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Generative Models

 

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/generative-overview.png

There are several approaches how to represent a
probability distribution . Likelihood-based

models represent the probability density function
directly, often using an unnormalized probabilistic
model (also called energy-based model; i.e.,
specifying a non-zero score or density or logits):

However, estimating the normalization constant 

 is often intractable.

We can compute  by restricting the model architecture (sequence modeling, invertible

networks in normalizing flows);
we can only approximate it (using for example variational inference as in VAE);
we can use implicit generative models, which avoid representing likelihood (like GANs).

P (x)

P  (x) =θ  .
Z  θ

ef  (x)θ

Z  =θ e dx∫ f  (x)θ

Z  θ
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Generative Adversarial Networks
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Generative Adversarial Networks

We have a generator , which given  generates data .

Then we have a discriminator , which given data  generates a probability whether 

 comes from real data or is generated by a generator.

The discriminator and generator play the following game:

 

https://miro.medium.com/v2/1*-ucVYsbDnwa2NM-f5qm_Yg.png

G(z; θ  )g z ∼ P (z) x

D(x; θ  )d x

x

 E  [logD(x)] +
G

min
D

max x∼P  data E  [log(1 −z∼P (z) D(G(z)))].
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Generative Adversarial Networks

 

Figure 1 of "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661

The generator and discriminator are alternately trained, the discriminator by

and the generator by

Basically, the discriminator acts as a trainable loss for the generator.

 E  [logD(x)] +
θ  d

arg max x∼P  data E  [log(1 −z∼P (z) D(G(z)))]

 E  [log(1 −
θ  g

arg min z∼P (z) D(G(z)))].
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Generative Adversarial Networks

Because  can saturate at the beginning of the training, where the

discriminator can easily distinguish real and generated samples, the generator can be trained by

instead, which results in the same fixed-point dynamics, but much stronger gradients early in
learning.

On top of that, if you train the generator by using “real” as the gold label of the discriminator,
you naturally get the above loss (which is the negative log likelihood, contrary to the original
formulation).

log(1 − D(G(z)))

 E  [− logD(G(z))]
θ  g

arg min z∼P (z)
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Generative Adversarial Networks

 

Algorithm 1 of "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661
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Generative Adversarial Networks

 

Figure 2 of "Generative Adversarial Nets", https://arxiv.org/abs/1406.2661
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Conditional GAN

 

Figure 1 of "Conditional Generative Adversarial Nets", https://arxiv.org/abs/1411.1784

Assuming our dataset is conditional, i.e.,
the individual examples are pairs 

with  being the image class, GANs can be

easily extended to allow conditioning:

the generator gets  as an additional

input: ,

the discriminator also gets  as an

additional input: .

(x, y)
y

y

G(z, y)

y

D(x, y)
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Deep Convolutional GAN

In Deep Convolutional GAN, the discriminator is a convolutional network (with batch
normalization) and the generator is also a convolutional network, utilizing transposed
convolutions.

 

Figure 1 of "An Online Learning Approach to Generative Adversarial Networks", https://arxiv.org/abs/1706.03269
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Deep Convolutional GAN

 

Figure 1 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN

 

Figure 3 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN

 

Figure 4 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN

 

Figure 7 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN

 

Figure 7 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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Deep Convolutional GAN

 

Figure 8 of "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", https://arxiv.org/abs/1511.06434
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GANs Training — Training Experience

 

https://miro.medium.com/max/1400/1*r8cuSIaM5oHUERP01TCTxg.jpeg
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GANs Training – Results of In-House BigGAN Training
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GANs are Problematic to Train
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GANs are Problematic to Train

Unfortunately, alternating SGD steps are not guaranteed to reach even a local optimum of a
minimax problem, consider the following one:

The update rules of  and  for learning rate  are

The update matrix is a rotation matrix multiplied by a constant 

so the SGD will not converge with arbitrarily small step size.

  x ⋅
x

min
y

max y.

x y α

 =[
x  n+1

y  n+1
]    .[

1
α

−α
1

] [
x  n

y  n
]

 >1 + α2 1

  =[
1
α

−α
1 ]  ⋅1 + α2

  ,[
cosφ
sinφ

− sinφ
cosφ ]
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GANs are Problematic to Train

 

Figure 1 of "Fictitious GAN: Training GANs with Historical Models", https://arxiv.org/abs/1803.08647
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GANs are Problematic to Train

GANs suffer from “mode collapse”

 

Figure 2 of "Unrolled Generative Adversarial Networks", https://arxiv.org/abs/1611.02163

 

Figure 5 of "Generating Diverse High-Fidelity Images with VQ-VAE-2", https://arxiv.org/abs/1906.00446
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GANs are Problematic to Train

The training can be improved by various tricks:

If the discriminator could see the whole batch, similar samples in it would be candidates for
fake images.

Batch normalization helps a lot with this.

Unrolling the discriminator update helps generator to consider not just the current
discriminator, but also how the future versions would react to the generator outputs. (The
discriminator training is unchanged.)

 

Figure 1 of "Unrolled Generative Adversarial Networks", https://arxiv.org/abs/1611.02163

Many others, like Wasserstein GAN, spectral normalization, progressive growing, …
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Comparison of VAEs and GANs

The Variational Autoencoders:

are theoretically-pleasing;
also provide an encoder, so apart from generation, they can be used as unsupervised feature
extraction (the VAE encoder is used in various modeling architectures);
the generated samples tend to be blurry, especially with  or  loss (because of the

sampling used in the reconstruction; patch-based discriminator with perceptual loss helps).

The Generative Adversarial Networks:

offer high sample quality;
are difficult to train and suffer from mode collapse.

In past few years, GANs saw a big development, improving the sample quality substantially.
However, since 2019/2020, VAEs have shown remarkable progress (alleviating the blurriness
issue by using perceptual loss and a 2D grid of latent variables), and are being used for
generation too. Furthermore, additional approaches (normalizing flows, diffusion models) were
also being explored, with diffusion models becoming the most promising approach since Q2 of
2021, surpassing both VAEs and GANs.

L1 L2
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Flow Matching
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Flow Matching

In the past years (since 2022), the dominant approach for generating images has been based on
diffusion models (used by Stable Diffusion, DALL-E, …).

 

https://images.squarespace-cdn.com/content/v1/6213c340453c3f502425776e/0715034d-4044-4c55-9131-e4bfd6dd20ca/2_4x.png

The diffusion models are deeply connected to score-based generative models, which were
developed independently, but are just a different perspective on the same model family.

Recently, conditional flow matching was proposed as a generalization of both these
approaches, and that is the method we will describe in most detail.
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Generative Modeling

The general framework of generative modeling assumes we have samples 

from the data generating distribution , and the main challenges we should overcome are:

provide fast sampling (diffusion models were originally not great here),
generate high-quality samples (VAE struggles with this goal),
properly cover the density of  (the main issue of GANs).

