
NPFL139, Lecture 1

Introduction to Reinforcement
Learning
Milan Straka

February 19, 2024

Charles University in Prague
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics

unless otherwise stated

Reinforcement Learning

Reinforcement learning is a machine learning paradigm, different from supervised and
unsupervised learning.

The essence of reinforcement learning is to learn from interactions with the environment to
maximize a numeric reward signal. The learner is not told which actions to take, and the actions
may affect not just the immediate reward, but also all following rewards.

https://i.redd.it/50sqtdcyh1j11.jpg

2/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Deep Reinforcement Learning

In the last decade, reinforcement learning has been successfully combined with deep neural
networks.

Figure 1 of "A Comparison of learning algorithms on the
Arcade Learning Environment",
https://arxiv.org/abs/1410.8620

Figure 2 of "A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play" by David Silver et al.

Figure 1 of "Grandmaster level in StarCraft II using multi-
agent reinforcement learning" by Oriol Vinyals et al.

Figure 1 of "Long-Range Indoor
Navigation with PRM-RL",

https://arxiv.org/abs/1902.09458

https://assets-global.website-files.com/
621e749a546b7592125f38ed/

622690391abb0e8c1ecf4b6a_Data%20Centers.jpg

https://assets-global.website-files.com/
621e749a546b7592125f38ed/

6224b41588a4994b5c6efc29_MuZero.gif

https://storage.googleapis.com/deepmind-
media/DeepMind.com/Authors-

Notes/sparrow/sparrow_fig_2.svg

3/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Organization

Course Website: https://ufal.mff.cuni.cz/courses/npfl139

Slides, recordings, assignments, exam questions

Course Repository: https://github.com/ufal/npfl139

Templates for the assignments, slide sources.

Piazza
Piazza will be used as a communication platform.

You can post questions or notes,
privately to the instructors,
publicly to everyone (signed or anonymously).

Other students can answer these too, which allows you to get faster response.
However, do not include even parts of your source code in public questions.

Please use Piazza for all communication with the instructors.

You will get the invite link after the first lecture.

4/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

https://ufal.mff.cuni.cz/courses/npfl139
https://github.com/ufal/npfl139

ReCodEx

https://recodex.mff.cuni.cz

The assignments will be evaluated automatically in ReCodEx.
If you have a MFF SIS account, you should be able to create an account using your CAS
credentials and should automatically see the right group.
Otherwise, there will be instructions on Piazza how to get ReCodEx account (generally
you will need to send me a message with several pieces of information and I will send it to
ReCodEx administrators in batches).

5/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

https://recodex.mff.cuni.cz/

Course Requirements

Practicals
There will be about 2-3 assignments a week, each with a 2-week deadline.

There is also another week-long second deadline, but for less points.

After solving the assignment, you get non-bonus points, and sometimes also bonus points.
To pass the practicals, you need to get 80 non-bonus points. There will be assignments for
at least 120 non-bonus points.
If you get more than 80 points (be it bonus or non-bonus), they will be all transferred to
the exam. Additionally, if you solve all the assignments, you pass the exam with grade 1.

Lecture
You need to pass a written exam (or solve all the assignments).

All questions are publicly listed on the course website.
There are questions for 100 points in every exam, plus the surplus points from the practicals
and plus at most 10 surplus points for community work (improving slides, …).
You need 60/75/90 points to pass with grade 3/2/1.

6/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

History of Reinforcement Learning

Develop goal-seeking agent trained using reward signal.

