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We will approximate value function v and/or action-value function q, selecting it from a family
of functions parametrized by a weight vector w € R?.

We denote the approximations as

v (s; w),

q(s, a; w).
We utilize the Mean Squared Value Error objective, denoted V E:

VE(w) £ Y u(s) [vx(s) — o(s,w)]’,

seS

where the state distribution w(s) is usually on-policy distribution.
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The functional approximation (i.e., the weight vector w) is usually optimized using gradient
methods, for example as

Wil < Wy — %ath ('UW(St) - @(St;’wt))2
— wy + Oé(’UW(St) — ?/}(St; wt))thf&(St; wt).

As usual, the v, (St) is estimated by a suitable sample of a return:

® in Monte Carlo methods, we use episodic return Gy,
® in temporal difference methods, we employ bootstrapping and use one-step return

Ri1 + [~done| - y0(S¢115 w)

or an Mn-step return.
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Temporal Difference Semi-Gradient Policy Evaluation

In TD methods, we again bootstrap the estimate v (S;) as Ry11 + [~done| - Y0 (S;i1; w).

Semi-gradient TD(0) for estimating ¢ ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function ¢ : §© x R? — R such that ¢(terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ m(-|.S)
Take action A, observe R, S’
W w+a|R+70(5",w) — 6(S,w)| Vi(S,w)
S+ 5

until S is terminal

Algorithm 9.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Note that the above algorithm is called semi-gradient, because it does not backpropagate
through 9(S¢11; w):

w  w+ a(Riq + [~done] - yO(Si1;w) — 9(Sy; w)) V0 (Sy; w).

In other words, the above rule is in fact not an SGD update, because there does not exist a
function J(w), for which we would get the above update.

To sketch a proof, consider a linear 9(S;; w) = . (S;)iw; and assume such a J(w) exists.
Then

a?uij('w) = (Rer1 + 0(Sev1;w) — 0(Se; w)) z(Se)s.
Now considering second derivatives, we see they are not equal, which is a contradiction:

a9y (W) = (V2(Spia)i = @(S1)i)2(S); = v@(Siin)iw(S,); — 2(S)iw(Sy);
%%J(w) = (v2(Ser1); — 2(8);)2(St)i = ¥2(Se41);2(Sh)s — (Sp)im(S);
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Temporal Difference Semi-Gradient Convergence Uzt

It can be proven (by using separate theory than for SGD) that the linear semi-gradient TD
methods do converge.

However, they do not converge to the optimum of V E. Instead, they converge to a different
TD fixed point wp.

It can be proven that

1
VE('LUTD) S E min VE(’LU)

However, when 7y is close to one, the multiplication factor in the above bound is quite large.
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Temporal Difference Semi-Gradient Policy Evaluation Uz

As before, we can utilize n-step TD methods.

n-step semi-gradient TD for estimating v ~ v,

Input: the policy 7 to be evaluated

Input: a differentiable function o : 8t x R? — R such that ¢(terminal,-) = 0
Algorithm parameters: step size a > 0, a positive integer n

Initialize value-function weights w arbitrarily (e.g., w = 0)

All store and access operations (S; and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal

T + o0
Loop fort =0,1,2,...:
| Ift <T, then:

| Take an action according to 7(+|.Sy)

| Observe and store the next reward as R;y; and the next state as Sy
| If Si41 is terminal, then T <t + 1

| 7+ t—n+1 (7 isthe time whose state’s estimate is being updated)

| Ifr>0:
|

|

|

i
frd+n< T, then: G + G + 7”@(57+H,W) (GT:T+n)

w <+ w+ a|G — 0(S;,w)] Vo(S,,w)
Until7 =T -1

v
Algorithm 9.5 of "Reinforcement Learning: An Introduction, Second Edition".
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Temporal Difference Semi-Gradient Policy Evaluation ezt

On the left, the results of one-step TD(0) algorithm are presented. The effect of increasing n in

an n-step variant is displayed on the right.
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Figure 9.2 of "Reinforcement Learning: An Introduction, Second Edition".
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Sarsa with Function Approximation

