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Function Approximation

We will approximate value function  and/or action-value function , selecting it from a family

of functions parametrized by a weight vector .

We denote the approximations as

We utilize the Mean Squared Value Error objective, denoted :

where the state distribution  is usually on-policy distribution.
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Gradient and Semi-Gradient Methods

The functional approximation (i.e., the weight vector ) is usually optimized using gradient

methods, for example as

As usual, the  is estimated by a suitable sample of a return:

in Monte Carlo methods, we use episodic return ,

in temporal difference methods, we employ bootstrapping and use one-step return

or an -step return.
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Temporal Difference Semi-Gradient Policy Evaluation

In TD methods, we again bootstrap the estimate  as .

 

Algorithm 9.3 of "Reinforcement Learning: An Introduction, Second Edition".

v  (S  )π t R  +t+1 [¬done] ⋅ γ (S  ;w)v̂ t+1
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Why Semi-Gradient TD

Note that the above algorithm is called semi-gradient, because it does not backpropagate
through :

In other words, the above rule is in fact not an SGD update, because there does not exist a
function , for which we would get the above update.

To sketch a proof, consider a linear  and assume such a  exists.

Then

Now considering second derivatives, we see they are not equal, which is a contradiction:
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Temporal Difference Semi-Gradient Convergence

It can be proven (by using separate theory than for SGD) that the linear semi-gradient TD
methods do converge.

However, they do not converge to the optimum of . Instead, they converge to a different

TD fixed point .

It can be proven that

However, when  is close to one, the multiplication factor in the above bound is quite large.
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Temporal Difference Semi-Gradient Policy Evaluation

As before, we can utilize -step TD methods.

 

Algorithm 9.5 of "Reinforcement Learning: An Introduction, Second Edition".

n
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Temporal Difference Semi-Gradient Policy Evaluation

On the left, the results of one-step TD(0) algorithm are presented. The effect of increasing  in

an -step variant is displayed on the right.

 

Figure 9.2 of "Reinforcement Learning: An Introduction, Second Edition".

n

n
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Sarsa with Function Approximation

Until now, we talked only about policy evaluation. Naturally, we can extend it to a full Sarsa
algorithm:

 

Modified from Algorithm 10.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Sarsa with Function Approximation

Additionally, we can incorporate -step returns:

 

Modified from Algorithm 10.2 of "Reinforcement Learning: An Introduction, Second Edition".

n
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Mountain Car Example

 

Figure 10.1 of "Reinforcement Learning: An Introduction, Second Edition".

The performances are for semi-gradient Sarsa( ) algorithm (which we did not talked about yet)

with tile coding of 8 overlapping tiles covering position and velocity, with offsets of .

λ

(1, 3)
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Mountain Car Example

 

Figure 10.3 of "Reinforcement Learning: An Introduction, Second Edition".

 

Figure 10.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy Divergence With Function Approximation

Consider a deterministic transition between two states whose values are computed using the
same weight:

 

Figure from Section 11.2 of "Reinforcement Learning: An Introduction, Second Edition".

If initially , the TD error will be also 10 (or nearly 10 if ).

If for example ,  will be increased to 11 (by 10%).

This process can continue indefinitely.

However, the problem arises only in off-policy setting, where we do not decrease value of the
second state from further observation.

w = 10 γ < 1
α = 0.1 w
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Off-policy Divergence With Function Approximation

The previous idea can be implemented for instance by the following Baird's counterexample:

 

Figure 11.1 of "Reinforcement Learning: An Introduction, Second Edition".

The rewards are zero everywhere, so the value function is also zero everywhere. We assume the
initial values of weights are 1, except for , and that the learning rate .w  =7 10 α = 0.01
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Off-policy Divergence With Function Approximation

For off-policy semi-gradient Sarsa, or even for off-policy dynamic-programming update (where
we compute expectation over all following states and actions), the weights diverge to .

Using on-policy distribution converges fine.

 

Figure 11.1 of "Reinforcement Learning: An Introduction, Second Edition".

 

Figure 11.2 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy Divergence With Function Approximation

The divergence can happen when all following elements are combined:

functional approximation;

bootstrapping;

off-policy training.

In the Sutton's and Barto's book, these are called the deadly triad.
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Deep Q Networks

Volodymyr Mnih et al.: Playing Atari with Deep Reinforcement Learning (Dec 2013 on arXiv),

in Feb 2015 accepted in Nature as Human-level control through deep reinforcement learning.

Off-policy Q-learning algorithm with a convolutional neural network function approximation of
action-value function.

Training can be extremely brittle (and can even diverge as shown earlier).
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Deep Q Network

 

Figure 1 of "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Networks

Preprocessing:  128-color images are converted to grayscale and then resized to 

.

Frame skipping technique is used, i.e., only every  frame (out of 60 per second) is

considered, and the selected action is repeated on the other frames.
Frame stacking is utilizied – the input to the network are the last  frames (considering

only the frames kept by frame skipping), i.e., the network inpus is an image with 

channels.
The network is fairly standard, performing

32 filters of size  with stride 4 and ReLU,

64 filters of size  with stride 2 and ReLU,

64 filters of size  with stride 1 and ReLU,

fully connected layer with 512 units and ReLU,
output layer with 18 output units (one for each action)

210 × 160
84 × 84

4th

4
4

8 × 8
4 × 4
3 × 3
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Deep Q Networks

Network is trained with RMSProp to minimize the following loss:

An -greedy behavior policy is utilized (starts at  and gradually decreases to ).