Optimal control in 1950s – Richard Bellman

Trial and error learning – since 1850s
Law and effect – Edward Thorndike, 1911

Responses that produce a satisfying effect in a particular situation become more
likely to occur again in that situation, and responses that produce a discomforting
effect become less likely to occur again in that situation

Shannon, Minsky, Clark&Farley, … – 1950s and 1960s
Tsetlin, Holland, Klopf – 1970s
Sutton, Barto – since 1980s

Arthur Samuel – first implementation of temporal difference methods for playing checkers

Notable successes
Gerry Tesauro – 1992, human-level Backgammon program trained solely by self-play

IBM Watson in Jeopardy – 2011

7/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

History of Deep Reinforcement Learning

Deep Reinforcement Learning – Atari Games
Human-level video game playing (DQN) – 2013 (2015 Nature), Mnih. et al, Deepmind

29 games out of 49 comparable or better to professional game players
8 days on GPU
human-normalized mean: 121.9%, median: 47.5% on 57 games

A3C – 2016, Mnih. et al
4 days on 16-threaded CPU
human-normalized mean: 623.0%, median: 112.6% on 57 games

Rainbow – 2017
human-normalized median: 153%; ~39 days of game play experience

Impala – Feb 2018
one network and set of parameters to rule them all
human-normalized mean: 176.9%, median: 59.7% on 57 games

PopArt-Impala – Sep 2018
human-normalized median: 110.7% on 57 games; 57*38.6 days of experience

8/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

History of Deep Reinforcement Learning

Figure 2 of "Recurrent Experience Replay
in Distributed Reinforcement Learning"

by Steven Kapturowski et al.

Deep Reinforcement Learning – Atari Games

R2D2 – Jan 2019
human-normalized mean: 4024.9%, median: 1920.6% on 57 games
processes ~5.7B frames during a day of training

Agent57 - Mar 2020
super-human performance on all 57 Atari games

Data-efficient Rainbow – Jun 2019
learning from ~2 hours of game experience

Figure 3 of "When to use parametric models in reinforcement learning?" by Hado van Hasselt et al.

9/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

History of Deep Reinforcement Learning

Deep Reinforcement Learning – Board Games
AlphaGo

Mar 2016 – beat 9-dan professional player Lee Sedol

AlphaGo Master – Dec 2016
beat 60 professionals, beat Ke Jie in May 2017

AlphaGo Zero – 2017
trained only using self-play
surpassed all previous version after 40 days of training

AlphaZero – Dec 2017 (Dec 2018 in Nature)
self-play only, defeated AlphaGo Zero after 30 hours of training
impressive chess and shogi performance after 9h and 12h, respectively

Figure 2 of "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play" by David Silver et al.

10/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

History of Deep Reinforcement Learning

Deep Reinforcement Learning – 3D Games
Dota2 – Aug 2017

OpenAI bot won Dota2 1v1 matches against a professional player

MERLIN – Mar 2018
unsupervised representation of states using external memory
beat human in unknown maze navigation

FTW – Jul 2018
beat professional players in two-player-team Capture the flag FPS
solely by self-play, trained on 450k games

OpenAI Five – Aug 2018
won Dota2 5v5 best-of-three match against professional team
256 GPUs, 128k CPUs, 180 years of experience per day

AlphaStar
Jan 2019: won 10 out of 11 StarCraft II games against two professional players
Oct 2019: ranked 99.8% on Battle.net, playing with full game rules

11/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

History of Deep Reinforcement Learning

Deep Reinforcement Learning – Other Applications
Optimize non-differentiable loss

improved translation quality in 2016
better summarization performance

Neural architecture search (since Nov 2016)
SoTA CNN architecture generated by another network
can search also for suitable RL architectures, new activation functions, optimizers…

Discovering discrete latent structures

Controlling cooling in Google datacenters directly by AI (2018)
reaching 30% cost reduction

Improving efficiency of VP9 codec (2022; 4% in bandwith with no loss in quality)

Discovering faster algorithms for matrix multiplication (AlphaTensor, Oct 2022), sorting
(AlphaDev, June 2023)

Searching for solutions of mathematical problems (FunSearch, Dec 2023)

12/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

History of Deep Reinforcement Learning

Reinforcement learning from human feedback (RLHF) is used to train chatbots

Figure 2 of "Training language models to follow instructions with human feedback", https://arxiv.org/abs/2203.02155

13/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

History of Deep Reinforcement Learning

Note that the machines learn just to obtain a reward we have defined, they do not learn what
we want them to.