Until now, we talked only about policy evaluation. Naturally, we can extend it to a full Sarsa
algorithm:

Episodic Semi-gradient Sarsa for Estimating ¢ ~ g,

Input: a differentiable action-value function parameterization §: 8 x A x R4 —+ R
Algorithm parameters: step size a > 0, small € > 0
Initialize action-value function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A <+ initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
w <+ w+a[R—§(S, A, w)|V§(S, A w)
Go to next episode
Choose A" as a function of ¢(S’,-,w) (e.g., e-greedy)
W ¢ W + a[R +~vq(S’, A, w) — (S, A, W)] Vq(Ss, A, w)
S+ S5
A+ A

Modified from Algorithm 10.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Sarsa with Function Approximation Uz

Additionally, we can incorporate n-step returns:

Episodic semi-gradient n-step Sarsa for estimating ¢ ~ ¢, or ¢,

Input: a differentiable action-value function parameterization §: 8 x A x R4 — R
Input: a policy 7 (if estimating ¢, )

Algorithm parameters: step size a > 0, small € > 0, a positive integer n

Initialize action-value function weights w € R? arbitrarily (e.g., w = 0)

All store and access operations (S, A, and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ay ~ 7(+|Sp) or e-greedy wrt G(Sp, -, w)

T + o0
Loop fort=0,1,2,... :
| Ift <T, then:

| Take action Ay

] Observe and store the next reward as R;y; and the next state as Siy1
] If S;41 is terminal, then:

| T+t+1

] else:

| Select and store A1 ~ 7(:[St41) or e-greedy wrt §(Siy1,-, W)
| 7« t—n+1 (7 isthe time whose estimate is being updated)

| Ifr>0:

|

|

|

G« Zgz&:’fmﬂ Ni=TR;
If 7+ n<T,then G+ G+"¢(Srin, Arin, W) (Grirtn)
W<+ w+a|G—q(S A, w)|V§(Sy, A, w)

Untilr=T -1

Modified from Algorithm 10.2 of "Reinforcement Learning: An Introduction, Second Edition".
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MOUNTAIN CAR Goal
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The performances are for semi-gradient Sarsa(\) algorithm (which we did not talked about yet)

with tile coding of 8 overlapping tiles covering position and velocity, with offsets of (1, 3).
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Mountain Car Example
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Figure 10.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Figure 10.4 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy Divergence With Function Approximation

Consider a deterministic transition between two states whose values are computed using the

same weight:

Figure from Section 11.2 of "Reinforcement Learning: An Introduction, Second Edition".

® [f initially w = 10, the TD error will be also 10 (or nearly 10 if v < 1).
® |f for example @ = 0.1, w will be increased to 11 (by 10%).
® This process can continue indefinitely.

However, the problem arises only in off-policy setting, where we do not decrease value of the
second state from further observation.
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The previous idea can be implemented for instance by the following Baird's counterexample:
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\ m(solid|-) =1
\
\\ b(dashed|-) = 6/7
\ b(solid|-) = 1/7
N T v = 0.99

The rewards are zero everywhere, so the value function is also zero everywhere. We assume the
initial values of weights are 1, except for wy = 10, and that the learning rate a = 0.01.
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Off-policy Divergence With Function Approximation Ut

For off-policy semi-gradient Sarsa, or even for off-policy dynamic-programming update (where
we compute expectation over all following states and actions), the weights diverge to +o0.

Using on-policy distribution converges fine.
a A A
w— W+ — Z (E7r [Riy1 + v0(Se1;w)|Se = 8] — v(s;w))Vv(s; w)
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Figure 11.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Figure 11.2 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy Divergence With Function Approximation

The divergence can happen when all following elements are combined:

® functional approximation;
® bootstrapping;
® off-policy training.