Modern approach to generative modeling is to start with a simple base distribution , usually a

standard Gaussian , and learn a mapping that transforms that distribution into .

 

https://dl.heeere.com/conditional-flow-matching/assets/img/2025-04-28-conditional-flow-matching/T_theta_pushforward.svg

Sampling then can be performed by sampling from  and performing the transformation.

x ,x , … ,x(1) (2) (N)

p  data

p  data

p  0

N (0, I) p  data

p  0
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Generating Images From Standard Normal Base Distribution
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Flow Matching

 

https://dl.heeere.com/conditional-flow-matching/blog/conditional-flow-matching/

The important concepts used by flow matching are:

the probability density path , which is a time-dependent probability

density function, i.e., ;

this probability density path should transform the prior  into 

a time-dependent vector field , which can be used to construct a

flow  via an ordinary differential equation:

p : [0, 1] × R →d R  >0

p  (x) dx =∫ t 1
p  0 p  =1 p  data

u : [0, 1] × R →d Rd
φ : [0, 1] × R →d Rd

 φ  (x) =dt
d

t u  (φ  (x)),    φ  (x) =t t 0 x.
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Flow Matching

 

Figure 1 of "Neural Ordinary Differential Equations",
https://arxiv.org/abs/1806.07366

Note that the solution of the flow ODE

is unique when  is Lipschitz continuous in  and continuous in  (Picard–Lindelöf theorem).

Recall that in a residual network, we update the current value
by adding the result of a residual block

which we can also write as

where we can interpret the residual block as a “discrete
derivative”.

Therefore, the flow can be considered to be a continuous
generalization of residual networks.

 φ  (x) =
dt
d

t u  (φ  (x)),    φ  (x) =t t 0 x

u  t x t

h  =t+1 h  +t f(h  ; θ  ),t t

h  −t+1 h  =t f(h  ; θ  ),t t
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Flow Matching: Transport Equation

∂/∂x(Vx) > 0
∂/∂y(Vy) > 0
∇·(V) > 0

∂/∂x(Vx) < 0
∂/∂y(Vy) < 0
∇·(V) < 0

 

https://upload.wikimedia.org/wikipedia/commons/e/ee/Divergence_(captions).svg

A vector field  is said to generate a probability density path  if the transport equation

holds:

where the divergence  is a vector

operator that operates on a vector field, producing for
every point a scalar value, the field's source at that point
(a positive value means a point is a source; negative if it
is a sink).

The  is a flux, the probability mass passing

through every point of the space (in the direction of the
vector field).

u  t p  t

 p  (x) =
dt
d

t − div (p  (x)u  (x)),t t

div(z) =def
  ∑i ∂x  i

∂z  i

p  (x)u  (x)t t
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Flow Matching: Basic Objective

Assume we have a base distribution , usually , and samples  of the data

generating distribution . Given a target probability density path  and a

corresponding vector field  generating , the flow matching (FM) objective is

However, we need to overcome that we have no prior knowledge on how the  and  should

look like given that there are many possible probability density paths , and that for an

arbitrary , we usually do not have access to the closed form of its generating vector field .

 

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

 

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

p  0 N (0, I) x(i)

p  =1 p  data p  t

u  t p  t

L  (θ)FM =def E  ∥v  (x; θ) −t,p  (x)t t u  (x)∥ .t
2

p  t u  t

p  t

p  t u  t
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Flow Matching: Basic Overview

 

Figure A.30 of "Photorealistic Text-
to-Image Diffusion Models with

Deep Language Understanding",
https://arxiv.org/abs/2205.11487

Once we solve the remaining issues with the flow matching objective, we train
a NN model  by predicting (matching) the vector field .

Usually, the UNet architecture with skip connections is used to model .

Training

During training, we minimize an objective corresponding to flow matching

i.e., by performing a regression on the vector predicted by the model .

Sampling

In order to generate an image, we start by sampling , and then

perform numerical integration by the Euler method using  steps by

More involved methods like the midpoint or Runge-Kutta can also be used.

v  (x; θ)t u (x)t

v  t

L  (θ)FM =
def E  ∥v  (x; θ) −t,p  (x)t t u  (x)∥ ,t

2

v  t

x  ∼0 p  0

T

x  ←k+1/T x  +k  v  (x  ; θ).
T
1

t k

34/102NPFL138, Lecture 12 GAN GAN Convergence Flow Matching CFM Diffusion DDPM SD BonusN



Conditional Flow Matching
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Conditional and Marginal Probability Paths

Instead of directly defining the probability density path, we can construct it as a mixture of
simpler probability paths. Together with the fact that we do not have direct access to the data
generating distribution  apart from its samples, we turn to conditional probability

paths , which we design so that

,

 is tightly concentrated around , for example by using a normal distribution

with a small variance :

We can then define the marginal probability path as

Because we defined the conditional probability paths to concentrate tightly around , the

marginal probability .

p  =1 p  data

p  (x∣x  )t 1

p  (x∣x  ) =0 t p  (x)0

p  (x∣x  )1 1 x  1

σ  >min
2 0

p  (x∣x  ) =1 1 N (x∣x  ,σ  I).1 min
2

p  (x)t =def E  [p  (x∣x  )] =x  ∼p  1 data t 1 p  (x∣x  )p  (x  ) dx  .∫ t 1 data 1 1

x  1

p  (x) ≈1 p  data
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Conditional and Marginal Vector Fields

Analously to how we defined the marginal probability path using the conditional probability
paths, it is also possible to define the marginal vector field (the vector field of the marginal
probability path) using the conditional vector fields  (the vector fields of the

conditional probability paths):

Such a marginal vector field actually generates the marginal probability path.

 

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

 

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

u  (x∣x  )t 1

u  (x)t =def E  [u  (x∣x  )  ] =x  ∼p  1 data t 1
p  (x)t

p  (x∣x  )t 1
u  (x∣x  )  dx  .∫ t 1

p  (x)t

p  (x∣x  )p  (x)t 1 data
1
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Conditional and Marginal Vector Fields

To verify that the marginal vector field generates the marginal probability path, we need to
check that  and  satisfy the transport equation:

Note that swapping a derivative and an integral requires various smoothness conditions; we
assume all our objects “nice enough”.

p  t u  t

= p  (x)
dt
d

t E  [  p  (x∣x  )]x  ∼p  1 data dt
d

t 1

= E  [ −x  ∼p  1 data div (u  (x∣x  )p  (x∣x  ))]t t t 1

= − div (E  [u  (x∣x  )p  (x∣x  )])x  ∼p  1 data t t t 1

= − div (  p  (x))

definition of u  (x)t

 E  [u  (x∣x  )p  (x∣x  )/p  (x)]x  ∼p  1 data t t t 1 t t

= − div (u  (x)p  (x)).t t
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Conditional Flow Matching

Even with the definition of the marginal vector field, obtaining an unbiased estimate of the flow
matching objective is still intractable (the integrals in the definition of the conditional
probability path/vector field are intractable).

