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Sarsa

A straightforward application to the temporal-difference policy evaluation is Sarsa algorithm,
which after generating  computes

 

Modification of Algorithm 6.4 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

S  ,A  ,R  ,S  ,A  t t t+1 t+1 t+1

q(S  ,A  ) ←t t q(S  ,A  ) +t t α(R  +t+1 [¬done] ⋅ γq(S  ,A  ) −t+1 t+1 q(S  ,A  )).t t
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Sarsa

 

Example 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

MC methods cannot be easily used, because an episode might not terminate if the current
policy causes the agent to stay in the same state.
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Q-learning

Q-learning was an important early breakthrough in reinforcement learning (Watkins, 1989).

 

Modification of Algorithm 6.5 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

q(S  ,A  ) ←t t q(S  ,A  ) +t t α(R  +t+1 [¬done] ⋅ γ  q(S  , a) −
a

max t+1 q(S  ,A  )).t t
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Q-learning versus Sarsa

 

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

 

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".
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On-policy and Off-policy Methods

So far, most methods were on-policy. The same policy was used both for generating episodes
and as a target of value function.

However, while the policy for generating episodes needs to be more exploratory, the target
policy should capture optimal behaviour.

Generally, we can consider two policies:

behaviour policy, usually , is used to generate behaviour and can be more exploratory;

target policy, usually , is the policy being learned (ideally the optimal one).

When the behaviour and target policies differ, we talk about off-policy learning.

b

π
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On-policy and Off-policy Methods

The off-policy methods are usually more complicated and slower to converge, but are able to
process data generated by different policy than the target one.

The advantages are:

can compute optimal non-stochastic (non-exploratory) policies;

more exploratory behaviour;

ability to process expert trajectories.
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Off-policy Prediction

Consider prediction problem for off-policy case.

In order to use episodes from  to estimate values for , we require that every action taken by 

 is also taken by , i.e.,

Many off-policy methods utilize importance sampling, a general technique for estimating
expected values of one distribution given samples from another distribution.

b π

π b

π(a∣s) > 0 ⇒ b(a∣s) > 0.
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Importance Sampling

Assume that  and  are two distributions and let  be  samples of . We can then estimate

 as .

In order to estimate  using the samples , we need to account for different

probabilities of  under the two distributions. It is straightforward to verify that

Therefore, we can estimate

with  being the relative probability of  under the two distributions.

Both estimates mentioned on this slide are unbiased.

p q x  i N p

E  [f(x)]x∼p   f(x  )
N
1 ∑i i

E  [f(x)]x∼q x  i

x  i

E  [f(x)] =x∼q E  f(x) .x∼p [
p(x)
q(x)

]

E  [f(x)] ≈x∼q   f(x  ),
N

1

i

∑
p(x  )i

q(x  )i
i

q(x)/p(x) x

9/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn



Off-policy Prediction

Given an initial state  and an episode , the probability of this episode

under a policy  is

Therefore, the relative probability of a trajectory under the target and behaviour policies is

The  is usually called the importance sampling ratio or relative probability.

Therefore, if  is a return of episode generated according to , we can estimate

S  t A  ,S  ,A  , … ,S  t t+1 t+1 T

π

 π(A  ∣S  )p(S  ∣S  ,A  ).
k=t

∏
T−1

k k k+1 k k

ρ  t =
def

 =
 b(A  ∣S  )p(S  ∣S  ,A  )∏k=t

T−1
k k k+1 k k

 π(A  ∣S  )p(S  ∣S  ,A  )∏k=t
T−1

k k k+1 k k
  .

k=t

∏
T−1

b(A  ∣S  )k k

π(A  ∣S  )k k

ρ  t

G  t b

v  (S  ) =π t E  [ρ  G  ].b t t
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Off-policy Monte Carlo Prediction

Let  be a set of times when we visited state . Given episodes sampled according to , we

can estimate

Such simple average is called ordinary importance sampling. It is unbiased, but can have very
high variance.

An alternative is weighted importance sampling, where we compute weighted average as

Weighted importance sampling is biased (with bias asymptotically converging to zero, i.e., a
consistent estimate), but has smaller variance.

