
NPFL139, Lecture 3

Off-Policy Methods, N-step,

Function Approximation
Milan Straka

March 4, 2024

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Sarsa

A straightforward application to the temporal-difference policy evaluation is Sarsa algorithm,
which after generating computes

Modification of Algorithm 6.4 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

S ,A ,R ,S ,A t t t+1 t+1 t+1

q(S ,A) ←t t q(S ,A) +t t α(R +t+1 [¬done] ⋅ γq(S ,A) −t+1 t+1 q(S ,A)).t t

2/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Sarsa

Example 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

MC methods cannot be easily used, because an episode might not terminate if the current
policy causes the agent to stay in the same state.

3/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Q-learning

Q-learning was an important early breakthrough in reinforcement learning (Watkins, 1989).

Modification of Algorithm 6.5 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

q(S ,A) ←t t q(S ,A) +t t α(R +t+1 [¬done] ⋅ γ q(S , a) −
a

max t+1 q(S ,A)).t t

4/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Q-learning versus Sarsa

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

5/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

On-policy and Off-policy Methods

So far, most methods were on-policy. The same policy was used both for generating episodes
and as a target of value function.

However, while the policy for generating episodes needs to be more exploratory, the target
policy should capture optimal behaviour.

Generally, we can consider two policies:

behaviour policy, usually , is used to generate behaviour and can be more exploratory;

target policy, usually , is the policy being learned (ideally the optimal one).

When the behaviour and target policies differ, we talk about off-policy learning.

b

π

6/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

On-policy and Off-policy Methods

The off-policy methods are usually more complicated and slower to converge, but are able to
process data generated by different policy than the target one.

The advantages are:

can compute optimal non-stochastic (non-exploratory) policies;

more exploratory behaviour;

ability to process expert trajectories.

7/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy Prediction

Consider prediction problem for off-policy case.

In order to use episodes from to estimate values for , we require that every action taken by

 is also taken by , i.e.,

Many off-policy methods utilize importance sampling, a general technique for estimating
expected values of one distribution given samples from another distribution.

b π

π b

π(a∣s) > 0 ⇒ b(a∣s) > 0.

8/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Importance Sampling

Assume that and are two distributions and let be samples of . We can then estimate

 as .

In order to estimate using the samples , we need to account for different

probabilities of under the two distributions. It is straightforward to verify that

Therefore, we can estimate

with being the relative probability of under the two distributions.

Both estimates mentioned on this slide are unbiased.

p q x i N p

E [f(x)]x∼p f(x)
N
1 ∑i i

E [f(x)]x∼q x i

x i

E [f(x)] =x∼q E f(x) .x∼p [
p(x)
q(x)

]

E [f(x)] ≈x∼q f(x),
N

1

i

∑
p(x)i

q(x)i
i

q(x)/p(x) x

9/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy Prediction

Given an initial state and an episode , the probability of this episode

under a policy is

Therefore, the relative probability of a trajectory under the target and behaviour policies is

The is usually called the importance sampling ratio or relative probability.

Therefore, if is a return of episode generated according to , we can estimate

S t A ,S ,A , … ,S t t+1 t+1 T

π

 π(A ∣S)p(S ∣S ,A).
k=t

∏
T−1

k k k+1 k k

ρ t =
def

 =
 b(A ∣S)p(S ∣S ,A)∏k=t

T−1
k k k+1 k k

 π(A ∣S)p(S ∣S ,A)∏k=t
T−1

k k k+1 k k
 .

k=t

∏
T−1

b(A ∣S)k k

π(A ∣S)k k

ρ t

G t b

v (S) =π t E [ρ G].b t t

10/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy Monte Carlo Prediction

Let be a set of times when we visited state . Given episodes sampled according to , we

can estimate

Such simple average is called ordinary importance sampling. It is unbiased, but can have very
high variance.

An alternative is weighted importance sampling, where we compute weighted average as

Weighted importance sampling is biased (with bias asymptotically converging to zero, i.e., a
consistent estimate), but has smaller variance.