However, we can use the following simplified conditional flow matching (CFM) objective:

This objective allows unbiased estimates, given that only the conditional variants of  and 

are needed.

Importantly, while this objective  is different from the original flow matching objective 

, it has the same gradients with respect to .

L  (θ)CFM =def E  ∥v  (x; θ) −t,x  ∼p  ,x∼p  (x∣x  )1 data t 1 t u  (x∣x  )∥ .t 1
2

p  t u  t

L  CFM
L  FM θ
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Conditional Flow Matching

WIP: The proof that the gradient with respect to  of  and  will be added later.θ L  FM L  CFM
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Construction of the Conditional Probability Paths

We now define the conditional probability paths that we will use. We consider normal
distributions with time-dependent mean  and variance :

We require

 and  so that , and

 and  so that  is concentrated around .

While there are infinitely many vector fields generating these probability paths, we use the
simplest one, corresponding to the flow (dependent on )

which is an affine transformation mapping standard normal distribution to a normal distribution
with mean  and variance .

μ  (x  )t 1 σ  (x  )t
2

1

p  (x∣x  )t 1 =def
N(x∣μ  (x  ),σ  (x  )I).t 1 t

2
1

μ  (x  ) =0 1 0 σ  (x  ) =0
2

1 1 p  (x∣x  ) =0 1 p  (x)0

μ  (x  ) =t 1 x  1 σ  (x  ) =1
2

1 σ  min
2 p  (x∣x  )1 1 x  1

x  1

φ  (x) =t σ  (x  )x+t 1 μ  (x  ),t 1

μ  (x  )t 1 σ  (x  )t
2

1
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Construction of the Conditional Vector Field

We now derive the conditional vector field  so that its flow is the defined

Recalling the flow ODE , it could be used to defined , but

unfortunately for , not for arbitrary .

However, the affine map  has an analytical inverse (assuming )

Therefore, when we consider , we get .

Using the derivative , we obtain that

u  (x∣x  )t 1

φ  (x) =t σ  (x  )x+t 1 μ  (x  ).t 1

 φ  (x) =dt
d

t u  (φ  (x))t t u  t

φ  (x)t x

φ  t σ  (x  ) >t 1 0

φ  (z) =t
−1

 .
σ  (x  )t 1

z − μ  (x  )t 1

z = φ  (x)t u  (z∣x  ) =t 1 φ  (φ  (z))t
′

t
−1

φ  (x∣x  ) =t
′

1 σ  (x  )x+t
′

1 μ  (x  )t
′

1

u  (z∣x  ) =t 1  (z −
σ  (x  )t 1

σ  (x  )t
′

1
μ  (x  ))+t 1 μ  (x  ).t

′
1
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Construction of the Conditional Vector Field

The authors propose to use conditional paths with mean and variance changing linearly in :

Therefore, the corresponding flow and vector field are

Finally, recalling the general form ,

for our specific case of OT flow we obtain

t

μ  (x  )t 1 =def
tx  ,   σ  (x  )1 t 1 =def 1 − (1 − σ  )t.min

 

φ  (x) = (1 − (1 − σ  )t)x+ tx  ,     such a f low is called Optimal Transportt min 1

u  (x∣x  ) =  (x− tx  )+ x  =  .t 1 1 − (1 − σ  )tmin

1 − σ  min
1 1 1 − (1 − σ  )tmin

x  − (1 − σ  )x1 min

L  (θ)CFM =
def E  ∥v  (x; θ) −t,x  ∼p  ,x∼p  (x∣x  )1 data t 1 t u  (x∣x  )∥t 1

2

L  (θ)CFM =def E   v  (φ  (x  ); θ)−t,x  ∼p  ,x  ∼p  1 data 0 0 t t 0 (x  −1 (1 − σ  )x  )  .min 0
2
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Conditional Probability Paths and Marginal Probability Paths

 

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

 

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

 

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

 

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
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Conditional Probability Paths and Marginal Probability Paths

 

https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
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https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html
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Conditional Flow Matching Algorithm

 

Figure A.30 of "Photorealistic Text-
to-Image Diffusion Models with

Deep Language Understanding",
https://arxiv.org/abs/2205.11487

Let  be a UNet-like neural network model predicting the vector field.

Training

During training, we minimize CFM objective by SGD/Adam:

Specifically, we generate batches of training data  as usual, for

each batch example we also generate  and , and

we minimize the mean squared error

Sampling

In order to generate an image, we start by sampling , and then

perform numerical integration by the Euler method using  steps by

v  (x; θ)t

L  (θ)CFM =
def E   v  (φ  (x  ); θ)−t,x  ∼p  ,x  ∼p  1 data 0 0 t t 0 (x  −1 (1 − σ  )x  )  .min 0

2

X ∼ p  data

t ∼ U [0, 1] x  ∼0 N (0, I)

∥v  (φ  (x  ); θ)−t t 0 (x  −1 (1 − σ  )x  )  .min 0
2

x  ∼0 p  0

T

x  ←k+1/T x  +k  v  (x  ; θ).T
1

t k

46/102NPFL138, Lecture 12 GAN GAN Convergence Flow Matching CFM Diffusion DDPM SD BonusN



Further Reading About Flow Matching

An introduction to Flow Matching https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-
matching.html#fn:mini-batch-ot-deterministic-vs-stochastic

A Visual Dive into Conditional Flow Matching https://dl.heeere.com/conditional-flow-
matching/blog/conditional-flow-matching/

Diffusion Meets Flow Matching: Two Sides of the Same Coin
https://diffusionflow.github.io/
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Architectures of Diffusion Models, Suitable Also for FM

Vector field  can be predicted by UNet architecture with pre-activated ResNet blocks.

The current continuous time step is represented using the Transformer sinusoidal
embeddings and added “in the middle” of every residual block (after the first convolution).

Additionally, on several lower-resolution levels, a self-attention block (an adaptation of the
Transformer self-attention, which considers the 2D grid of features as a sequence of feature
vectors) is commonly used. Because the complexity is asymptotically the image width to the
power of four, only the lower-resolution levels are used for this self-attention.

