
NPFL139, Lecture 2

Value and Policy Iteration, Monte
Carlo, Temporal Difference
Milan Straka

February 26, 2024

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Markov Decision Process

A Markov decision process (MDP) is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action will lead from

state to , producing a reward ,

 is a discount factor.

Let a return be . The goal is to optimize .

(S, A, p, γ)

S

A

p(S =t+1 s ,R =′
t+1 r∣S =t s,A =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R
γ ∈ [0, 1]

G t G t =def
 γ R ∑k=0

∞ k
t+1+k E[G]0

2/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Partially Observable MDPs

Partially observable Markov decision process extends the Markov decision process to a
sextuple , where in addition to an MDP,

 is a set of observations,

 is an observation model, where observation is used as agent input

instead of the state .

(S, A, p, γ, O, o)

O

o(O ∣S ,A)t+1 t+1 t O t

S t

3/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Episodic and Continuing Tasks

If the agent-environment interaction naturally breaks into independent subsequences, usually
called episodes, we talk about episodic tasks. Each episode then ends in a special terminal
state, followed by a reset to a starting state (either always the same, or sampled from a
distribution of starting states).

In episodic tasks, it is often the case that every episode ends in at most steps. These finite-

horizon tasks then can use discount factor , because the return is

well defined.

If the agent-environment interaction goes on and on without a limit, we instead talk about
continuing tasks. In this case, the discount factor needs to be sharply smaller than 1.

H

γ = 1 G =def
 γ R ∑t=0

H t
t+1

γ

4/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

(State-)Value and Action-Value Functions

A policy computes a distribution of actions in a given state, i.e., corresponds to a

probability of performing an action in state .

To evaluate a quality of a policy, we define value function , or state-value function, as

An action-value function for a policy is defined analogously as

The value function and action-value function can be of course expressed using one another:

π π(a∣s)
a s

v (s)π

v (s)π E [G S = s] = E γ R S = s=def
π t t π [∑

k=0

∞
k

t+k+1 t]

= E E [R + γE E [R + …]]A ∼π(s)t S ,R ∼p(s,A)t+1 t+1 t t+1 A ∼π(S)t+1 t+1 S ,R ∼p(S ,A)t+2 t+2 t+1 t+1 t+2

π

q (s, a)π =def E [G S =π t t s,A =t a] = E γ R S = s,A = a .π [∑
k=0

∞
k

t+k+1 t t]

v (s) =π E [q (s, a)], q (s, a) =a∼π π π E [r +s ,r∼p′ γv (s)].π
′

5/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Optimal Value Functions

Optimal state-value function is defined as

analogously

Any policy with is called an optimal policy. Such policy can be defined as

. When multiple

actions maximize , the optimal policy can stochastically choose any of them.

Existence
In finite-horizon tasks or if , there always exists a unique optimal state-value function,

a unique optimal action-value function, and a (not necessarily unique) optimal policy.

v (s)∗ =def
 v (s),

π
max π

q (s, a)∗ =
def

 q (s, a).
π

max π

π ∗ v =π ∗ v ∗

π (s)∗ =def
 q (s, a) =

a
arg max ∗ E[R +

a
arg max t+1 γv (S)∣S =∗ t+1 t s,A =t a]

q (s, a)∗

γ < 1

6/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Dynamic Programming

Dynamic programming is an approach devised by Richard Bellman in 1950s.

To apply it to MDP, we now consider finite-horizon problems with finite number of states ,

finite number of actions , and known MDP dynamics . Note that without loss of generality,

we can assume that every episode takes exactly steps (by introducing a suitable absorbing

state, if necessary).

The following recursion is usually called the Bellman equation:

It must hold for an optimal value function in a MDP, because future decisions do not depend
on the current one. Therefore, the optimal policy can be expressed as one action followed by
optimal policy from the resulting state.

S

A p

H

v (s)∗ = E[R + γv (S) S = s,A = a]
a

max t+1 ∗ t+1 t t

= p(s , r∣s, a)[r + γv (s)].
a

max
s ,r′

∑ ′
∗

′

7/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Dynamic Programming

To turn the Bellman equation into an algorithm, we change the equal sign to an assignment:

In a finite-horizon task with steps, the optimal value function is reached after iterations of

the above assignment:

We can show by induction that is the maximum return reachable from state in last

 steps of an episode.

