Quantile Regression

To conclude, in DR-DQN- , the network for a given state predicts , so  quantiles for

every action.

The following loss is used:

 

Algorithm 1 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044

The  is just .

κ R∣A∣×N N

q  j  

N
1
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Distributional RL with Quantile Regression

 

Figure 3 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044

Each state transition has probability of 0.1 of moving in a random direction.
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Distributional RL with Quantile Regression

 

Figure 4 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044

 

Table 1 of "Distributional Reinforcement Learning with Quantile Regression", https://arxiv.org/abs/1710.10044
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Implicit Quantile Networks for Distributional RL

In IQN (implicit quantile regression), the authors (again the same team as in C51 and DR-
DQN) generalize the value distribution representation to predict any given quantile .

 

Figure 1 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

τ
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Implicit Quantile Networks for Distributional RL

The quantile  of the value distribution, , is modeled as

Other ways than multiplicative combinations were tried (concat, residual), but the
multiplicative form delivered the best results.

The quantile  is represented using trainable cosine embeddings with dimension :

τ Z  (s, a)τ

Z  (s, a) ≈τ f(ψ(s) ⊙ φ(τ))  .
a

τ n = 64

φ  (τ)j =def ReLU(  cos(πiτ)w  +∑
i=0

n−1
i,j b  ).j
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Implicit Quantile Networks for Distributional RL

The overall loss is:

 

Algorithm 1 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

Note the different roles of  and .N N ′
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Implicit Quantile Networks for Distributional RL

 

Figure 2 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

The authors speculate
that:

large  may

increase sample
complexity (faster
learning),
larger  could

reduce variance (like
a minibatch size).

N

N ′
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Implicit Quantile Networks for Distributional RL

 

Figure 4 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

 

Table 1 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

 

Table 2 of "Implicit Quantile Networks for Distributional
Reinforcement Learning", https://arxiv.org/abs/1806.06923
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Implicit Quantile Networks for Distributional RL

The ablation experiments of the quantile representation. A full grid search with two seeds for
every configuration was performed, with the black dots corresponding to the hyperparameters of
IQN.

 

Figure 5 of "Implicit Quantile Networks for Distributional Reinforcement Learning", https://arxiv.org/abs/1806.06923

“learn” is a learnt MLP embedding with a single hidden layer of size ;

“concat” combines the state and quantile representations by concatenation, not .

n

⊙
39/39NPFL139, Lecture 5 -step NoisyNets DistributionalRL Rainbow Quantile Regression Implicit Quantile RegressionN