Hide and seek

https://twitter.com/mat_kelcey/status/886101319559335936

https://openai.com/content/images/2017/06/gifhandlerresized.gif

14/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

https://openai.com/blog/emergent-tool-use/#surprisingbehaviors

Multi-armed Bandits

https://www.infoslotmachine.com/img/one-armed-bandit.jpg

15/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Multi-armed Bandits

Figure 2.1 of "Reinforcement Learning: An Introduction, Second Edition".

16/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Multi-armed Bandits

We start by selecting an action (the index of the arm to use), and we obtain a reward .

We then repeat the process by selecting an action , obtaining , selecting , …, with the

indices denoting the time step when the actions and rewards occurred.

Let be the real value of an action :

Denoting our estimated value of action at time (before taking trial), we would like

 to converge to . A natural way to estimate is

Following the definition of , we could choose a greedy action as

A 1 R 1

A 2 R 2 A 3

q (a)∗ a

q (a) =∗ E[R ∣A =t t a].

Q (a)t a t t

Q (a)t q (a)∗ Q (a)t

Q (a)t =def
 .

number of times action a was taken
sum of rewards when action a is taken

Q (a)t A t

A t =def
 Q (a).

a
arg max t

17/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

-greedy Methodε

Exploitation versus Exploration
Choosing a greedy action is exploitation of current estimates. We however also need to
explore the space of actions to improve our estimates.

An -greedy method follows the greedy action with probability , and chooses a uniformly

random action with probability .

ε 1 − ε

ε

18/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

-greedy Methodε

Figure 2.2 of "Reinforcement Learning: An Introduction, Second Edition".

19/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

-greedy Methodε

Incremental Implementation
Let be an estimate using rewards .Q n+1 n R , … ,R 1 n

Q n+1 = R

n

1

i=1

∑
n

i

= (R + R)
n

1
n

n − 1
n − 1

i=1

∑
n−1

i

= (R + (n − 1)Q)
n

1
n n

= (R + nQ − Q)
n

1
n n n

= Q + (R − Q)n
n

1
n n

20/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

-greedy Method Algorithmε

Algorithm 2.4 of "Reinforcement Learning: An Introduction, Second Edition".

21/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Fixed Learning Rate

Analogously to the solution obtained for a stationary problem, we consider

Converges to the true action values if

Biased method, because

The bias can be utilized to support exploration at the start of the episode by setting the initial
values to more than the expected value of the optimal solution.

Q =n+1 Q +n α(R −n Q).n

 α =
n=1

∑
∞

n ∞ and α <
n=1

∑
∞

n
2 ∞.

Q =n+1 (1 − α) Q +n
1 α(1 −

i=1

∑
n

α) R .n−i
i

22/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Optimistic Initial Values and Fixed Learning Rate

Figure 2.3 of "Reinforcement Learning: An Introduction, Second Edition".

23/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Method Comparison

Figure 2.6 of "Reinforcement Learning: An Introduction, Second Edition".

24/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Markov Decision Process

A Markov decision process (MDP) is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action will lead from

state to , producing a reward ,

 is a discount factor.

Let a return be . The goal is to optimize .

(S, A, p, γ)

S

A

p(S =t+1 s ,R =′
t+1 r∣S =t s,A =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R
γ ∈ [0, 1]

G t G t =def
 γ R ∑k=0

∞ k
t+1+k E[G]0

25/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Markov Decision Process

We cannot replace

 is a probability that action will lead from

state to , producing a reward ,

by

, a transition probability,

, a reward probability.

because the reward might depend on .