T (s) s b

v  (s) =π  .
∣T (s)∣

 ρ  G  ∑t∈T (s) t t

v  (s) =π  .
 ρ  ∑t∈T (s) t

 ρ  G  ∑t∈T (s) t t
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Off-policy Multi-armed Bandits

 

Figure 2.1 of "Reinforcement Learning: An Introduction,
Second Edition".

As a simple example, consider the 10-armed bandits from the first
lecture, with single-step episodes.

Let the behaviour policy be a uniform policy, so the return is a
reward of a randomly selected arm.

Let the target policy be a greedy policy always using action 3.

Assume that the first sample from the behaviour policy produced
action 3 with reward . Then

Ordinary importance sampling estimates the return for the target policy as

The factor  is present because the behaviour policy returns action 3 in 10% cases.

Weighted importance sampling estimates the return for target policy as average of rewards
for action 3.

R

 R =
b(a)
π(a)

 R =
1/10

1
10 ⋅ R.

10
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Off-policy Monte Carlo Policy Evaluation

 

Figure 5.3 of "Reinforcement Learning: An Introduction, Second Edition".

Comparison of ordinary and weighted importance sampling on Blackjack. Given a state with
dealer showing a deuce and sum of player's cards 13 with a usable ace, we estimate target
policy of sticking only with a sum of 20 and 21, using uniform behaviour policy.
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Off-policy Monte Carlo Policy Evaluation

We can compute weighted importance sampling similarly to the incremental implementation of
Monte Carlo averaging.

 

Algorithm 5.6 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy Monte Carlo

 

Algorithm 5.7 of "Reinforcement Learning: An Introduction, Second Edition".
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Expected Sarsa

The action  is a source of variance, providing correct estimate only in expectation.

We could improve the algorithm by considering all actions proportionally to their policy
probability, obtaining Expected Sarsa algorithm:

Compared to Sarsa, the expectation removes a source of variance and therefore usually performs
better. However, the complexity of the algorithm increases and becomes dependent on number
of actions .

A  t+1

  

q(S  ,A  )t t ← q(S  ,A  ) + α(R  + [¬done] ⋅ γE q(S  , a) − q(S  ,A  ))t t t+1 π t+1 t t

← q(S  ,A  ) + α(R  + [¬done] ⋅ γ  π(a∣S  )q(S  , a) − q(S  ,A  )).t t t+1 ∑
a

t+1 t+1 t t

∣A∣
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Expected Sarsa as an Off-policy Algorithm

Note that Expected Sarsa is also an off-policy algorithm, allowing the behaviour policy  and

target policy  to differ.

Especially, if  is a greedy policy with respect to current value function, Expected Sarsa

simplifies to Q-learning.

b

π

π
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Expected Sarsa Example

 

Example 6.6 of "Reinforcement Learning: An
Introduction, Second Edition".

 

Figure 6.3 of "Reinforcement Learning: An Introduction, Second Edition".

Asymptotic performance is an average over 100k episodes (10 runs), interim performance over
the first 100 episodes (50k runs); -greedy policy with  is used.ε ε = 0.1
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Q-learning and Maximization Bias

Because behaviour policy in Q-learning is -greedy variant of the target policy, the same

samples (up to -greedy) determine both the maximizing action and its value estimate.

 

Figure 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

ε

ε

19/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn



Double Q-learning

 

Modification of Algorithm 6.7 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).
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-step Methodsn

 

Figure 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

Full return is

one-step return is

We can generalize both into -step returns:

with  if  (episode length).

G  =t  γ R  ,
k=t

∑
∞

k−t
k+1

G  =t:t+1 R  +t+1 [¬done] ⋅ γV (S  ).t+1

n

G  t:t+n =def
 γ R  +(

k=t

∑
t+n−1

k−t
k+1) γ V (S  ).n

t+n

G  t:t+n =def
G  t t+ n ≥ T
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-step Methodsn

A natural update rule is

 

Algorithm 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

V (S  ) ←t V (S  ) +t α(G  −t:t+n V (S  )).t
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-step Methods Examplen

Using the random walk example, but with 19 states instead of 5,

 

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

we obtain the following comparison of different values of :

 