 

Figure 2 of "Self-Attention Generative Adversarial Networks", https://arxiv.org/abs/1805.08318

v  (x; θ)t
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Diffusion Models Architecture – ImaGen

 

Figure A.30 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding", https://arxiv.org/abs/2205.11487

 

 

Figure A.27 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding", https://arxiv.org/abs/2205.11487
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Diffusion Models Architecture – ImaGen

 

Figure A.28 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding", https://arxiv.org/abs/2205.11487

 

 

Figure A.29 of "Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding", https://arxiv.org/abs/2205.11487

There are of course many possible variants; furthermore, Visual Transformer can be used
instead of the UNet architecture.
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Conditional Models, Classifier-Free Guidance

In many cases we want the generative model to be conditional. We have already seen how to
condition it on the current time step. Additionally, we might consider also conditioning on

an image (e.g., for super-resolution): the image is then resized and concatenated with the
input noised image (and optionally in other places, like after every resolution change);

a text: the usual approach is to encode the text using some pre-trained encoder, and then to
introduce an “image-text” attention layer (usually after the self-attention layers).

To make the effect of conditioning stronger during sampling, we might also employ classifier-
free guidance:

During training, we sometimes train  with the conditioning , and sometimes we

train  without the conditioning.

During sampling, we pronounce the effect of the conditioning by taking the unconditioned
vector field and adding the difference between conditioned and unconditioned vector field
weighted by the weight  (values like  or  are mentioned in papers):

v  (x, y; θ)t y

v  (x,∅; θ)t

w w = 5 w = 7.5

v  (x,∅; θ) +t w(v  (x, y; θ) −t v  (x  ,∅; θ)).t t
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Samples from Model Trained Last Year on Practicals
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Samples from Conditional Model Trained Last Year
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Diffusion Models
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Diffusion Models: Overview of the Overall Process

 

https://miro.medium.com/v2/1*jKDPZ9vo2gl0BGKpw9_IKw.png
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Diffusion Models – Diffusion Process, Reverse Process

 

Figure 2 of "Denoising Diffusion Probabilistic Models", https://arxiv.org/abs/2006.11239

Given a data point  from a real data distribution , we define a -step diffusion process

(or the forward process) which gradually adds Gaussian noise to the input image:

Our goal is to reverse the forward process , and generate an image by starting with 

, and then performing the forward process in reverse. We therefore learn a model

 to approximate the reverse of , and obtain a reverse process:

x  0 q(x) T

q(x ∣x ) =1:T 0  q(x  ∣x  ).∏
t=1

T

t t−1

q(x  ∣x  )t t−1

x  ∼T N (0, I)
p  (x  ∣x  )θ t−1 t q(x  ∣x  )t t−1

p  (x  ) =θ 0:T p(x  )  p  (x  ∣x  ).T ∏
t=1

T

θ t−1 t
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Diffusion Models – Model Overview

 

Figure A.30 of "Photorealistic Text-
to-Image Diffusion Models with

Deep Language Understanding",
https://arxiv.org/abs/2205.11487

The  is commonly modelled using a UNet architecture with skip

connections.

Training

During training, we randomly sample a time step , and perform an update of

the parameters  in order for  to better approximate the reverse

of .

Sampling

In order to sample an image, we start by sampling , and then

perform  steps of the reverse process by sampling  for 

 from  down to 1.

p  (x  ∣x  )θ t−1 t

t

θ p  (x  ∣x  )θ t−1 t

q(x  ∣x  )t t−1

x  ∼T N (0, I)
T x  ∼t−1 p  (x  ∣x  )θ t−1 t

t T
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Normal Distribution Reminder

 

Figure 3.1 of "Deep Learning" book,
https://www.deeplearningbook.org

Normal (or Gaussian) distribution is a continuous distribution
parametrized by a mean  and variance :

For a -dimensional vector , the multivariate Gaussian distribution takes the form

The biggest difference compared to the single-dimensional case is the covariance matrix ,

which is (in the non-degenerate case, which is the only one considered here) a symmetric
positive-definite matrix of size .

However, in this lecture we will only consider isotropic distribution, where :

μ σ2

N (x;μ,σ ) =2
 exp −   

2πσ2

1
(

2σ2

(x− μ)2
)

D x

N (x;μ,Σ) =def
 exp −  (x− μ) Σ (x− μ) .
 (2π) ∣Σ∣D

1
(

2
1 T −1 )

Σ

D × D

Σ = σ I2

N (x;μ,σ I) =2
 N (x  ;μ  ,σ ).∏
i

i i
2
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Normal Distribution Reminder

A normally-distributed random variable  can be written using the

reparametrization trick also as

The sum of two independent normally-distributed random variables  and 

 has normal distribution .

Therefore, if we have two standard normal random variables , then

for a standard normal random variable .

x ∼ N (μ,σ I)2

x = μ+ σe,   where  e ∼ N (0, I).

x  ∼1 N (μ  ,σ  I)1 1
2

x  ∼2 N (μ  ,σ  I)2 2
2 N(μ  +1 μ  , (σ  +2 1

2 σ  )I)2
2

e  , e  ∼1 2 N (0, I)

σ  e  +1 1 σ  e  =2 2  eσ  + σ  1
2

2
2

e ∼ N (0, I)
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DDPM – The Forward Process

We now describe Denoising Diffusion Probabilistic Models (DDPM).

 

Figure 2 of "Denoising Diffusion Probabilistic Models", https://arxiv.org/abs/2006.11239

Given a data point  from a real data distribution , we define a -step diffusion process

(or the forward process) which gradually adds Gaussian noise according to some variance
schedule :

More noise gets gradually added to the original image , converging to pure Gaussian noise.

x  0 q(x) T

β  , … , β  1 T

=q(x  ∣x  )1:T 0  q(x  ∣x  ),
t=1

∏
T

t t−1

=q(x  ∣x  )t t−1 N (x  ;  x  , β  I),t 1 − β  t t−1 t

=  x  +1 − βt t−1  e  for  e ∼β  t N (0, I).

x  0
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DDPM – The Forward Process

Let  and . Then we have

for standard normal random variables  and .

In other words, we have shown that .

Therefore, if  as , the  converges to  as .

α  =t 1 − β  t  =ᾱt  α  ∏i=1
t

i

=x  t  x  +α  t t−1  e  1 − α  t t

=  (  x  +α  t α  t−1 t−2  e  )+1 − α  t−1 t−1  e  1 − α  t t

=  x  +α  α  t t−1 t−2   α  (1 − α  ) + (1 − α  )t t−1 t ēt−1

=  x  +α  α  t t−1 t−2   1 − α  α  t t−1 ēt−1

=  x  +α  α  α  t t−1 t−2 t−3   1 − α  α  α  t t−1 t−2 ēt−2

= …

=  x  + ᾱt 0   1 −  ᾱt ē0

e  i  ēi
q(x  ∣x  ) =t 0 N(  x  , (1 − ᾱt 0  )I)ᾱt

 →ᾱt 0 t → ∞ x  t N (0, I) t → ∞
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DDPM – The Forward Process

 

CVPR 2022 tutorial https://cvpr2022-tutorial-diffusion-models.github.io/
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DDPM – Noise Schedule

 

Figure 5 of "Improved Denoising Diffusion Probabilistic Models",
https://arxiv.org/abs/2102.09672

Originally, linearly increasing sequence of noise
variations  was

used.