T (s) s b

v (s) =π .
∣T (s)∣

 ρ G ∑t∈T (s) t t

v (s) =π .
 ρ ∑t∈T (s) t

 ρ G ∑t∈T (s) t t

11/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy Multi-armed Bandits

Figure 2.1 of "Reinforcement Learning: An Introduction,
Second Edition".

As a simple example, consider the 10-armed bandits from the first
lecture, with single-step episodes.

Let the behaviour policy be a uniform policy, so the return is a
reward of a randomly selected arm.

Let the target policy be a greedy policy always using action 3.

Assume that the first sample from the behaviour policy produced
action 3 with reward . Then

Ordinary importance sampling estimates the return for the target policy as

The factor is present because the behaviour policy returns action 3 in 10% cases.

Weighted importance sampling estimates the return for target policy as average of rewards
for action 3.

R

 R =
b(a)
π(a)

 R =
1/10

1
10 ⋅ R.

10

12/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy Monte Carlo Policy Evaluation

Figure 5.3 of "Reinforcement Learning: An Introduction, Second Edition".

Comparison of ordinary and weighted importance sampling on Blackjack. Given a state with
dealer showing a deuce and sum of player's cards 13 with a usable ace, we estimate target
policy of sticking only with a sum of 20 and 21, using uniform behaviour policy.

13/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy Monte Carlo Policy Evaluation

We can compute weighted importance sampling similarly to the incremental implementation of
Monte Carlo averaging.

Algorithm 5.6 of "Reinforcement Learning: An Introduction, Second Edition".

14/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy Monte Carlo

Algorithm 5.7 of "Reinforcement Learning: An Introduction, Second Edition".

15/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Expected Sarsa

The action is a source of variance, providing correct estimate only in expectation.

We could improve the algorithm by considering all actions proportionally to their policy
probability, obtaining Expected Sarsa algorithm:

Compared to Sarsa, the expectation removes a source of variance and therefore usually performs
better. However, the complexity of the algorithm increases and becomes dependent on number
of actions .

A t+1

q(S ,A)t t ← q(S ,A) + α(R + [¬done] ⋅ γE q(S , a) − q(S ,A))t t t+1 π t+1 t t

← q(S ,A) + α(R + [¬done] ⋅ γ π(a∣S)q(S , a) − q(S ,A)).t t t+1 ∑
a

t+1 t+1 t t

∣A∣

16/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Expected Sarsa as an Off-policy Algorithm

Note that Expected Sarsa is also an off-policy algorithm, allowing the behaviour policy and

target policy to differ.

Especially, if is a greedy policy with respect to current value function, Expected Sarsa

simplifies to Q-learning.

b

π

π

17/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Expected Sarsa Example

Example 6.6 of "Reinforcement Learning: An
Introduction, Second Edition".

Figure 6.3 of "Reinforcement Learning: An Introduction, Second Edition".

Asymptotic performance is an average over 100k episodes (10 runs), interim performance over
the first 100 episodes (50k runs); -greedy policy with is used.ε ε = 0.1

18/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Q-learning and Maximization Bias

Because behaviour policy in Q-learning is -greedy variant of the target policy, the same

samples (up to -greedy) determine both the maximizing action and its value estimate.

Figure 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

ε

ε

19/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Double Q-learning

Modification of Algorithm 6.7 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

20/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

-step Methodsn

Figure 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

Full return is

one-step return is

We can generalize both into -step returns:

with if (episode length).

G =t γ R ,
k=t

∑
∞

k−t
k+1

G =t:t+1 R +t+1 [¬done] ⋅ γV (S).t+1

n

G t:t+n =def
 γ R +(

k=t

∑
t+n−1

k−t
k+1) γ V (S).n

t+n

G t:t+n =def
G t t+ n ≥ T

21/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

-step Methodsn

A natural update rule is

Algorithm 7.1 of "Reinforcement Learning: An Introduction, Second Edition".