If every episode ends in at most steps, then must be equal to .

v (s)0

v (s)k+1

← {
0
−∞

for the terminal state s
otherwise

← E[R + γv (S) S = s,A = a].
a

max t+1 k t+1 t t

H H

v (s)k s

k

H v H+1 v H

8/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Relations to Graph Algorithms

In current settings, searching for the optimal value function of a deterministic MDP problem
(i.e., when there are always just a single next state and a single reward) is in fact the same as
searching for the longest (maximum weighted) path in a suitable graph:

where the value of an edge going from to is either the highest reward some

transition produces, or if no action from the state leads to .

v (s)t+1 i v (s)t j

p(s , a) →i (s , r)j −∞ s i s j

9/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Bellman-Ford-Moore Algorithm

Consider the dynamic programming algorithm of the repeated Bellman equation application:

The Bellman-Ford-Moore shortest-path algorithm can be considered its special-case:

input: graph `g`, initial vertex `s`

for v in g.vertices:

 d[v] = 0 if v == s else +∞

for iteration in range(len(g.vertices) - 1):

 for e in g.edges:

 if d[e.source] + e.length < d[e.target]:

 d[e.target] = d[e.source] + e.length

v (s)0

v (s)k+1

← {
0
−∞

for the terminal state s
otherwise

← E[R + γv (S) S = s,A = a].
a

max t+1 k t+1 t t

10/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Uniqueness of Bellman Equation Solution

Not only does the optimal value function fulfill the Bellman equation in the current settings, the
converse is also true: If a value function satisfies the Bellman equation, it is optimal.

To sketch the proof of the statement, consider for a contradiction that some solution of
Bellman equation is not an optimal value function. Therefore, there exist states with different
than optimal values.

Among those states, we choose such a state that all trajectories from it contains only states
with optimal values. We can find it by starting in an arbitrary state with different than optimal
value, and then repeatedly switching into a reachable state with different than optimal value
function.

For such a state, however, if its value is not optimal, then the Bellman equation cannot hold in
this state, which is a contradiction.

11/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Bellman Backup Operator

Our goal is now to handle also infinite-horizon tasks, using discount factor of . However,

we still assume finite number of states and actions.

For any value function we define Bellman backup operator as

Considering the supremum norm , we will show that Bellman backup

operator is a contraction (even for infinite number of states), i.e.,

Applying the Banach fixed-point theorem on the normed vector space with the supremum

norm then yields that there exists a unique value function such that .

Such a unique is the optimal value function, because it satistifes the Bellman equation.

γ < 1

v ∈ R∣S∣ B : R →∣S∣ R∣S∣

Bv(s) =def
 E[R +

a
max t+1 γv(S) S =t+1 t s,A =t a].

∥x∥ ∞ =def sup ∣x(s)∣s

 Bv (s) −
s

sup 1 Bv (s) =2 Bv −1 Bv ≤2 ∞ γ∥v −1 v ∥ .2 ∞

R∣S∣

v ∗ Bv =∗ v ∗

v ∗

12/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Bellman Backup Operator

Furthermore, iterative application of on arbitrary converges to , because

and therefore .

B v v ∗

 Bv − v =∗ ∞ Bv − Bv ≤∗ ∞ γ∥v − v ∥,∗

B v →n v ∗

13/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Value Iteration Algorithm

We can turn the iterative application of Bellman backup operator into an algorithm.

Modification of Algorithm 4.4 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S, synchronous).

Bv(s) =def
 E[R +

a
max t+1 γv(S) S =t+1 t s,A =t a]

14/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Value Iteration Algorithm

Modification of Algorithm 4.4 of "Reinforcement Learning:
An Introduction, Second Edition" (replacing S+ by S).

Although we have described the so-called synchronous implementation requiring two arrays for

 and , usual implementations are asynchronous and modify the value function in place (if a

fixed ordering is used, usually such value iteration is called Gauss-Seidel).

for in some fixed order:

Even with such asynchronous update, value iteration can be
proven to converge, and usually performs better in practice.

For example, the Bellman-Ford-Moore algorithm also updates the distances in-place. In the case
of dynamic programming, we can extend the invariant from “ is the maximum return

reachable from state in last steps of an episode” to include not only all trajectories of

steps, but also any number of longer trajectories.