However, the resulting sequence  was not

ideal (nearly the whole second half of the
diffusion process was mostly just random
noise), so later a cosine schedule was proposed:

In practice, we want to avoid both the values of
0 and 1, and keep  in  range.

β  =1 0.0001, … , β  =T 0.04

 ᾱt

 =ᾱt  ( cos(t/T ⋅
2
1

π) + 1).

α  t [ε, 1 − ε]
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DDPM – Noise Schedule

 

https://i.imgur.com/JW9W0fA.gif

We assume the images  have zero mean and unit variance (we normalize them to achieve

that). Then every

has also zero mean and unit variance.

The  and  can be considered as the signal rate and

the noise rate.

Because , the signal rate and the noise rate

form a circular arc. The proposed cosine schedule

corresponds to an uniform movement on this arc.

x  0

q(x  ∣x  ) =t 0  x  +ᾱt 0  e1 −  ᾱt

 ᾱt  1 −  ᾱt

 +ᾱt
2

 =1 −  ᾱt
2

1

  

  ᾱt

 1 −  ᾱt

= cos(t/T ⋅ π/2),

= sin(t/T ⋅ π/2),
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DDPM – The Reverse Process

 

Figure 2 of "Denoising Diffusion Probabilistic Models", https://arxiv.org/abs/2006.11239

In order to be able to generate images, we therefore learn a model  to approximate

the reverse of .

When  is small, this reverse is nearly Gaussian, so we represent  as

for some fixed sequence of .

The whole reverse process is then

p  (x  ∣x  )θ t−1 t

q(x  ∣x  )t t−1

β  t p  θ

p  (x  ∣x  ) =θ t−1 t N(x  ;μ  (x  , t),σ  I)t−1 θ t t
2

σ  , … ,σ  1 T

p  (x  ) =θ 0:T p(x  )  p  (x  ∣x  ).T ∏
t=1

T

θ t−1 t
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DDPM – Loss

We now want to derive the loss. First note that the reverse of  is actually tractable

when conditioning on :

We present the proof on the next slide for completeness.

q(x  ∣x  )t t−1

x  0

=q(x  ∣x  ,x  )t−1 t 0 N(x  ;   (x  ,x  ),   I),t−1 μ
~
t t 0 β

~
t

=  (x  ,x  )μ~t t 0  x  +
1 −  ᾱt

 β   ᾱt−1 t
0  x  ,

1 −  ᾱt

 (1 −  )α  t ᾱt−1
t

=  β
~
t  β  .

1 −  ᾱt

1 −  ᾱt−1
t
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Forward Process Reverse Derivation

Starting with the Bayes' rule, we get

From this formulation, we can derive that  for

=q(x  ∣x  ,x  )t−1 t 0 q(x  ∣x  ,x  )  t t−1 0
q(x  ∣x  )t 0

q(x  ∣x  )t−1 0

∝ exp( −  (  +
2
1

β  t

(x  −  x  )t α  t t−1
2

 −
1 −  ᾱt−1

(x  −  x  )t−1  ᾱt−1 0
2

 ))
1 −  ᾱt

(x  −  x  )t  ᾱt 0
2

= exp( −  (  +
2
1

β  t

x  −2  x  x  +α  x  t
2 α  t t t−1 t t−1

2

 +1−  ᾱt−1

x  −2  x  x  +  x  t−1
2

 ᾱt−1 t−1 0 ᾱt−1 0
2

…))

= exp( −  ((  +
2
1

β  t

α  t
 )x  −1−  ᾱt−1

1
t−1
2 2(  x  +

β  t

 αt
t  x  )x  +1−  ᾱt−1

  ᾱt−1
0 t−1 …))

q(x  ∣x  ,x  ) =t−1 t 0 N(x  ;   (x  ,x  ),   I)t−1 μ
~
t t 0 β

~
t

=  β
~
t 1/(  +

β  t

α  t
 ) =1−  ᾱt−1

1 1/(  ) =
β  (1−  )t ᾱt−1

α  (1−  )+β  t ᾱt−1 t 1/(  ) =
β  (1−  )t ᾱt−1

α  +β  −  t t ᾱt
 β  ,

1 −  ᾱt

1 −  ᾱt−1
t

=  (x  ,x  )μ~t t 0 (  x  +β  t

 α  t

t  x  )  β  =1−  ᾱt−1

  ᾱt−1
0 1−  ᾱt

1−  ᾱt−1
t  x  +

1 −  ᾱt

 β   ᾱt−1 t
0  x  .

1 −  ᾱt

 (1 −  )α  t ᾱt−1
t
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DDPM – Loss

The full derivation of the loss is available in the Bonus Content of this presentation. The
resulting loss is

The model is then changed to predict  instead of . The loss then becomes

The authors found that training without the weighting term performs better, so the final loss is

Note that both losses have the same optimum if we used independent  for every .

L  =t E[  (x ,x  ) −
2∥σ I∥t

2

1
μ~t t 0 μ  (x  , t)  ].θ t

2

ε  (x  , t)θ t μ  (x  , t)θ t

L  =t E[   e  −
2α  (1 −  )∥σ  I∥t ᾱt t

2

(1 − α )t 2

t ε  (  x  +θ  ᾱt 0  e  , t)  ].1 −  ᾱt t

2

L  =t
simple E  [  e  −t∈{1..T },x  ,e  0 t t ε  (  x  +θ  ᾱt 0  e  , t)  ].1 −  ᾱt t

2

ε  θ  t
t
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DDPM – Training and Sampling Algorithms

 

Algorithms 1, 2 of "Denoising Diffusion Probabilistic Models", https://arxiv.org/abs/2006.11239

In practice, instead of discrete,  may be continuous in the  range. Note that sampling

using the proposed algorithm is slow because it is common to use  steps during

sampling.

The value of  is chosen to be either  or , or any value in between (it can be proven that

these values correspond to upper and lower bounds on the reverse process entropy).