However, we could use

, a transition probability,

, a reward probability.

p(S =t+1 s ,R =′
t+1 r∣S =t s,A =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R

p(S =t+1 s ∣S =′
t s,A =t a)

r(R =t+1 r∣S =t s,A =t a)

S t+1

p(S =t+1 s ∣S =′
t s,A =t a)

r(R =t+1 r∣S =t+1 s ,S =′
t s,A =t a)

26/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Multi-armed Bandits as MDP

To formulate -armed bandits problem as MDP, we do not need states. Therefore, we could

formulate it as:

one-element set of states, ;

an action for every arm, ;

assuming every arm produces rewards with a distribution of , the MDP dynamics

function is defined as

One possibility to introduce states in multi-armed bandits problem is to consider a separate
reward distribution for every state. Such generalization is called Contextualized Bandits
problem. Assuming state transitions are independent on rewards and given by a distribution

, the MDP dynamics function for contextualized bandits problem is given by

n

S = {S}
A = {a , a , … , a }1 2 n

N (μ ,σ)i i
2

p

p(S, r∣S, a) =i N (r∣μ ,σ).i i
2

next(s)

p(s , r∣s, a) =′
i N (r∣μ ,σ) ⋅i,s i,s

2 next(s ∣s).′

27/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Partially Observable MDPs

Recall that the Markov decision process is a quadruple , where:

 is a set of states,

 is a set of actions,

 is a probability that action will lead from

state to , producing a reward ,

 is a discount factor.

Partially observable Markov decision process
extends the Markov decision process to a sextuple

, where in addition to an MDP,

 is a set of observations,

 is an observation model,

where observation is used as agent input

instead of the state .

(S, A, p, γ)

S

A

p(S =t+1 s ,R =′
t+1 r∣S =t s,A =t a) a ∈ A

s ∈ S s ∈′ S r ∈ R
γ ∈ [0, 1]

(S, A, p, γ, O, o)

O

o(O ∣S ,A)t+1 t+1 t

O t

S t

28/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Partially Observable MDPs

Planning in a general POMDP is in theory undecidable.

Nevertheless, several approaches are used to handle POMDPs in robotics
to model uncertainty, imprecise mechanisms and inaccurate sensors, …
consider for example robotic vacuum cleaners

Partially observable MDPs are needed to model many environments (maze navigation, FPS
games, …).

We will initially assume all environments are fully observable, even if some of them will not.
Later we will mention solutions, where partially observable MDPs are handled using
recurrent networks (or networks with external memory), which model the latent states .S t

29/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Episodic and Continuing Tasks

If the agent-environment interaction naturally breaks into independent subsequences, usually
called episodes, we talk about episodic tasks. Each episode then ends in a special terminal
state, followed by a reset to a starting state (either always the same, or sampled from a
distribution of starting states).

In episodic tasks, it is often the case that every episode ends in at most steps. These finite-

horizon tasks then can use discount factor , because the return is

well defined.

If the agent-environment interaction goes on and on without a limit, we instead talk about
continuing tasks. In this case, the discount factor needs to be sharply smaller than 1.

H

γ = 1 G =def
 γ R ∑t=0

H t
t+1

γ

30/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

(State-)Value and Action-Value Functions

A policy computes a distribution of actions in a given state, i.e., corresponds to a

probability of performing an action in state .

To evaluate a quality of a policy, we define value function , or state-value function, as

An action-value function for a policy is defined analogously as

The value function and action-value function can be of course expressed using one another:

π π(a∣s)
a s

v (s)π

v (s)π E [G S = s] = E γ R S = s=def
π t t π [∑

k=0

∞
k

t+k+1 t]

= E E [R + γE E [R + …]]A ∼π(s)t S ,R ∼p(s,A)t+1 t+1 t t+1 A ∼π(S)t+1 t+1 S ,R ∼p(S ,A)t+2 t+2 t+1 t+1 t+2

π

q (s, a)π =def E [G S =π t t s,A =t a] = E γ R S = s,A = a .π [∑
k=0

∞
k

t+k+1 t t]

v (s) =π E [q (s, a)], q (s, a) =a∼π π π E [r +s ,r∼p′ γv (s)].π
′

31/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Optimal Value Functions

Optimal state-value function is defined as

analogously

Any policy with is called an optimal policy. Such policy can be defined as

. When multiple

actions maximize , the optimal policy can stochastically choose any of them.