V (S) ←t V (S) +t α(G −t:t+n V (S)).t

22/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

-step Methods Examplen

Using the random walk example, but with 19 states instead of 5,

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

we obtain the following comparison of different values of :

Figure 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

n

23/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

-step Sarsan

Defining the -step return to utilize action-value function as

with if , we get the following straightforward algorithm:

Figure 7.4 of "Reinforcement Learning: An Introduction, Second Edition".

n

G t:t+n =def
 γ R +(

k=t

∑
t+n−1

k−t
k+1) γ Q(S ,A)n

t+n t+n

G t:t+n =def
G t t+ n ≥ T

Q(S ,A) ←t t Q(S ,A) +t t α(G −t:t+n Q(S ,A)).t t

24/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

-step Sarsa Algorithmn

Algorithm 7.2 of "Reinforcement Learning: An Introduction, Second Edition".

25/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy -step Sarsan

Recall the relative probability of a trajectory under the target and behaviour policies, which we
now generalize as

Then a simple off-policy -step TD policy evaluation can be computed as

Similarly, -step Sarsa becomes

ρ t:t+n =def
 .

k=t

∏
min(t+n,T−1)

b(A ∣S)k k

π(A ∣S)k k

n

V (S) ←t V (S) +t αρ (G −t:t+n−1 t:t+n V (S)).t

n

Q(S ,A) ←t t Q(S ,A) +t t αρ (G −t+1:t+n t:t+n Q(S ,A)).t t

26/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy -step Sarsan

Modified from Algorithm 7.3 of "Reinforcement Learning: An Introduction, Second Edition" by changing ρ_{τ+1:τ+n-1} to ρ_{τ+1:τ+n}.

27/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy -step Without Importance Samplingn

Figure 7.5 of "Reinforcement Learning: An Introduction, Second Edition".

Q-learning and Expected Sarsa can learn off-policy without importance sampling.

To generalize to -step off-policy method, we must compute expectations over actions in each

step of -step update. However, we have not obtained a return for the non-sampled actions.

Luckily, we can estimate their values by using the current action-value function.

n

n

28/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy -step Without Importance Samplingn

Example in
Section 7.5 of

"Reinforcement
Learning: An
Introduction,

Second Edition".

We now derive the -step reward, starting from one-step:

For two-step, we get:

Therefore, we can generalize to:

with if (episode length).

The resulting algorithm is -step Tree backup and it is an off-policy -step temporal

difference method not requiring importance sampling.

n

G t:t+1 =def
R +t+1 [¬done] ⋅ γ π(a∣S)Q(S , a).∑

a
t+1 t+1

G t:t+2 =def
R +t+1 γ π(a∣S)Q(S , a) +∑

a=A t+1
t+1 t+1 γπ(A ∣S)G .t+1 t+1 t+1:t+2

G t:t+n =def
R +t+1 γ π(a∣S)Q(S , a) +∑

a=A t+1
t+1 t+1 γπ(A ∣S)G ,t+1 t+1 t+1:t+n

G t:t+n =
def
G t:T t+ n ≥ T

n n

29/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Off-policy -step Without Importance Samplingn

Algorithm 7.5 of "Reinforcement Learning: An Introduction, Second Edition".

30/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Where Are We

Until now, we have solved the tasks by explicitly calculating expected return, either as

or as .

Finite number of states and actions.
We do not share information between different states or actions.
We use if we do not have the environment model (a model-free method); if we

do, it is usually better to estimate and choose actions as .

The methods we know differ in several aspects:
Whether they compute return by simulating a whole episode (Monte Carlo methods), or
by bootstrapping (temporal difference, i.e., , possibly -step).

TD methods more noisy and unstable, but can learn immediately and explicitly
assume Markovian property of value function.

Whether they estimate the value function of the same policy they use to generate the
episodes (on-policy) or not (off-policy).

The off-policy methods are more noisy and unstable, but more flexible.

v(s)
q(s, a)

q(s, a)
v(s) arg max E[R+a v(s)]′

G ≈t R +t v(S)t n

31/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Function Approximation

We now approximate the value function and/or the action-value function , selecting it from

a family of functions parametrized by a weight vector .

We denote the approximations as

Weights are usually shared among states. Therefore, we need to define state distribution

to obtain an objective for finding the best function approximation (if we give preference to some
states, improving their estimates might worsen estimates in other states).