Both of these issues are alleviated by using a different sampling algorithm DDIM, which runs in
several tens of steps and does not use .

t [0, 1]
T = 1000

σ  t
2 β  t   β

~
t

σ  t
2
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Stable Diffusion – Semantic and Perceptual Compression

 

Figure 2 of "High-Resolution Image Synthesis with Latent Diffusion Models", https://arxiv.org/abs/2112.10752
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Stable Diffusion – Architecture

 

Figure 3 of "High-Resolution Image Synthesis with Latent Diffusion Models", https://arxiv.org/abs/2112.10752
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Stable Diffusion Papers

(SD) Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer:
High-Resolution Image Synthesis with Latent Diffusion Models

https://arxiv.org/abs/2112.10752

(SDXL) Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas
Müller, Joe Penna, Robin Rombach: SDXL: Improving Latent Diffusion Models for

High-Resolution Image Synthesis https://arxiv.org/abs/2307.01952

(SD3) Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller,
Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim
Dockhorn, Zion English, Kyle Lacey, Alex Goodwin, Yannik Marek, Robin Rombach:
Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

https://arxiv.org/abs/2403.03206

(SD3-Turbo) Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick
Esser, Robin Rombach: Fast High-Resolution Image Synthesis with Latent Adversarial

Diffusion Distillation https://arxiv.org/pdf/2403.12015
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Bonus Content 

DDPM Loss
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DDPM – Deriving Loss using Jensen's Inequality

−E  [ log p  (x  )] =q(x  )0 θ 0 −E  [ logE  [p  (x  ∣x  )]]q(x  )0 p  (x  )θ 1:T θ 0 1:T

= −E  [ logE  [  ]]q(x  )0 q(x  ∣x  )1:T 0 q(x  ∣x  )1:T 0

p  (x  )θ 0:T

≤ −E  [ log  ] =q(x  )0:T q(x  ∣x  )1:T 0

p  (x  )θ 0:T E  [ log  ]q(x  )0:T p  (x  )θ 0:T

q(x  ∣x  )1:T 0

= E  [ −q(x  )0:T log p  (x  ) +θ T  log  +∑
t=2

T

p  (x  ∣x  )θ t−1 t

q(x  ∣x  )t t−1 log  ]
p  (x  ∣x  )θ 0 1

q(x  ∣x  )1 0

= E  [ −q(x  )0:T log p  (x  ) +θ T  log(   ) +∑
t=2

T

p  (x  ∣x  )θ t−1 t

q(x  ∣x  ,x  )t−1 t 0

q(x  ∣x  )t−1 0

q(x  ∣x  )t 0 log  ]
p  (x  ∣x  )θ 0 1

q(x  ∣x  )1 0

= E  [ −q(x  )0:T log p  (x  ) +θ T  log  +∑
t=2

T

p  (x  ∣x  )θ t−1 t

q(x  ∣x  ,x  )t−1 t 0 log  +
q(x  ∣x  )1 0

q(x  ∣x  )T 0 log  ]
p  (x  ∣x  )θ 0 1

q(x  ∣x  )1 0

= E  [ log  +q(x  )0:T p  (x  )θ T

q(x  ∣x  )T 0
 log  −∑

t=2

T

p  (x  ∣x  )θ t−1 t

q(x  ∣x  ,x  )t−1 t 0 log p  (x  ∣x  )]θ 0 1

= E  [  +q(x  )0:T

L  T

 D  (q(x  ∣x  )∥p  (x  ))KL T 0 θ T    ]∑
t=2

T

L  t

 D  (q(x  ∣x  , x  )∥p  (x  ∣x  )KL t−1 t 0 θ t−1 t

L  0

 − log p  (x  ∣x  )θ 0 1
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DDPM – Deriving Loss using Jensen's Inequality

The whole loss is therefore composed of the following components:

 is constant with respect to  and can be ignored,

 is KL divergence between two Gaussians, so it

can be computed explicitly as

 can be used to generate discrete  from the continuous ; we

will ignore it in the slides for simplicity.

L  =T D  (q(x  ∣x  )∥p  (x  ))KL T 0 θ T θ

L  =t D  (q(x  ∣x  ,x  )∥p  (x  ∣x  ))KL t−1 t 0 θ t−1 t

L  =t E[  (x ,x  ) −
2∥σ I∥t

2

1
μ~t t 0 μ  (x  , t)  ],θ t

2

L  =0 − log p  (x  ∣x  )θ 0 1 x  0 x  1
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DDPM – Reparametrizing Model Prediction

Recall that  for

Because , we get .

Substituting  to , we get

q(x  ∣x  ,x  ) =t−1 t 0 N(x  ;   (x  ,x  ),   I)t−1 μ
~
t t 0 β

~
t

=  (x  ,x  )μ~t t 0  x  +
1 −  ᾱt

 β   ᾱt−1 t
0  x  ,

1 −  ᾱt

 (1 −  )α  t ᾱt−1
t

=  β
~
t  β  .

1 −  ᾱt

1 −  ᾱt−1
t

x  =t  x  + ᾱt 0  e  1 − ᾱt t x  =0  (x  −
  ᾱt

1
t  e  )1 −  ᾱt t

x  0   μ~t

=  (x  ,x  )μ~t t 0   (x  −
1 −  ᾱt

 β   ᾱt−1 t

 ᾱt

1
t  e  ) +1 −  ᾱt t  x  

1 −  ᾱt

 (1 −  )α  t ᾱt−1
t

= (   +
1 −  ᾱt

 β   ᾱt−1 t

 ᾱt

1
 )x  −

1 −  ᾱt

 (1 −  )α  t ᾱt−1
t (   )e  

1 −  ᾱt

 β   ᾱt−1 t

  ᾱt

 1 −  ᾱt
t

=  x  −
(1 −  )  ᾱt α  t

β  + α  (1 −  )t t ᾱt−1
t (  )e  =

  1 −  ᾱt α  t

β  t
t  (x  −

 α  t

1
t e  ).

1 −  ᾱt

1 − α  t
t
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DDPM – Reparametrizing Model Prediction

We change our model to predict  instead of . The loss  then becomes

The authors found that training without the weighting term performs better, so the final loss is

Note that both losses have the same optimum if we used independent  for every .

ε  (x  , t)θ t μ  (x  , t)θ t L  t

=L  t E[     (x  ,x  ) −
2∥σ  I∥t

2

1
μ~t t 0 μ  (x  , t)  ]θ t

2

= E[    (x  −
2∥σ  I∥t

2

1
 α  t

1
t  e  ) −

 1 −  ᾱt

1 − α  t
t  (x  −

 α  t

1
t  ε  (x  , t))  ]

 1 −  ᾱt

1 − α  t
θ t

2

= E[   e  −
2α  (1 −  )∥σ  I∥t ᾱt t

2

(1 − α  )t 2

t ε  (x  , t)  ]θ t

2

= E[   e  −
2α  (1 −  )∥σ  I∥t ᾱt t

2

(1 − α  )t 2

t ε  (  x  +θ  ᾱt 0  e  , t)  ].1 −  ᾱt t

2

L  =t
simple E  [  e  −t∈{1..T },x  ,e  0 t t ε  (  x  +θ  ᾱt 0  e  , t)  ].1 −  ᾱt t

2

ε  θ  t
t
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Bonus Content 

DDIM Sampling

78/102NPFL138, Lecture 12 GAN GAN Convergence Flow Matching CFM Diffusion DDPM SD BonusN



Denoising Diffusion Implicit Models

We now describe Denoising Diffusion Implicit Models (DDIM), which utilize a different forward
process.