In the Sutton's and Barto's book, these are called the deadly triad.
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Volodymyr Mnih et al.: Playing Atari with Deep Reinforcement Learning (Dec 2013 on arXiv),

in Feb 2015 accepted in Nature as Human-level control through deep reinforcement learning.

Off-policy Q-learning algorithm with a convolutional neural network function approximation of
action-value function.

Training can be extremely brittle (and can even diverge as shown earlier).
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Figure 1 of "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Preprocessing: 210 x 160 128-color images are converted to grayscale and then resized to
84 x &4.
Frame skipping technique is used, i.e., only every 4 frame (out of 60 per second) is

considered, and the selected action is repeated on the other frames.
Frame stacking is utilizied — the input to the network are the last 4 frames (considering

only the frames kept by frame skipping), i.e., the network inpus is an image with 4

channels.
The network is fairly standard, performing
32 filters of size 8 X 8 with stride 4 and RelLU,

O

O 64 filters of size 4 X 4 with stride 2 and RelLU,
O 64 filters of size 3 X 3 with stride 1 and RelLU,
O
@)

fully connected layer with 512 units and Rel. U,
output layer with 18 output units (one for each action)
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® Network is trained with RMSProp to minimize the following loss:
ef e
L= E(s,0,r,s')~data [(r + [~done] - ymax, Q(s',a’;0) — Q(s, a; 9))2} :

® An e-greedy behavior policy is utilized (starts at € = 1 and gradually decreases to 0.1).
Important improvements:

* experience replay: the generated episodes are stored in a buffer as (s, a,r,s’) quadruples,

and for training a transition is sampled uniformly (off-policy training);
® separate target network @: to prevent instabilities, a separate target network is used to

estimate one-step returns. The weights are not trained, but copied from the trained network
after a fixed number of gradient updates;

® reward clipping: because rewards have wildly different scale in different games, all positive
rewards are replaced by +1 and negative by —1; life loss is used as an end of episode.

o furthermore, (r 4 [~done] - y maxy Q(s',a’;0) — Q(s,a;0)) is also clipped to
—1, 1] (i.e., a smoothy, loss or Huber loss).
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Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax, Q(¢(s;),a; 0)
Execute action a; in emulator and observe reward r, and image x;  ;
Set s;4+1=5¢,a¢,%:+1 and preprocess ¢, . ; =¢(s;+1)
Store transition ((/’)t,at,rt,qﬁt +1) in D
Sample random minibatch of transitions (qﬁ.,aj,rj,(/ﬁj +1) from D

i if episode terminates at step j+ 1
Sety; = rj+y maxy Q(¢j+1,a’; 9_) otherwise

Perform a gradient descent step on (yj —Q <(/)-,aj; 9) > ’ with respect to the
network parameters 0
Every C steps reset Q =Q
End For
End For
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Deep Q Network

NPFL139, Lecture 4

Video Pinball |
Boxing T
Breakout |

Star Gunner |
Robotank |
Atlantis |

Crazy Climber T
Gopher |
Demon Attack |
Name This Game |
Krull |

Assault |

Road Runner |
Kangaroo |
James Bond |
Tennis |

Pong b

Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |

Time Pilot |
Enduro |
Fishing Derby |
Up and Down |
Ice Hockey |
Q*bert |
H.ER.O. ]
Asterix |

Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |
Amidar |

Alien |

Venture |
Seaquest |
Double Dunk |
Bowling |

Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |
Private Eye |

|

At human-level or above

“T"""*'*"'"!llpl|ll!lllw|'M||

Montezuma's Revenge

Figure 3 of "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Extended Data Figure 2b of "Human-level control through deep reinforcement learning" by Volodymyr Mnih et al.
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Deep Q Networks Hyperparameters Ut

minibatch size 32

replay buffer size 1M

target network update frequency 10k

discount factor 0.99

training frames 50M
RMSProp learning rate and both momentums 0.00025, 0.95
initial €, final € (linear decay) and frame of final ¢ 1.0, 0.1, 1M
replay start size 50k

no-op max 30
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Rainbow

There have been many suggested improvements to the DQN architecture. In the end of 2017,
the Rainbow: Combining Improvements in Deep Reinforcement Learning paper combines 6 of

them into a single architecture they call Rainbow.