The state distribution gives rise to a natural objective function called Mean Squared

Value Error, denoted :

v q

w ∈ Rd

(s;w),v̂

 (s, a;w).q̂

μ(s)

μ(s)
V E

(w)V E =def
 μ(s)(v (s) −

s∈S

∑ π (s;w)) .v̂
2

32/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Function Approximation

For on-policy algorithms, is often the on-policy distribution (fraction of time spent in).

For episodic tasks, let be the probability that an episodes starts in state , and let

 denote the number of time steps spent, on average, in state in a single episode:

The on-policy distribution is then obtained by normalizing:

If there is discounting (), it should be treated as a form of

termination, by including a factor to the second term of the

 equation.

For continuing tasks, we require , and employ the same

definition as in the episodic case.

μ(s) s

h(s) s

η(s) s

η(s) = h(s) + η(s) π(a∣s)p(s∣s , a).∑
s′

′ ∑
a

′ ′

μ(s) =
def

 .
 η(s)∑

s′ ′
η(s)

γ < 1
γ

η(s)

γ < 1

33/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Gradient and Semi-Gradient Methods

The functional approximation (i.e., the weight vector) is usually optimized using gradient

methods, for example as

As usual, the is estimated by a suitable sample of a return:

in Monte Carlo methods, we use episodic return ,

in temporal difference methods, we employ bootstrapping and use one-step return

or an -step return.

w

w t+1 ← w − α∇ (v (S) − (S ;w))t 2
1

w t π t v̂ t t
2

← w + α(v (S) − (S ;w))∇ (S ;w).t π t v̂ t t w t
v̂ t t

v (S)π t

G t

R +t+1 [¬done] ⋅ γ (S ;w)v̂ t+1

n

34/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Monte Carlo Gradient Policy Evaluation

Algorithm 9.3 of "Reinforcement Learning: An Introduction, Second Edition".

35/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Linear Methods

A simple special case of function approximation are linear methods, where

The is a representation of state , which is a vector of the same size as . It is

sometimes called a feature vector.

The SGD update rule then becomes

This rule is the same as in the tabular methods if is the one-hot representation of the

state .

(x(s);w)v̂ =def
x(s) w =T x(s) w .∑ i i

x(s) s w

w ←t+1 w +t α(v (S) −π t (x(S);w))x(S).v̂ t t t

x(s)
s

36/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

State Aggregation

Simple way of generating a feature vector is state aggregation, where several neighboring
states are grouped together.

For example, consider a 1000-state random walk, where transitions lead uniformly randomly to
any of 100 neighboring states on the left or on the right. Using state aggregation, we can
partition the 1000 states into 10 groups of 100 states. Monte Carlo policy evaluation then
computes the following:

Figure 9.1 of "Reinforcement Learning: An Introduction, Second Edition".

37/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Feature Construction for Linear Methods

Many methods for construction features for linear methods have been developed in the past:

polynomials,

Fourier bases,

radial basis functions,

tile coding,

…

But of course, nowadays we use deep neural networks, which construct a suitable feature vector
automatically as a latent variable (the last hidden layer).

38/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Tile Coding

Figure 9.9 of "Reinforcement Learning: An Introduction, Second Edition".

If overlapping tiles are used, the learning rate is usually normalized as .t α/t

39/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Tile Coding

For example, on the 1000-state random walk example, the performance of the tile coding
surpasses state aggregation:

Figure 9.10 of "Reinforcement Learning: An Introduction, Second Edition".

Each tile covers 200 states, and when multiple tiles are used, they are offset by 4 states.
40/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

Asymmetrical Tile Coding

In higher dimensions, the tiles should have asymmetrical offsets, with a sequence of

 proposed as a good choice.

Figure 9.11 of "Reinforcement Learning: An Introduction, Second Edition".

(1, 3, 5, … , 2d − 1)

41/41NPFL139, Lecture 3 Refresh Off-policy Methods -step Methods Tree Backup Function Approximation Tile Codingn