This forward process is designed to:

allow faster sampling,

have the same “marginals” .

The second condition will allow us to use the same loss as in DDPM; therefore, the training
algorithm is exactly identical do DDPM, only the sampling algorithm is different.

Note that in the slides, only a special case of DDIM is described; the original paper describes a
more general forward process. However, the special case presented here is almost exclusively
used.

q(x  ∣x  ) =t 0 N(  x  , (1 − ᾱt 0  )I)ᾱt
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Denoising Diffusion Implicit Models – The Forward Process

The forward process of DDIM can be described using

where

,

.

With these definitions, we can prove by induction that :

.

The real “forward”  can be expressed using Bayes' theorem using the above

definition, but we do not actually need it.

q  (x  ∣x  ) =0 1:T 0 q  (x  ∣x  )  q  (x  ∣x  ,x  ),0 T 0 ∏
t=2

T

0 t−1 t 0

q  (x  ∣x  ) =0 T 0 N(  x  , (1 − ᾱT 0  )I)ᾱT

q  (x  ∣x  ,x  ) =0 t−1 t 0 N(  x  + ᾱt−1 0  (  ), 0 ⋅1 −  ᾱt−1
 1−  ᾱt

x  −  x  t  ᾱt 0 I)

q  (x  ∣x  ) =0 t 0 N(  x  , (1 − ᾱt 0  )I)ᾱt

=x  t−1  x  + ᾱt−1 0  (  )1 −  ᾱt−1
 1−  ᾱt

x  −  x  t  ᾱt 0

=  x  + ᾱt−1 0  (  ) =1 −  ᾱt−1
 1−  ᾱt

 x  +  e  −  x   ᾱt 0 1−  ᾱt t  ᾱt 0
 x  + ᾱt−1 0  e  1 −  ᾱt−1 t

q  (x  ∣x  ,x  )0 t t−1 0
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Denoising Diffusion Implicit Models – The Reverse Process

The definition of  provides us also with a sampling algorithm; after sampling

the initial noise , we perform the following for  from  down to 1:

An important property of  is that it can also model several steps at once:

 

Figure 2 of "Denoising Diffusion Implicit Models", https://arxiv.org/abs/2010.02502

q  (x  ∣x  ,x  )0 t−1 t 0

x  ∼T N (0, I) t T

  

x  t−1 =  x  +  ε  (x  , t) ᾱt−1 0 1 −  ᾱt−1 θ t

=  (  ) +  ε  (x  , t). ᾱt−1
  ᾱt

x  −  ε  (x  ,t)t 1−  ᾱt θ t 1 −  ᾱt−1 θ t

q  0

q  (x  ∣x  ,x  ) =0 t′ t 0 N(  x  + ᾱt′ 0  (  ),0).1 −  ᾱt′
 1−  ᾱt

x  −  x  t  ᾱt 0
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Denoising Diffusion Implicit Models – Accelerated Sampling

We base our accelerated sampling algorithm on the “multistep” .

Let  be a subsequence of the process steps (usually, a uniform

subsequence of  is used), and let . Starting from initial noise ,

we perform  sampling steps for  from  down to 1:

The sampling procedure can be described in words as follows:

using the current time step , we compute the estimated noise ;

by utilizing the current signal rate  and noise rate , we estimate ;

we obtain  by combining the estimated signal  and noise  using the signal

and noise rates of the time step .

q  (x  ∣x  ,x  )0 t′ t 0

t  =S T , t  , … , t  S−1 1

T , … , 1 t  =0 0 x  ∼T N (0, I)
S i S

x  ←t  i−1  (  ) + ᾱt  i−1

x   estimate0

  

  ᾱt  i

x  −  ε  (x  ,t  )t  i
1−  ᾱt  i θ t  i i

 ε  (x  , t  ).1 −  ᾱt  i−1 θ t  i i

t  i ε  (x  , t  )θ t  i i

 ᾱt  i
 1 −  ᾱt  i

x  0

x  t  i−1 x  0 ε  (x  , t  )θ t  i i

t  i−1
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Denoising Diffusion Implicit Models – Accelerated Sampling

For comparison, we show both the original  and the new  sampling algorithms:

sample  from 

let  be a subsequence of the process steps

: the original sequence  is usually used

:  regularly-spaced steps  are usually used

additionally, we define 

for :

return 

DDPM DDIM

x  T N (0, I)

t  =S T , t  , … , t  =S−1 1 1
DDPM T , … , 1
DDIM S T ,  T ,  T , … , 1

S
S−1

S
S−2

t  =0 0

i = S, … , 1

  

DDPM :

DDIM :

x  ←  (x  −  ε  (x  , t  )) + σ  z  t  i−1  

α  t  i

1
t  i

 1−  ᾱt  i

1−α  t  i
θ t  i i t t

x  ←  (  ) +  ε  (x  , t  )t  i−1  ᾱt  i−1

x   estimate0

  

  ᾱt  i

x  −  ε  (x  ,t  )t  i
1−  ᾱt  i θ t  i i

1 −  ᾱt  i−1 θ t  i i

x  0
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DDIM – Accelerated Sampling Examples

 

Figure 3 of "Denoising Diffusion Implicit Models", https://arxiv.org/abs/2010.02502

 

Figure 5 of "Denoising Diffusion Implicit Models", https://arxiv.org/abs/2010.02502
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Bonus Content 

Score Matching
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Score Matching

Recall that loglikelihood-based models explicit represent the density function, commonly using
an unnormalized probabilistic model

and it is troublesome to ensure the tractability of the normalization constant .

One way how to avoid the normalization is to avoid the explicit density , and represent a

score function instead, where the score function is the gradient of the log density:

because

p  (x) =θ  ,
Z  θ

ef  (x)θ

Z  θ

p  (x)θ

s  (x) =θ ∇  log p  (x),x θ

s  (x) =θ ∇  log p  (x) =x θ ∇  log  =x
Z  θ

ef  (x)θ

∇  f  (x) −x θ  =

0

 ∇  logZ  x θ ∇  f  (x).x θ
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Langevin Dynamics

 

https://yang-song.net/assets/img/score/langevin.gif

When we have a score function , we can use it to perform sampling from the

distribution  by using Langevin dynamics, which is an algorithm akin to SGD, but

performing sampling instead of optimum finding. Starting with , we iteratively set

When  and ,  obtained by the Langevin

dynamics converges to a sample from the distribution .

∇  log p  (x)x θ

p  (x)θ

x  0

x  ←i+1 x  +i ε∇  log p  (x  ) +x  i θ i  z  ,   where  z  ∼2ε i i N (0, I).