Figure 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

n
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-step Sarsan

Defining the -step return to utilize action-value function as

with  if , we get the following straightforward algorithm:

 

Figure 7.4 of "Reinforcement Learning: An Introduction, Second Edition".

n

G  t:t+n =def
 γ R  +(

k=t

∑
t+n−1

k−t
k+1) γ Q(S  ,A  )n

t+n t+n

G  t:t+n =def
G  t t+ n ≥ T

Q(S  ,A  ) ←t t Q(S  ,A  ) +t t α(G  −t:t+n Q(S  ,A  )).t t
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-step Sarsa Algorithmn

 

Algorithm 7.2 of "Reinforcement Learning: An Introduction, Second Edition".
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Off-policy -step Sarsan

Recall the relative probability of a trajectory under the target and behaviour policies, which we
now generalize as

Then a simple off-policy -step TD policy evaluation can be computed as

Similarly, -step Sarsa becomes

ρ  t:t+n =def
  .

k=t

∏
min(t+n,T−1)

b(A  ∣S  )k k

π(A  ∣S  )k k

n

V (S  ) ←t V (S  ) +t αρ  (G  −t:t+n−1 t:t+n V (S  )).t

n

Q(S  ,A  ) ←t t Q(S  ,A  ) +t t αρ  (G  −t+1:t+n t:t+n Q(S  ,A  )).t t
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Off-policy -step Sarsan

 

Modified from Algorithm 7.3 of "Reinforcement Learning: An Introduction, Second Edition" by changing ρ_{τ+1:τ+n-1} to ρ_{τ+1:τ+n}.
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Off-policy -step Without Importance Samplingn

 

Figure 7.5 of "Reinforcement Learning: An Introduction, Second Edition".

Q-learning and Expected Sarsa can learn off-policy without importance sampling.

To generalize to -step off-policy method, we must compute expectations over actions in each

step of -step update. However, we have not obtained a return for the non-sampled actions.

Luckily, we can estimate their values by using the current action-value function.

n

n
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Off-policy -step Without Importance Samplingn

 

Example in
Section 7.5 of

"Reinforcement
Learning: An
Introduction,

Second Edition".

We now derive the -step reward, starting from one-step:

For two-step, we get:

Therefore, we can generalize to:

with  if  (episode length).

The resulting algorithm is -step Tree backup and it is an off-policy -step temporal

difference method not requiring importance sampling.

n

G  t:t+1 =def
R  +t+1 [¬done] ⋅ γ  π(a∣S  )Q(S  , a).∑

a
t+1 t+1

G  t:t+2 =def
R  +t+1 γ  π(a∣S  )Q(S  , a) +∑

a=A   t+1
t+1 t+1 γπ(A  ∣S  )G  .t+1 t+1 t+1:t+2

G  t:t+n =def
R  +t+1 γ  π(a∣S  )Q(S  , a) +∑

a=A   t+1
t+1 t+1 γπ(A  ∣S  )G  ,t+1 t+1 t+1:t+n

G  t:t+n =
def
G  t:T t+ n ≥ T

n n
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Off-policy -step Without Importance Samplingn

 

Algorithm 7.5 of "Reinforcement Learning: An Introduction, Second Edition".
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Where Are We

Until now, we have solved the tasks by explicitly calculating expected return, either as 

or as .

Finite number of states and actions.
We do not share information between different states or actions.
We use  if we do not have the environment model (a model-free method); if we

do, it is usually better to estimate  and choose actions as .

The methods we know differ in several aspects:
Whether they compute return by simulating a whole episode (Monte Carlo methods), or
by bootstrapping (temporal difference, i.e., , possibly -step).

TD methods more noisy and unstable, but can learn immediately and explicitly
assume Markovian property of value function.

Whether they estimate the value function of the same policy they use to generate the
episodes (on-policy) or not (off-policy).

The off-policy methods are more noisy and unstable, but more flexible.

v(s)
q(s, a)

q(s, a)
v(s) arg max  E[R+a v(s )]′

G  ≈t R  +t v(S  )t n
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Function Approximation

We now approximate the value function  and/or the action-value function , selecting it from

a family of functions parametrized by a weight vector .