If you are interested, try proving that the above Gauss-Seidel iteration is also a contraction.

v Bv

s ∈ S

v(s) ← max E[R +a t+1 γv(S) S =t+1 t s,A =t a]

v (s)k

s k k

15/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Bellman Backup Operator as a Contraction

To show that Bellman backup operator is a contraction, we proceed as follows:

 Bv −1 Bv =2 ∞
 E[R +

a
max t+1 γv (S)]−1 t+1 E[R +

a
max t+1 γv (S)] 2 t+1 ∞

≤ (E[R +
a

max t+1 γv (S)]−1 t+1 E[R +t+1 γv (S)]) 2 t+1 ∞

= (p(s , r∣s, a)(r +
a

max ∑
s ,r′

′ γv (s) −1
′ r − γv (s))) 2

′

∞

= (E[γ(v (S) −
a

max 1 t+1 v (S))]) 2 t+1
∞

= γ (E[v (S) −
a

max 1 t+1 v (S)]) 2 t+1
∞

≤ γ (E[v −
a

max 1 v]) 2 ∞ ∞

= γ∥v −1 v ∥ .2 ∞

16/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Speed of Convergence

Assuming maximum reward is , we have that

Starting with , we have

Compare to finite-horizon case, where .

R max

v (s) ≤∗ γ R =
t=0

∑
∞

t
max .

1 − γ

R max

v(s) ← 0

 B v −k v ≤∗ ∞ γ ∥v −k v ∥ ≤∗ ∞ γ .k

1 − γ

R max

B v =T v ∗

17/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Value Iteration Example

Consider a simple betting game, where a gambler repeatedly bets on the outcome of a coin flip
(with a given win probability), either losing their stake or winning the same amount of coins
that was bet. The gambler wins if they obtain 100 coins, and lose if they run our of money.

We can formulate the problem as an undiscounted episodic MDP. The states are the coins
owned by the gambler, , and actions are the stakes .

The reward is when reaching 100 and 0 otherwise.

The state-value function then gives probability of winning from each state, and policy prescribes
a stake with a given capital.

{1, … , 99} {1, … , min(s, 100 − s)}
+1

18/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Value Iteration Example

For a coin flip win probability 40%, the value iteration proceeds as follows.

Figure 4.3 of "Reinforcement Learning: An Introduction, Second Edition".

19/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Policy Iteration Algorithm

We now propose another approach of computing optimal policy. The approach, called policy
iteration, consists of repeatedly performing policy evaluation and policy improvement.

Policy Evaluation
Given a policy , policy evaluation computes .

Recall that

If the dynamics of the MDP is known, the above is a system of linear equations, and

therefore, can be computed exactly.

π v π

v (s)π E [G S = s]=def

π t t

= E [R + γv (S) S = s]π t+1 π t+1 t

= π(a∣s) p(s , r∣s, a)[r + γv (s)].∑
a

∑
s ,r′

′
π

′

p

v π

20/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Policy Evaluation

The equation

is called Bellman equation for and analogously to Bellman optimality equation, it can be

proven that

under the same assumptions as before (or termination), exists and is unique;

 is a fixed point of the Bellman equation

iterative application of the Bellman equation to any converges to (the proof is easier

than for the optimality equation, because is defined using an expectation and

expectations are linear, so we get the first half of the proof “for free”).

v (s) =π π(a∣s) p(s , r∣s, a) r + γv (s)∑
a

∑
s ,r′

′ [π
′]

v π

γ < 1 v π

v π

v (s) =k+1 π(a∣s) p(s , r∣s, a)[r +∑
a

∑
s ,r′

′ γv (s)];k
′

v v π

v π

21/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Policy Evaluation

Modification of Algorithm 4.1 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

22/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Policy Improvement

Given and computed , we would like to improve the policy. A straightforward way to do

so is to define a policy using a greedy action

For such , by construction it obviously holds that

π v π

π (s)′
 q (s, a)=def

a
arg max π

= p(s , r∣s, a)[r + γv (s)].
a

arg max∑
s ,r′

′
π

′

π′

q (s,π (s)) ≥π
′ v (s).π

23/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Policy Improvement Theorem

Let and be any pair of deterministic policies, such that .

Then for all states , .

The proof is straightforward, we repeatedly expand and use the assumption of the policy

improvement theorem:

π π′ q (s,π (s)) ≥π
′ v (s)π

s v (s) ≥π′ v (s)π

q π

v (s) ≤π q (s,π (s))π
′

= E[R +t+1 γv (S)∣S =π t+1 t s,A =t π (s)]′

= E [R +π′ t+1 γv (S)∣S =π t+1 t s]

≤ E [R +π′ t+1 γq (S ,π (S))∣S =π t+1
′

t+1 t s]

= E [R +π′ t+1 γE[R +t+2 γv (S)∣S ,A =π t+2 t+1 t+1 π (S)]∣S =′
t+1 t s]

= E [R +π′ t+1 γR +t+2 γ v (S)∣S =2
π t+2 t s]

…

≤ E [R +π′ t+1 γR +t+2 γ R +2
t+3 … ∣S =t s] = v π′

24/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Policy Improvement Example

Example 4.1 of "Reinforcement Learning: An Introduction, Second Edition".