ε → 0 K → ∞ x  K

p  (x)θ
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Score-Based Generative Modeling

 

https://yang-song.net/assets/img/score/smld.jpg
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Noise Conditional Score Network

However, estimating the score function from data is inaccurate in low-density regions.

 

https://yang-song.net/assets/img/score/pitfalls.jpg

In order to accurately estimate the score function in low-density regions, we perturb the data
distribution by isotropic Gaussian noise with various noise rates :

where the noise distribution  as analogous to the forward process in

the diffusion models.

σ  t

q  ( )σ  t
x~ =def E  [N ( ;x,σ  I)],x∼p(x) x~ t

2

q  ( ∣x) =σ  t
x~ N ( ;x,σ  I)x~ t

2
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Noise Conditional Score Network

To train the score function , we need to minimize the following

objective:

It can be shown (see P. Vincent: A connection between score matching and denoising
autoencoders) that it is equivalent to minimize the denoising score matching objective:

In our case, . Because  for standard

normal random variable , we can rewrite the objective to

so the score function basically estimates the noise given a noised image.

s  (x,σ  ) =θ t ∇  log q  (x)x σ  t

E  [  s  ( ,σ  ) −t, ∼q  x~ σ  t θ x~ t ∇  log q  ( )  ].x~ σ  t
x~ 2

E  [  s  ( ,σ  ) −t,x∼p(x), ∼q  ( ∣x)x~ σ  t
x~ θ x~ t ∇  log q  ( ∣x)  ].x~ σ  t

x~ 2

∇  log q  ( ∣x) =x~ σ  t
x~ ∇  =x~ 2σ  t

2
−∥ −x∥x~ 2

−
σ  t

2
−xx~ =x~ x+ σ  et

e ∼ N (0, I)

E  [  s  (x+t,x∼p(x),e∼N (0,I) θ σ  e,σ  ) −t t   ],
σ  t

−e 2

90/102NPFL138, Lecture 12 GAN GAN Convergence Flow Matching CFM Diffusion DDPM SD BonusN



Noise Conditional Score Network

Once we have trained the score function for various noise rates , we can sample using

annealed Langevin dynamics, where we utilize using gradually smaller noise rates .

 

https://yang-song.net/assets/img/score/multi_scale.jpg

 

Algorithm 1 of "Generative Modeling by Estimating Gradients of the Data
Distribution", https://arxiv.org/abs/1907.05600

Such a procedure is reminiscent to the reverse diffusion process sampling.

σ  t

σ  t
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Bonus Content 

Further Reading
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Development of GANs

Martin Arjovsky, Soumith Chintala, Léon Bottou: Wasserstein GAN

https://arxiv.org/abs/1701.07875
Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville:
Improved Training of Wasserstein GANs https://arxiv.org/abs/1704.00028
Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen: Progressive Growing of GANs

for Improved Quality, Stability, and Variation https://arxiv.org/abs/1710.10196
Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida: Spectral

Normalization for Generative Adversarial Networks https://arxiv.org/abs/1802.05957
Zhiming Zhou, Yuxuan Song, Lantao Yu, Hongwei Wang, Jiadong Liang, Weinan Zhang,
Zhihua Zhang, Yong Yu: Understanding the Effectiveness of Lipschitz-Continuity in

Generative Adversarial Nets https://arxiv.org/abs/1807.00751
Andrew Brock, Jeff Donahue, Karen Simonyan: Large Scale GAN Training for High

Fidelity Natural Image Synthesis https://arxiv.org/abs/1809.11096
Tero Karras, Samuli Laine, Timo Aila: A Style-Based Generator Architecture for

Generative Adversarial Networks https://arxiv.org/abs/1812.04948
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BigGAN

 

Figure 1 of "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096

 

Figure 2 of "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096
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BigGAN

 

Figure 7 of "Large Scale GAN Training for High Fidelity Natural Image Synthesis", https://arxiv.org/abs/1809.11096
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Development of VAEs

Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu: Neural Discrete Representation

Learning https://arxiv.org/abs/1711.00937

Ali Razavi, Aaron van den Oord, Oriol Vinyals: Generating Diverse High-Fidelity Images

with VQ-VAE-2 https://arxiv.org/abs/1906.00446

Patrick Esser, Robin Rombach, Björn Ommer: Taming Transformers for High-Resolution

Image Synthesis https://arxiv.org/abs/2012.09841

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, Ilya Sutskever: Zero-Shot Text-to-Image Generation

https://arxiv.org/abs/2102.12092

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer: High-

Resolution Image Synthesis with Latent Diffusion Models

https://arxiv.org/abs/2112.10752
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Development of Diffusion Models

Yang Song, Stefano Ermon: Generative Modeling by Estimating Gradients of the Data

Distribution https://arxiv.org/abs/1907.05600

Jonathan Ho, Ajay Jain, Pieter Abbeel: Denoising Diffusion Probabilistic Models

https://arxiv.org/abs/2006.11239

Jiaming Song, Chenlin Meng, Stefano Ermon: Denoising Diffusion Implicit Models

https://arxiv.org/abs/2010.02502

Alex Nichol, Prafulla Dhariwal: Improved Denoising Diffusion Probabilistic Models

https://arxiv.org/abs/2102.09672

Prafulla Dhariwal, Alex Nichol: Diffusion Models Beat GANs on Image Synthesis

https://arxiv.org/abs/2105.05233

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer: High-

Resolution Image Synthesis with Latent Diffusion Models

https://arxiv.org/abs/2112.10752
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SR3 Super-Resolution via Diffusion

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, M. Norouzi:
Image Super-Resolution via Iterative Refinement https://arxiv.org/abs/2104.07636
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Diffusion-Based Text-Conditional Image Generation

Alex Nichol et al.: GLIDE: Towards Photorealistic Image Generation and Editing with

Text-Guided Diffusion Models https://arxiv.org/abs/2112.10741

 

Figure 1 of "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models", https://arxiv.org/abs/2112.10741
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Diffusion-Based Text-Conditional Image Generation

 

Figure 2 of "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models", https://arxiv.org/abs/2112.10741
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Diffusion-Based Text-Conditional Image Generation

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, et al.: Photorealistic

Text-to-Image Diffusion Models with Deep Language Understanding

https://arxiv.org/abs/2205.11487

 

Figure 1 of "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding", https://arxiv.org/abs/2205.11487
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Normalizing Flows

Laurent Dinh, David Krueger, Yoshua Bengio: NICE: Non-linear Independent

Components Estimation https://arxiv.org/abs/1410.8516

Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio: Density estimation using Real NVP

https://arxiv.org/abs/1605.08803

Diederik P. Kingma, Prafulla Dhariwal: Glow: Generative Flow with Invertible 1x1

Convolutions https://arxiv.org/abs/1807.03039

 

Figure 1 of "Glow: Generative Flowwith Invertible 1×1 Convolutions", https://arxiv.org/abs/1807.03039
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