We denote the approximations as

Weights are usually shared among states. Therefore, we need to define state distribution 

to obtain an objective for finding the best function approximation (if we give preference to some
states, improving their estimates might worsen estimates in other states).

The state distribution  gives rise to a natural objective function called Mean Squared

Value Error, denoted :

v q

w ∈ Rd

 

(s;w),v̂

 (s, a;w).q̂

μ(s)

μ(s)
V E

(w)V E =def
 μ(s)(v  (s) −

s∈S

∑ π (s;w)) .v̂
2
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Function Approximation

For on-policy algorithms,  is often the on-policy distribution (fraction of time spent in ).

For episodic tasks, let  be the probability that an episodes starts in state , and let 

 denote the number of time steps spent, on average, in state  in a single episode:

The on-policy distribution is then obtained by normalizing: 

If there is discounting ( ), it should be treated as a form of

termination, by including a factor  to the second term of the 

 equation.

For continuing tasks, we require , and employ the same

definition as in the episodic case.

μ(s) s

h(s) s

η(s) s

η(s) = h(s) +  η(s )  π(a∣s )p(s∣s , a).∑
s′

′ ∑
a

′ ′

μ(s) =
def

 .
 η(s )∑

s′ ′
η(s)

γ < 1
γ

η(s)

γ < 1

33/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn



Gradient and Semi-Gradient Methods

The functional approximation (i.e., the weight vector ) is usually optimized using gradient

methods, for example as

As usual, the  is estimated by a suitable sample of a return:

in Monte Carlo methods, we use episodic return ,

in temporal difference methods, we employ bootstrapping and use one-step return

or an -step return.

w

  

w  t+1 ← w  −  α∇  (v  (S  ) − (S  ;w  ))t 2
1

w  t π t v̂ t t
2

← w  + α(v  (S  ) − (S  ;w  ))∇  (S  ;w  ).t π t v̂ t t w  t
v̂ t t

v  (S  )π t

G  t

R  +t+1 [¬done] ⋅ γ (S  ;w)v̂ t+1

n
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Monte Carlo Gradient Policy Evaluation

 

Algorithm 9.3 of "Reinforcement Learning: An Introduction, Second Edition".
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Linear Methods

A simple special case of function approximation are linear methods, where

The  is a representation of state , which is a vector of the same size as . It is

sometimes called a feature vector.

The SGD update rule then becomes

This rule is the same as in the tabular methods if  is the one-hot representation of the

state .

(x(s);w)v̂ =def
x(s) w =T x(s)  w  .∑ i i

x(s) s w

w  ←t+1 w  +t α(v  (S  ) −π t (x(S  );w  ))x(S  ).v̂ t t t

x(s)
s
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State Aggregation

Simple way of generating a feature vector is state aggregation, where several neighboring
states are grouped together.

For example, consider a 1000-state random walk, where transitions lead uniformly randomly to
any of 100 neighboring states on the left or on the right. Using state aggregation, we can
partition the 1000 states into 10 groups of 100 states. Monte Carlo policy evaluation then
computes the following:

 

Figure 9.1 of "Reinforcement Learning: An Introduction, Second Edition".
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Feature Construction for Linear Methods

Many methods for construction features for linear methods have been developed in the past:

polynomials,

Fourier bases,

radial basis functions,

tile coding,

…

But of course, nowadays we use deep neural networks, which construct a suitable feature vector
automatically as a latent variable (the last hidden layer).
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Tile Coding

 

Figure 9.9 of "Reinforcement Learning: An Introduction, Second Edition".

If  overlapping tiles are used, the learning rate is usually normalized as .t α/t
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Tile Coding

For example, on the 1000-state random walk example, the performance of the tile coding
surpasses state aggregation:

 

Figure 9.10 of "Reinforcement Learning: An Introduction, Second Edition".

Each tile covers 200 states, and when multiple tiles are used, they are offset by 4 states.
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Asymmetrical Tile Coding

In higher dimensions, the tiles should have asymmetrical offsets, with a sequence of 

 proposed as a good choice.

 

Figure 9.11 of "Reinforcement Learning: An Introduction, Second Edition".

(1, 3, 5, … , 2d − 1)
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