Important improvements:

experience replay: the generated episodes are stored in a buffer as  quadruples,

and for training a transition is sampled uniformly (off-policy training);
separate target network : to prevent instabilities, a separate target network is used to

estimate one-step returns. The weights are not trained, but copied from the trained network
after a fixed number of gradient updates;
reward clipping: because rewards have wildly different scale in different games, all positive
rewards are replaced by  and negative by ; life loss is used as an end of episode.

furthermore,  is also clipped to 

 (i.e., a  loss or Huber loss).

L =def E  (r + ¬done ⋅ γ max  Q(s , a ; ) − Q(s, a; θ)) .(s,a,r,s )∼data′ [ [ ] a′
′ ′ θ̄ 2]

ε ε = 1 0.1

(s, a, r, s )′

θ̄

+1 −1
(r + ¬done ⋅[ ] γ max  Q(s , a ; ) −a′

′ ′ θ̄ Q(s, a; θ))
[−1, 1] smooth  L  1
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Deep Q Networks

 

Algorithm 1 of "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Network

 

Figure 3 of "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Network

 

Extended Data Figure 2a of "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Network

 

Extended Data Figure 2b of "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Networks Hyperparameters

Hyperparameter Value

minibatch size 32

replay buffer size 1M

target network update frequency 10k

discount factor 0.99

training frames 50M

RMSProp learning rate and both momentums 0.00025, 0.95

initial , final  (linear decay) and frame of final 1.0, 0.1, 1M

replay start size 50k

no-op max 30

ε ε ε
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Rainbow

There have been many suggested improvements to the DQN architecture. In the end of 2017,
the Rainbow: Combining Improvements in Deep Reinforcement Learning paper combines 6 of
them into a single architecture they call Rainbow.

 

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Q-learning and Maximization Bias

Because behaviour policy in Q-learning is -greedy variant of the target policy, the same

samples (up to -greedy) determine both the maximizing action and estimate its value.

 

Figure 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

ε

ε
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Double Q-learning

 

Modification of Algorithm 6.7 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).
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Rainbow DQN Extensions

Double Q-learning
Similarly to double Q-learning, instead of

we minimize

 

Figure 1 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

r + γ  Q(s , a ; ) −
a′

max ′ ′ θ̄ Q(s, a; θ),

r + γQ(s ,  Q(s , a ; θ); ) −′

a′
arg max ′ ′ θ̄ Q(s, a; θ).
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Rainbow DQN Extensions

Double Q-learning
 

Figure 2 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Rainbow DQN Extensions

Double Q-learning
 

Figure 3 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Rainbow DQN Extensions

Double Q-learning
Performance on episodes taking at most 5 minutes and no-op starts on 49 games:

 

Table 1 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.

Performance on episodes taking at most 30 minutes and using human starts on 49 games:

 

Table 2 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Rainbow DQN Extensions

Prioritized Replay
Instead of sampling the transitions uniformly from the replay buffer, we instead prefer those
with a large TD error. Therefore, we sample transitions according to their probability

where  controls the shape of the distribution (which is uniform for  and corresponds to

TD error for ).

New transitions are inserted into the replay buffer with maximum probability to support
exploration of all encountered transitions.

When combined with DDQN, the probabilities are naturally computed as

p  ∝t  r + γ  Q(s , a ; ) −
a′

max ′ ′ θ̄ Q(s, a; θ)  ,
ω

ω ω = 0
ω = 1

p  ∝t  r + γQ(s ,  Q(s , a ; θ); ) −′

a′
arg max ′ ′ θ̄ Q(s, a; θ)  ,

ω
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Rainbow DQN Extensions

Prioritized Replay
Because we now sample transitions according to  instead of uniformly, on-policy distribution

and sampling distribution differ. To compensate, we therefore utilize importance sampling with
ratio

The authors utilize in fact “for stability reasons”

p  t

ρ  =t  .(
p  t

1/N
)
β

ρ  /  ρ  .t
i

max i
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Rainbow DQN Extensions

Prioritized Replay
 

Algorithm 1 of "Prioritized Experience Replay" by Tom Schaul et al.
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Rainbow DQN Extensions

Dueling Networks
Instead of computing directly , we compose it from the following quantities:

average return in a given state , ,

advantage function computing an advantage  of action  in state .

 

Figure 1 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

Q(s, a; θ)

s V (s; θ) =   Q(s, a; θ)∣A∣
1 ∑a

Q(s, a; θ) − V (s; θ) a s

Q(s, a) =def
V (f(s; ζ); η)+ A(f(s; ζ), a;ψ)−  

∣A∣
 A(f(s; ζ), a ;ψ)∑a ∈A′

′
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Rainbow DQN Extensions

Dueling Networks
 

Figure 3 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

37/39NPFL139, Lecture 4 Semi-Gradient Off-policy Divergence DQN Rainbow DDQN Prioritized Replay Dueling Networks



Rainbow DQN Extensions

Dueling Networks
 

Figure 2 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Rainbow DQN Extensions

Dueling Networks
Results on all 57 games (retraining the original DQN on the 8 missing games). Single refers
to DDQN with a direct computation of , Clip corresponds to additional gradient

clipping to norm at most 10 and larger first hidden layer (so that duelling and single have
roughly the same number of parameters).

 

Table 1 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.

Q(s, a; θ)
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