Existence
In finite-horizon tasks or if , there always exists a unique optimal state-value function,

a unique optimal action-value function, and a (not necessarily unique) optimal policy.

v (s)∗ =def
 v (s),

π
max π

q (s, a)∗ =
def

 q (s, a).
π

max π

π ∗ v =π ∗ v ∗

π (s)∗ =def
 q (s, a) =

a
arg max ∗ E[R +

a
arg max t+1 γv (S)∣S =∗ t+1 t s,A =t a]

q (s, a)∗

γ < 1

32/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Monte Carlo Prediction

Assuming we have a fixed policy and that we want to estimate .

A Monte Carlo method to estimate this value function would be to simulate many episodes, and
then compute an average return for all visited states:

Some states might be visited multiple times; in that case, we could use

first-visit Monte Carlo method, where only the first occurrence of the state is considered;
every-visit Monte Carlo method, where all occurrences of the state are considered.

By the law of large numbers, the Monte Carlo estimate converges to the real value function for
all visited states.

Actually, for every-visit MC, it is more complicated, because multiple returns from a single
state in a single episode are not independent; but it can be proven that even every-visit
Monte Carlo converges.

π v (s)π

V (s) ≈ E[G ∣S =t t s].

33/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Monte Carlo Prediction of Blackjack

Figure 5.1 of "Reinforcement Learning: An Introduction, Second Edition".

34/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Monte Carlo Control

We now present the first algorithm for computing optimal behavior without assuming a
knowledge of the environment dynamics.

However, we still assume there are finitely many states and we will store estimates for each of

them (a tabular method).

Monte Carlo methods are based on estimating returns from complete episodes. Specifically, they
try to estimate

With such estimates, a greedy action in state can be computed as

To hope for convergence, we need to visit each state-action pair infinitely many times. One of
the simplest way to achieve that is to assume exploring starts, where we randomly select the
first state and first action, and behave greedily afterwards.

S

Q(s, a) ≈ E[G ∣S =t t s,A =t a].

S t

A =t Q(S , a).
a

arg max t

35/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Monte Carlo with Exploring Starts

Modification of algorithm 5.3 of "Reinforcement Learning: An Introduction, Second Edition" from first-visit to every-visit.

36/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Monte Carlo Predicting Optimal Policy on Blackjack

Figure 5.2 of "Reinforcement Learning: An Introduction, Second Edition".

37/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Monte Carlo and -soft Behaviorε

The problem with exploring starts is that in many situations, we either cannot start in an
arbitrary state, or it is impractical.

Instead of choosing random state at the beginning, we can consider adding “randomness”
gradually – for a given , we set the probability of choosing any action to be at least

in each step. Such behavior is called -soft.

In an -soft behaviour, selecting and action greedily (the -greedy behavior) means one action

has a maximum probability of

We now present Monte Carlo algorithm with -greedy action selection.

ε

∣A(s)∣
ε

ε

ε ε

1 − ε+ .
∣A(s)∣
ε

ε

38/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

Monte Carlo for -soft Behaviorε

On-policy every-visit Monte Carlo for -soft Policies

Algorithm parameter: small

Initialize arbitrarily (usually to 0), for all

Initialize to 0, for all

Repeat forever (for each episode):

Generate an episode , by generating actions as follows:

With probability , generate a random uniform action

Otherwise, set

For each :

ε

ε > 0

Q(s, a) ∈ R s ∈ S, a ∈ A

C(s, a) ∈ Z s ∈ S, a ∈ A

S ,A ,R , … ,S ,A ,R 0 0 1 T−1 T−1 T

ε

A t =def arg max Q(S , a)a t

G ← 0
t = T − 1,T − 2, … , 0

G ← γG+ R t+1

C(S ,A) ←t t C(S ,A) +t t 1
Q(S ,A) ←t t Q(S ,A) +t t (G−

C(S ,A)t t

1 Q(S ,A))t t

39/39NPFL139, Lecture 1 Organization History Bandits -greedy MDP POMDP Value Functions Monte Carlo Methodsε