Median human-normalized score

200%

100%

0%

DQN
DDQN

A3C

Prioritized DDQN
Dueling DDQN /

Distributional DQN
Noisy DQN
Rainbow /

Off-policy Divergence

44 100 200
Millions of frames

Figure 1 of "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Matteo Hessel et al.
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Q-learning and Maximization Bias Uz

Because behaviour policy in Q-learning is e-greedy variant of the target policy, the same
samples (up to e-greedy) determine both the maximizing action and estimate its value.

100%
N(—0.1,1)
(8)— ;

75%! left right
% left
actions  50%r Q-learning
from A \

\ Double
o509, | \\Q-Iearning
\‘\,\
\\’\R\N\”* VNV A
B%l———— ———————— — LI o o o s optimal
13 . . .
1 100 200 300

Episodes

Figure 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

NPFL139, Lecture 4 Semi-Gradient Off-policy Divergence DQN Rainbow DDQN Prioritized Replay Dueling Networks 27/39



Double Q-learning Uz

Double Q-learning, for estimating ()1 ~ ()2 ~ q.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q1(s,a) and Q2(s,a), for all s € §,a € A(s), such that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + Q)2
Take action A, observe R, S’
With 0.5 probabilility:

Q1(S, 4) « Q1(S, 4) + o R +7Qs(S', argmax, Qu(S', @) — Q1(S, 4))
else:

Qa(S, 4) « Q(S, 4) + (R +7Q: (S, argmax, Qa(S', @) — Qa(S, 4) )
S 5

until S is terminal

Moditfication of Algorithm 6.7 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).
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Rainbow DQN Extensions U=

Double Q-learning
Similarly to double Q-learning, instead of

T+ ’YIH@XQ(S’, a'l; é) T Q(Sa a; 0)7
a
we minimize

r+~Q(s',argmax Q(s',a’;0);0) — Q(s,a;0).

1.5

E max, Q(s,a) — Vi(s)
10 l (s, argmax, Q(5,0) ~ Vo(5)
0.0 H 'c ll
2,
2

error

9?@%0036‘ 6‘%3

number of actions
Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {¢, }"; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-

dependently. All bars are the average of 100 repetitions.
Figure 1 of "Deep Reinforcement Learning with Double Q-learning” by Hado van Hasselt et al.
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Rainbow DQN Extensions

Double Q-learning

True value and an estimate
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Figure 2 of "Deep Reinforcement Learning with Double Q-learning” by Hado van Hasselt et al.
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Rainbow DQN Extensions

Double Q-learning
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Figure 3 of "Deep Reinforcement Learning with Double Q-learning" by Hado van Hasselt et al.
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Double Q-learning

Performance on episodes taking at most 5 minutes and no-op starts on 49 games:

DQN Double DQN

Median 93.5% 114.7%

Mean 241.1% 330.3%

Performance on episodes taking at most 30 minutes and using human starts on 49 games:

DQN  Double DQN  Double DQN (tuned)

Median

47.5% 88.4% 116.7%

Mean

122.0% 273.1% 475.2%

DDQN
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Prioritized Replay

Instead of sampling the transitions uniformly from the replay buffer, we instead prefer those
with a large TD error. Therefore, we sample transitions according to their probability

W

Py X T—I—'}/mE/iJXQ(S/,a,;é) _Q(Saa;e) )

where w controls the shape of the distribution (which is uniform for w = 0 and corresponds to
TD error for w = 1).

New transitions are inserted into the replay buffer with maximum probability to support
exploration of all encountered transitions.