Figure 4.1 of "Reinforcement Learning: An Introduction, Second Edition".

25/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Policy Iteration Algorithm

Policy iteration consists of repeatedly performing policy evaluation and policy improvement:

The result is a sequence of monotonically improving policies . Note that when , also

, which means Bellman optimality equation is fulfilled and both and are optimal.

Considering that there is only a finite number of policies, the optimal policy and optimal value
function can be computed in finite time (contrary to value iteration, where the convergence is
only asymptotic).

Note that when evaluating policy , we usually start with , which is assumed to be a

good approximation to .

π 0 ⟶
E

v π 0 ⟶
I

π 1 ⟶
E

v π 1 ⟶
I

π 2 ⟶
E

v π 2 ⟶
I

… ⟶
I

π ∗ ⟶
E

v .π ∗

π i π =′ π

v =π′ v π v π π

π k+1 v π k

v π k+1

26/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Policy Iteration Algorithm

Algorithm 4.3 of "Reinforcement Learning: An Introduction, Second Edition".

27/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Value Iteration as Policy Iteration

Note that value iteration is in fact a policy iteration, where policy evaluation is performed only
for one step:

Substituting the former into the latter, we get

π (s)′

v (s)′

= p(s , r∣s, a)[r + γv(s)]
a

arg max∑
s ,r′

′ ′

= π (a∣s) p(s , r∣s, a)[r + γv(s)]∑
a

′ ∑
s ,r′

′ ′

(policy improvement)

(one step of policy evaluation)

v (s) =′
 p(s , r∣s, a)[r +

a
max∑

s ,r′

′ γv(s)] =′ Bv(s).

28/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Generalized Policy Iteration

Therefore, it seems that to achieve convergence, it is not necessary to perform the policy
evaluation exactly.

Generalized Policy Evaluation is a general concept of interleaving policy evaluation and
policy improvement at various granularity.

Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".

Figure in Section 4.6 of "Reinforcement Learning: An Introduction, Second Edition".

If both processes stabilize, we know we have obtained optimal policy.

29/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Monte Carlo Methods

Monte Carlo methods are based on estimating returns from complete episodes. Furthermore, if
the model (of the environment) is not known, we need to estimate returns for the action-value
function instead of .

We can formulate Monte Carlo methods in the generalized policy improvement framework.
Keeping estimated returns for the action-value function, we perform policy evaluation by
sampling one episode according to current policy. We then update the action-value function by
averaging over the observed returns, including the currently sampled episode.

q v

30/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Monte Carlo Methods

To hope for convergence, we need to visit each state infinitely many times. One of the simplest
way to achieve that is to assume exploring starts, where we randomly select the first state and
first action, each pair with nonzero probability.

Furthermore, if a state-action pair appears multiple times in one episode, the sampled returns
are not independent. Literature distinguishes two cases:

first visit: only the first occurence of a state-action pair in an episode is considered
every visit: all occurences of a state-action pair are considered.

Even though first-visit is easier to analyze, it can be proven that for both approaches, policy
evaluation converges. Contrary to the Reinforcement Learning: An Introduction book, which
presents first-visit algorithms, we use every-visit.

31/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Monte Carlo with Exploring Starts

Modification of algorithm 5.3 of "Reinforcement Learning: An Introduction, Second Edition" from first-visit to every-visit.

32/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Monte Carlo and -soft Policiesε

The problem with exploring starts is that in many situations, we either cannot start in an
arbitrary state, or it is impractical.

A policy is called -soft, if

and we call it -greedy, if one action has a maximum probability of .

The policy improvement theorem can be proved also for the class of -soft policies, and using

-greedy policy in policy improvement step, policy iteration has the same convergence properties.
(We can embed the -soft behaviour “inside” the environment and prove equivalence.)

ε

π(a∣s) ≥ .
∣A(s)∣
ε

ε 1 − ε+ ∣A(s)∣
ε

ε ε

ε

33/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Monte Carlo for -soft Policiesε

On-policy every-visit Monte Carlo for -soft Policies

Algorithm parameter: small

Initialize arbitrarily (usually to 0), for all

Initialize to 0, for all

Repeat forever (for each episode):

Generate an episode , by generating actions as follows:

With probability , generate a random uniform action

Otherwise, set

For each :

ε

ε > 0

Q(s, a) ∈ R s ∈ S, a ∈ A

C(s, a) ∈ Z s ∈ S, a ∈ A

S ,A ,R , … ,S ,A ,R 0 0 1 T−1 T−1 T

ε

A t =def arg max Q(S , a)a t

G ← 0
t = T − 1,T − 2, … , 0

G ← γG+ R t+1

C(S ,A) ←t t C(S ,A) +t t 1
Q(S ,A) ←t t Q(S ,A) +t t (G−

C(S ,A)t t

1 Q(S ,A))t t

34/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Action-values and Afterstates

Figure from section 6.8 of "Reinforcement Learning: An Introduction,
Second Edition".