When combined with DDQN, the probabilities are naturally computed as

w

pe o |r+yQ(s', argmax Q(s',a';0);0) — Q(s,a;0)]

Prioritized Replay
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Prioritized Replay
Because we now sample transitions according to p; instead of uniformly, on-policy distribution
and sampling distribution differ. To compensate, we therefore utilize importance sampling with

ratio
B
1/N
D¢

The authors utilize in fact “for stability reasons”

Pt/ mhax p;.
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Prioritized Replay

Algorithm 1 Double DQN with proportional prioritization

1: Input: minibatch k, step-size n, replay period K and size /N, exponents « and (3, budget T'.
2: Initialize replay memory H =0, A = 0,p; =1

3: Observe Sy and choose Ay ~ 7y(Sp)

4: fort =1to 7T do

5 Observe S;, R, V¢
6:  Store transition (S;_1, A¢_1, R¢, e, S¢) in H with maximal priority p; = max;<¢ p;
7. if t=0 mod K then
8: for ) =1to kdo
9: Sample transition j ~ P(j) = p$/ >, pf
10: Compute importance-sampling weight w; = (N - P(j )P / max; w;
11: Compute TD-error §; = R + v Qurget (55, argmax, Q(5;,a)) — Q(S;j—-1,4;-1)
12: Update transition priority p; < |d;|
13: Accumulate weight-change A <— A+ w; - §; - VoQ(Sj—1,A4;_1)
14: end for
15: Update weights 6 <— 6 +n - A, reset A =0
16: From time to time copy weights into target network Orger < 0
17:  end if
18:  Choose action A; ~ 7y (.S¢)
19: end for

Semi-Gradient Off-policy Divergence DQN Rainbow DDQN Prioritized Replay Dueling Networks
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Rainbow DQN Extensions Uz

Dueling Networks

Instead of computing directly Q(s, a;8), we compose it from the following quantities:

® average return in a given state s, V(s;0) = I_jl\ >, Q(s,a;0),

® advantage function computing an advantage Q(s,a;0) — V (s;0) of action a in state s.

55

b= I>4

Figure 1 of "Dueling Network Architectures for Deep Reinforcement Learning” by Ziyu Wang et al.

Q(s,a) = V(£(5:0)5m) + A(F(550), a39) — Laea A({j; ),4'39)
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Rainbow DQN Extensions U=

Dueling Networks

CORRIDOR ENVIRONMENT 5 ACTIONS 10 ACTIONS 20 ACTIONS

10° 10°

No. Iteratior:ys No. Iteratiorlwo:s
(a) (b) (c) (d)

Figure 3. (a) The corridor environment. The star marks the starting state. The redness of a state signifies the reward the agent receives
upon arrival. The game terminates upon reaching either reward state. The agent’s actions are going up, down, left, right and no action.
Plots (b), (¢) and (d) shows squared error for policy evaluation with 5, 10, and 20 actions on a log-log scale. The dueling network

(Duel) consistently outperforms a conventional single-stream network (Single), with the performance gap increasing with the number of
actions.

No. lterations

Figure 3 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Rainbow DQN Extensions Uz

Dueling Networks

VALUE ADVANTAGE

E=iNsion E=illsion

VALUE ADVANTAGE

E=iMEion E=iMlsion

Figure 2 of "Dueling Network Architectures for Deep Reinforcement Learning" by Ziyu Wang et al.
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Dueling Networks

Results on all 57 games (retraining the original DQN on the 8 missing games). Single refers
to DDQN with a direct computation of Q(s,a;8), Clip corresponds to additional gradient

clipping to norm at most 10 and larger first hidden layer (so that duelling and single have

roughly the same number of parameters).

30 no-ops Human Starts

Mean Median Mean Median
Prior. Duel Clip | 591.9% 172.1% | 567.0%  115.3%
Prior. Single 434.6%  123.7% | 386.7% 112.9%
Duel Clip 373.1% 151.5% | 343.8% 117.1%
Single Clip 341.2%  132.6% | 302.8% 114.1%
Single 307.3% 117.8% | 332.9% 110.9%
Nature DQN 227.9% 79.1% | 219.6% 68.5%

Dueling Networks
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