The reason we estimate action-value function is that the policy is defined as

and the latter form might be impossible to evaluate if we do not have the model of the
environment.

However, if the environment is known, it is often better
to estimate returns only for states, because there can be
substantially less states than state-action pairs.

q

π(s) q (s, a)=def

a
arg max π

= p(s , r∣s, a) r + γv (s)
a

arg max∑
s ,r′

′ [π
′]

35/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

TD Methods

Temporal-difference methods estimate action-value returns using one iteration of Bellman
equation instead of complete episode return.

Compared to Monte Carlo method with constant learning rate , which performs

the simplest temporal-difference method computes the following:

where has a value of 1 if the episode continues in the state , and 0 otherwise.

We say TD methods are bootstraping, because they base their update on an existing
(action-)value function estimate.

α

v(S) ←t v(S) +t α(G −t v(S)),t

v(S) ←t v(S) +t α(R +t+1 [¬done] ⋅ γv(S) −t+1 v(S)),t

[¬done] S t+1

36/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

TD Methods

Example 6.1 of "Reinforcement Learning: An Introduction, Second Edition".

Figure 6.1 of "Reinforcement Learning: An Introduction, Second Edition".

37/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

TD Methods

An obvious advantage of TD methods compared to Monte Carlo is that they are naturally
implemented in online, fully incremental fashion, while the Monte Carlo methods must wait until
an episode ends, because only then the return is known.

The possibility of immediate learning is useful for:

continuous environments,

environments with extremely large episodes,

environments ending after some nontrivial goal is reached, requiring some coordinated
strategy from the agent (i.e., it is improbable that random actions will reach it).

38/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

TD and MC Comparison

As with Monte Carlo methods, for a fixed policy (i.e., the policy evaluation part of the

algorithms), TD methods converge to .

On stochastic tasks, TD methods usually converge to faster than constant- MC methods.

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

Example 6.2 of "Reinforcement Learning: An Introduction, Second Edition".

π

v π

v π α

39/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Optimality of MC and TD Methods

Example 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

Example 6.4 of "Reinforcement Learning: An Introduction, Second Edition".

For state B, 6 out of 8 times return from B was 1 and 0 otherwise. Therefore, .

[TD] For state A, in all cases it transferred to B. Therefore, could be .

[MC] For state A, in all cases it generated return 0. Therefore, could be .

MC minimizes mean squared error on the returns from the training data, while TD finds the
estimates that would be exactly correct for a maximum-likelihood estimate of the Markov
process model (the estimated transition probability from to is the fraction of observed

transitions from that went to , and the corresponding reward is the average of the rewards

observed on those transitions).

v(B) = 3/4

v(A) 3/4
v(A) 0

s t

s t

40/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Sarsa

A straightforward application to the temporal-difference policy evaluation is Sarsa algorithm,
which after generating computes

Modification of Algorithm 6.4 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

S ,A ,R ,S ,A t t t+1 t+1 t+1

q(S ,A) ←t t q(S ,A) +t t α(R +t+1 [¬done] ⋅ γq(S ,A) −t+1 t+1 q(S ,A)).t t

41/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Sarsa

Example 6.5 of "Reinforcement Learning: An Introduction, Second Edition".

MC methods cannot be easily used, because an episode might not terminate if the current
policy causes the agent to stay in the same state.

42/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Q-learning

Q-learning was an important early breakthrough in reinforcement learning (Watkins, 1989).

Modification of Algorithm 6.5 of "Reinforcement Learning: An Introduction, Second Edition" (replacing S+ by S).

q(S ,A) ←t t q(S ,A) +t t α(R +t+1 [¬done] ⋅ γ q(S , a) −
a

max t+1 q(S ,A)).t t

43/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

Q-learning versus Sarsa

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

Example 6.6 of "Reinforcement Learning: An Introduction, Second Edition".

44/44NPFL139, Lecture 2 Refresh DP Value Iteration Policy Iteration Monte Carlo Afterstates TD Sarsa Q-learning

